用户名: 密码: 验证码:
PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本一家公司开发的高强高模聚乙烯醇(polyvinyl alcohol,简称PVA)纤维K-Ⅱ可乐纶(REC15)应用在很多方面都对基体的韧性有很大的提高,PVA纤维增强水泥基复合材料(PVA fiber reinforced cementitious composites,简称PVA-FRCCs),是以水泥或以水泥加填料为基本粘结料,或者再加上小粒径细骨料作为基体,再加入体积掺量不大于2%~4%的PVA纤维做增强材料复合制成的建筑用材料。此种材料的特点是具有较高韧性,其拉应变值将近是混凝土的100倍,这种材料本身所具有的应变-硬化特性是实现稳态开裂的结果,也是这种材料独特韧性的来源,由于此种材料饱和多条裂缝宽度较小,低于100μm,以期将此种材料用在水工混凝土结构中,有效地防止结构开裂,极大地提高水工结构的耐久性。本文基于此完成了以下工作:
     1.对PVA-FRCCs使用的原材料性能、投料顺序的影响以及搅拌工艺进行了大量的试验,得到既节省时间、又有利于纤维分散、流动性好的配制方法。
     2.对PVA-FRCCs圆柱体试件进行单轴抗压试验,得到其抗压应力-应变曲线,其抗压强度不是很高,在16MPa~33MPa,但峰值荷载对应的拉应变比混凝土高3~6倍,极限压应变是混凝土的将近100倍。
     3.分别利用外夹式和粘贴式两种方法在1000kN微机控制液压伺服试验机、250kNMTS-NEW上进行无切口和两边切口单轴直接拉伸试验,得到硬化的应力-应变全曲线,极限拉应变最大可达到0.7%甚至更高,并伴随着密集的多条裂缝的出现,裂缝宽度小于100μm,对假硬化的应力-应变全曲线进行了分析与模拟,建立拉应力的计算公式。
     4.进行了与无切口直接拉伸试件同尺寸的单边切口薄板直接拉伸试验,得到硬化的荷载P-裂缝口张开位移(crack mouth opening displacement,简称CMOD)曲线(以下简称P-CMOD曲线),不仅在预制切口端部出现多条裂缝,在远离切口处还有多条微小裂缝出现,且裂缝开裂形式受切口长度的影响,将硬化的P-CMOD曲线分为5部分进行分析,并利用断裂力学的方法计算分析了此种材料不同部分的断裂韧度。
     5.利用两种缝高(65mm,50mm)楔入劈拉试验对比分析对比研究了高强混凝土、高强钢纤维混凝土、玻璃纤维增强水泥基复合材料、钢纤维增强水泥基复合材料、PVA-FRCCs的韧性,分析对比它们的P-CMOD曲线的特性,得出PVA纤维增韧效果最好的结论。PVA-FRCCs的起裂荷载可以利用P-CMOD曲线得到,高强混凝土和高强钢纤维混凝土的起裂荷载利用全桥电测法得到,并计算得到临界裂缝扩展长度。
     6.与单边切口直接拉伸类似,PVA-FRCCs得到硬化的P-CMOD曲线,在预制缝端乃至远处同样有多条裂缝的出现;PVA-FRCCs开裂后,在硬化段产生了多条微小裂
High strength and high modulus polyvinyl alcohol (PVA, in short) fiber (KURALON K-II, REC15) exploited by Japanese company can enhance the ductility to matrix in many ways. PVA fiber reinforced cementitious composites(PVA-FRCCs, in short) is a kind of composites reinforced by PVA fiber less than 2%~4% volume ratio.Furthermore, the matrix is just cement, cement adding some admixture, or extra adding some small particle diameter fine aggregate.Above all, the characteristic of the composites is ultra-high ductility whose ultimate tensile strain is about 100 times to concrete. Moreover, inherent pseudo strain-hardening character of the composites is the result of stable cracking and the reason of its unique ductility. In addition, the saturated multiple crack width of the composites is less than 100μm. Accordingly, a series of tests and analytical work about the composites have been completed in order to put the composites into hydraulic structure preventing cracking and improving durability:
    1. Material component performance, feeding sequence and mixing technology are described in detail. Based on a large number of tests, the optimal compounding method which can reduce the mixing time, make fiber dispersed uniformly and get better flowability can be acquired.
    2. Complete stress-strain curves of uniaxial compressive cylinder test of PVA-FRCCs are drawed. Although compressive strength is much low between 16MPa and 33MPa, tensile strain at peak load is 3 to 6 times to concrete and ultimate strain is almost 100 times to concrete.
    3. Uniaxial direct tensile test of nonotched and double-edged notched thin sheets which individually employ grip jaw and bended steel plate method are carried on 1000kN microcomputer control hydraulic servo machine and 250kN MTS-NEW. As a result, pseudo hardening stress-strain complete curves can be got and ultimate tensile strain is 0.7% at the most. Accompanyingly, densely multiple crack occurred whose width is only less than 100 μm. Furthermore, the analysis and simulation of stress-strain curves are carried out. In addition, the formula of calculating tensile stress is established.
    4. Uniaxial direct tensile test of single-notched thin sheet whose geometric dimension is the same to that used in foregoing direct tensile test is also done on 1000kN microcomputer control hydraulic servo machine. Pseudo hardening Load P-crack mouth opening displacement (P-CMOD, in short) is gained. Besides, not only multiple dispersive cracks
引文
[1] 沈荣熹.新型纤维增强水泥复合材料研究的进展.硅酸盐学报,1993,21(4):356-363.
    [2] 赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999.
    [3] Victor C Li, Shuxin Wang, Cynthia Wu. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal, 2001, 98(6): 483-492.
    [4] Shunsuke OTANI, Akira WADA, Yoshikazu KITAGAWA, et al. Research and development on smart structural systems in U.S.-Japan Cooperative Structural Testing Program. Journal of Japan Association for Earthquake Engineering, 2004, 4(3): 378-402.
    [5] Takashi MATSUMOTO, Hirozo MIHASHI. JCI-DFRCC sugary report on DFRCC terminologies and application concepts. JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites -Application and Evaluation, Takayama, 2002.
    [6] S. O. P. Benson, B. L. Karihaloo. CARDIFRC-Development and mechanical properties. Part Ⅰ: Development and workability. Magazine of Concrete Research, 2005, 57(6):347-352.
    [7] 喻乐华,钟金茹,罗威年.活性粉末混凝土技术.华东交通大学学报,2002,19(4):28-31.
    [8] 肖瑞敏,龙广成.活性粉末混凝土的工程应用研究.建筑技术,2004,35(1):37-38.
    [9] 王震宇,陈松来,袁杰.活性粉末混凝土的研究与应用进展.混凝土,2003,168:39-44.
    [10] 许利惟,毛文宫.浅析活性粉末混凝土的特性.福建建材,2005,87:35-37.
    [11] 柯开展,蔡文尧.活性粉末混凝土(RPC)在工程结构中的应用与前景.福建建材,2006,92:17-19.
    [12] Victor C Li. Engineered cementitious composites for structural applications innovations forum. Journal of Materials in Civil Engineering, 1998, May: 66-69.
    [13] Victor C. Li. On engineered cementitious composites (ECC)- A review of the material and its applications. Journal of Advanced Concrete Technology, 2003, 1(3):215-230.
    [14] 刘孝敏.工程材料的微观结构和力学性能.合肥:中国科学技术大学出版社,2003.
    [15] 吴人洁.复合材料.天津:天津大学出版社,2000.
    [16] Victor C. Li. Advances in ECC research. The ACE-MRL, Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor:1-28.
    [17] VICTOR C. LI. Large volume, high-performance applications of fibers in civil engineering. Journal of Applied Polymer Science, 2002, 83: 660-686.
    [18] 吴李国.PVA纤维的应用现状及进展.现代纺织技术,2001,9(4):52-54.
    [19] T. Horikoshi, A. Ogawa, T. Saito, et al. Properties of polyvinylalcohol fiber as reinforcing materials for cementitious composites. Kuraray Co. Ltd, Japan.
    [20] 邹曙光.新型PVA纤维的开发与应用.济南纺织化纤科技,2002,1:13-15.
    [21] 毕鸿章.采用聚乙烯醇纤维增强水泥.Building Materials Industry Information,2001,9:29.
    [22] 薛福连.高强度聚乙烯醇纤维在建材中的应用.江西建材,2004,1:18-19.
    [23] 吴兵.超高强高模PVA纤维的应用与市场预测.产业用纺织品,2000,4:37-38.
    [24] 戴礼兴,喻绍勇,周正华.高强高模聚乙烯醇纤维研究进展.产业用纺织品,1999,17(109):5-8.
    [25] 李明星,王凯.高强高模聚乙烯醇(PVA)纤维的研究进展.合成纤维-新产品开发,2003,1:21-24.
    [26] 夏冬.我国聚乙烯醇·维纶行业现状.四川纺织科技,2004,3:60-64.
    [27] 何飞,袁勇.PVA纤维混凝土梁的抗弯性能试验.建筑科学与工程学报,2005,22(2):34-39.
    [28] 彭定超,袁勇.PVA纤维混凝土弯折试验研究.混凝土,2004,171:46-51.
    [29] 彭定超,袁勇.PVA纤维混凝土力学参数间的相关关系.纤维复合材料,2003,4:25-29.
    [30] 袁勇,彭定超,邵晓芸.PVA纤维混凝土梁裂缝试验分析.工业建筑,2002,32(11):5-7.
    [31] 周霖.聚乙烯醇纤维在混凝土中的应用.四川纺织科技.2003,3:27-29.
    [32] 王永波,罗晦.PVA纤维在水泥基材料中作用的研究.重庆建筑,2005,7:1-3.
    [33] 王永波.PVA纤维增强水泥基复合材料的性能研究:(硕士论文).重庆:重庆大学,2005.
    [34] 陈婷,詹炳根.设计PVA纤维水泥基复合材料的研究进展.混凝土.2003,11:3-6.
    [35] 陈婷.高强高弹PVA纤维增强水泥基材料的研制与性(硕士学位论文).合肥:合肥工业大学,2004.
    [36] 王晓刚,毛新奇,赵铁军.聚乙烯醇纤维水泥基复合材料.青岛建筑工程学院学报,2004,25(4):28-31.
    [37] 王晓刚.PVA纤维ECC的实验方法研究及数值模拟(硕士学位论文).青岛:青岛理工大学,2005.
    [38] 王晓刚,Folker.H.Wittmann,赵铁军.优化设计水泥基复合材料应变硬化性能研究.混凝土与水泥制品,2006,46-49.
    [39] 陈瑛,冯新权,孟庆生等.基于细观力学的延性构件的设计.高科技纤维与应用,2004,29(2):25-27.
    [40] 陈瑛,黄博生,冯新权等.应变强化纤维加强水泥基配筋复合材料的抗弯承载力模型.高科技纤维与应用,2004,29(3):37-40.
    [41] Hwai-Chung Wu, Victor C. Li. Fiber/cement Interface tailoring with plasma treatment. Cement & Concrete Composites, 1999, 21:205-212.
    [42] Victor C. Li, Cynthia Wu, Shuxin Wang, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Materials Journal, 2002, 99(5):463-472.
    [43] T. Kanda and S. Watanabe, V. C. Li. Application of pseudo strain hardening cementitious composites to shear resistant structural elements, fracture mechanics of concrete structures. Proceedings FRAMCOS-3. AEDIFICATIO Publishers, D-79104 Freiburg, Germany.
    [44] Victor C. Li, Dhanada K. Mishra, Antoine E. Naaman, et al. On the shear behavior of engineered cementitious composites. Department of Civil and Environmental Engineering, University of Michigan, Ann. +Yasuo Inada. Institute of Technology, Shimizu Corporation, Tokyo JAPAN.
    [45] Gregor Fischer, Victor C. Li. Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions. ACI Structural Journal, 2003, 100(1):25-35.
    [46]Peerapong Suthiwarapirak, Takashi Matsumoto, Tetsushi Kanda. Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure. Journal of Materials in Civil Engineering, 2004, September/October:433-443.
    
    [47]Yilmaz Akkaya, Surendra P. Shah, Bruce Ankenman. Effect of fiber dispersion on multiple cracking of cement composites. Journal of Engineering Mechanics, 2001, April: 311-316.
    
    [48]M. B. Weimann, V. C. Li. Hygral behavior of engineered cementitious composites (ECC). International Journal for Restoration of Buildings and Monuments, 2003, 9(5):513 - 534.
    
    [49]Giovanni MARTINOLA, Martin F. BAML. Optimizing ECC in order to prevent shrinkage cracking. Laboratory for Building Materials, Swiss Federal Institute of Technology, Zurich.
    
    [50]Jun Zhang, Victor C. Li. Influences of fibers on drying shrinkage of fiber-reinforced cementitious composite. Journal of Engineering Mechanics, 2001, January. 37-44.
    
    [51]Victor C. Li, Michael Lepech, Shuxin Wang, et al. Development of green engineered cementitious composites for sustainable infrastructure systems. International Workshop on Sustainable Development and Concrete Technology: 181-191.
    
    [52]V. C. Li, D. K. Mishra. Structural applications of engineered cementitious compsotes. The Indian Concrete Journal, 1996:561-567.
    
    [53]Toshiro Kamada, Victor C. Li. The effects of surface preparation on the fracture behavior of ECC/concrete repair system. Cement & Concrete Composites, 2000, 22:423-431.
    
    [54]Mo Li, Victor C. Li. The Influence of surface preparation on the behavior of ECC/Concrete layer repair system under drying shrinkage conditions. Department of Civil and Environmental Engineering, University of Michigan, USA.
    
    [55]Victor C. Li .Durable overlay systems with engineered cementitious composites (ECC). International Journal for Restoration of Buildings and Monuments, 2003, 9(2): 1-20.
    
    [56]Satoru Nagai, Takashi Kaneko, Tetsushi Kanda, et al. Structural capacity of reinforced PVA-ECC Dampers. 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC) - BEFIB 2004, Varenna, 2004:1227-1236.
    
    [57]Keith KESNER, Sarah L. BILLINGTON. Experimental response of precast infill panels made with DFRCC. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Application and Evaluation-, 2002.
    
    [58]Hyun-Joon Kong, Stacy G. Bike, Victor C. Li. Constitutive rheological control to develop self-consolidating engineered cementitious composite reinforced with hydrophilic poly vinylalcohol fibers. Cement & Concrete Composites, 2003, 25:333-341.
    
    [59]Hyun-Joon Kong, Stacy G. Bike, Victor C. Li. Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement & Concrete Composites, 2003, 25:301-309.
    [60] Mette R. Geikera, Mari Brandla, Lars N. Thranea, et al. The effect of measuring procedure on the apparent rheological properties of self-compacting concrete. Cement and Concrete Research, 2002, 32:1791-1795.
    [61] Yun Yong Kim, Hyun-Joon Kong, Victor C. Li. Design of Engineered Cementitious Composite Suitable for Wet-Mixture Shotcreting. ACI Materials Journal, 2003, 100(6):511-518.
    [62] Yun Yong Kim, Gregor Fischer, Yun Mook Lim, et al. Mechanical Performance of Sprayed Engineered Cementitious Composite Using Wet-Mix Shotcreting Process for Repair Applications. ACI Materials Journal, 2004, 101(1):42-49.
    [63] Don de Koker, GPAG van Zijl. Extrusion of Engineered Cement-Based Composite Material. 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC)-BEFIB 2004, Varenna, 2004:1301-1310.
    [64] Hiroyuki Takashima, Kiyotaka Miyagai, roshiyuki Hashida, et al. A design approach for the mechanical properties of polypropylene discontinuous fiber reinforcedcementitious composites by extrusion molding. Engineering Fracture Mechanics, 2003, 70:853-870.
    [65] Alva Peledl, Surendra P. Shah. Processing Effects in Cementitious Composites: Extrusion and Casting. Journal of Materials in Civil Engineering, 2003, March/April: 192-199.
    [66] Shah, SP, Srinivasan, R and DeFord, D (1999). The use of extrusion rheometry in the development of extruded fibre-reinforced cement composites. Concrete Science and Engineering, 1999, 1:26-36.
    [67] VICTOR C. LI. Large volume, high-performance applications of fibers in civil engineering. Journal of Applied Polymer Science, 2002, 83: 660-686.
    [68] 丸田诚.高韧性纤维补强(ECC)用梁部材建筑部材初适用RC构法连结梁适用高空间自由度実现.鹿岛建设株式会社,研究·技术开発本部技术研究所,2005.
    [69] Yun Yong Kim, Gregor Fischer, Victor C. Li. Performance of bridge deck link slabs designed with ductile engineered cementitious composite. ACI Structural Journal, 2004, 101(6):792-801.
    [70] Rasmus Walter, V.C. Li, H. Stang. Comparison of FRC and ECC in a composite bridge deck. 5th International PhD Symposium in Civil Engineering, Delft, 2004.
    [71] V. C. Li. High performance fiber reinforced cementitious composites as durable material for concrete structure repair. International Journal for Restoration, 2004, 10(2):163-180.
    [72] Sarah L. BILLINGTON, Jaekyung K. YOON. Cyclic behavior of precast post-tensioned segmental concrete columns with ECC. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation-, 2002.
    [73] S. L. Billington, J. K. Yoon. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, 2004, JULY/AUGUST: 353-363.
    [74] Jun Zhang, Christopher K.Y.Leung, Yin Nee Cheung. Flexural performance of layered ECC-concrete composite beam. Composites Science and Technology, 2006:1-12.
    [75] Yilmaz Akkaya, Jeffrey Picka, Surendra P. Shah. Spatial distribution of aligned short fibers in cement composites. Journal of Materials in Engineering, 2000, 12(3):272-279.
    [76] Victor C. Li, Dhanada K. Mishra, Hwai-Chung Wu. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Materials and Structure, 1995, 28:586-595.
    [77] Carl Redon, Victor C. Li, Cynthia Wu, et al. Measuring and modifying interface properties of pva fibers in ECC matirx. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406.
    [78] Yilmaz Akkay, Alva Peled, Jeffrey D. Picka, et al. Effect of sand addition on properties of fiber-reinforced cement composites. ACI Materials Journal, 2000, 97(3):393-400.
    [79] 王起才.增稠剂对钢纤维混凝土性能的影响.兰州铁道学院学报.1997,16(3):12-16.
    [80] 罗永会,杨惠先,龚晓玲.混凝土消泡脱模剂的研究.混凝土,2000,3:21-22.
    [81] 黄宪章,黄登宇.有机硅消泡剂消泡机理、特性及用途研究.科技情报开发与经济,2003,13(1):161-163.
    [82] Victor C. Li, Gregor Fischer. Reinforced ECC -An evolution from materials to structures. composite structures. Proceedings of the 1st fib Congress, Session 5:105-122.
    [83] Atsuhisa Ogawa, Kiyoshi Takisawa, Hideki Hoshiro and Toshihiro Hamada. PVA-ECC: optimum mix proportion for better fluidity and ductility. Kuraray Co.,Ltd. Japan.
    [84] Motoyoshi Yamamoto, Yoshihisa Honda, Atsuhisa Ogawa, et al. Fiber reinforced foamed mortar with multiple cracks in flexure. Industrial materials product department, Tesac Co.,Ltd, Japan:1-7.
    [85] Tetsushi Kanda, Toshiyuki Kanakubo, Satoshi Nagai, et al. Technical consideration in producing ECC pre-cast structural element. Kajima Technical Research Institute, Japan.
    [86] G. Fischer, Victor C. Li. Effect of fiber reinforcement on the response of structural members. Engineering Fracture Mechanics, 2006, March, 23:1-15.
    [87] 朱晓红译自法刊《材料与结构》2000年第6期.混凝土应变软化性能的单轴抗压测试方法.水利水电快报,2001,22(6):9-12.
    [88] 白雪艳.简析不平度对混凝土 立方体试件抗压强度的影响.安徽建筑,2003,4:120.
    [89] Takashi MATSUMOTO, Hirozo MIHASHI. JCI-DFRCC summary report on DFRCC terminologies and application concepts. JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites-Application and Evaluation, Takayama, 2002:1-8.
    [90] 顾惠琳,彭勃.混凝土单轴直接拉伸应力-应变全曲线试验方法.建筑材料学报,2003,6(1):66-71.
    [91] 彭勃,郑伟.混凝土单轴直接拉伸强度试验方法研究.湖南大学学报(自然科学版),2004,31(2):79-83.
    [92] 张林俊,宋玉普,吴智敏.混凝土轴拉试验轴拉保证措施的研究.实验技术与管理.2003,20(2):99-124.
    [93] 杨萌.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究:(博土学位论文).大连:大连理工大学,2006.
    [94] Enhua Yang, Victor C. Li. Rate dependence in engineered cementitious composites. Department of Civil and Environmental Engineering, University of Michigan, USA.
    [95] Viktor Mechtcherine, Joachim Schulze. Testing the Behavior of strain hardening cementitious composites in tension. Institute for Building Materials, Technical University of Kaiserslautern, Germany.
    [96] Toshiyuki Kanakubo, Katsuyuki Shimizu, akoto Katagiri, et al. Tensile characteristics evaluation of DFRCC. JCI-TC-.
    [97] Tetsushi Kanda, Toshiyuki Kanakubo, Satoshi Nagai, et al. Technical consideration in producing ECC pre-cast structural element. Kajima Technical Research Institute, Japan.
    [98] Katsuyuki SHIMIZU, Toshiyuki KANAKUBO, Tetsushi KANDA, et al. Shear behavior of steel reinforced PVA-ECC beams. 13th World Conference on Earthquake Engineering, Canada, 2004.
    [99] William P. Boshoff, Gideon P.A.G. van Zijl. Time-dependent response of ECC: characterisation and modelling of creep and creep fracture. Division for Structural Engineering, University of Stellenbosch, South Africa.
    [100] Giovanni MARTINOLA, Martin F. BAML. Optimizing ECC in order to prevent shrinkage cracking. Laboratory for Building Materials, Swiss Federal Institute of Technology, Zürich.
    [101] 黄承逵,尚仁杰,赵国藩.混凝土动态拉伸试验方法的研究.大连理工大学学报,1997,37:S110-S114.
    [102] Tetsushi Kanda, Zhong Lin, Victor C. Li. Tensile stress-strain modeling of pseudostrain hardening cementitious composites. Journal of Materials in Civil Engineering, 2000, may: 147-156.
    [103] Petr Kabele. Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites. Engineering Fracture Mechanics, 2006, March, 7:1-16.
    [104] Hiroyuki Takashima, Kiyotaka Miyagai, Toshiyuki Hashida, et al. A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding. Engineering Fracture Mechanics, 2003, 70:853-870.
    [105] Yellore S. Gopalaratnam. On the characterization of flexural toughness in fiber reinforced concretes. Cement & Concrete Composites, 1995, 17:239-254.
    [106] Easley TC, Faber KT, Shah SP. Use of a crack-bridging single-fiber pullout test to study steel fiber/cementitious matrix composites. Journal of American Ceramic Society, 1999, 82(12): 3513-3520.
    [107] N. Banthia, J. Sheng. Fracture toughness of micro-fiber reinforced cement composites. Cement & Concrete Composites, 1996, 18: 251-269.
    [108] Y. Murakami (Editor-in-chief). Stress Intensity Factors Handbook. Pergamon Press, London, 1987.
    [109] 荀勇,陈伯望.纤维桥作用的探讨与验证.湖南大学学报,1996,23(4):112-116.
    [110] Li, V. C, Hashida, T. Engineering ductile fracture in brittle matrix composites. Journal of Materials Science Letters, 1993, 12: 898-901.
    [111] 徐世娘,赵艳华,吴智敏等.楔入劈拉法研究混凝土断裂能.水利发电学报,2003,4:15-22.
    [112] Jianzhuang Xiao, Holger Schneider, Cindy Donnecke, Gert Konig. Wedge splitting test on fracture behavior of ultra high strength concrete. Construction and Building Materials, 2004, 18:359-365.
    [113] Jin-Keun Kim, Yun-Yong Kim. Fatigue Crack growth of high-strength concrete in wedge-splitting test. Cement and Concrete Research, 1999, 29:705-712.
    [114] N. S. Que, F. Tin-Loi. Numerical evaluation of cohesive fracture parameters from a wedge splitting test. Engineering Fracture Mechanics, 2002,69:1269-1286.
    [115] B. L. Karihaloo, H. Abdalla, Q.Z. Xiao. Coefficients of the crack tip asymptotic field for wedge splitting specimens. Engineering Fracture Mechanics, 2003,70:2407-2420.
    [116] 缪群,朱晓峰.利用楔劈拉伸试验研究混凝土的断裂特性.建筑材料学报,1999,2(3):212-217.
    [117] Lennart φtergaard, David Lange, Henrik Stang. Early-age stress-crack opening relationships for high performance concrete. Cement & Concrete Composites, 2004, 26:563-572.
    [118] 周厚贵,李庆斌,赵志芳等.大体积混凝土裂缝仿真断裂分析研究.北京:中国葛洲坝集团公司、清华大学、烟台大学,2004.
    [119] 徐世娘.混凝土双K断裂参数计算理论及规范化测试方法.三峡大学学报(自然科学版),2002,24(1):1-8.
    [120] 李家康,王巍.高强混凝土的几个基本力学指标.工业建筑,1997,27(8):50-54.
    [121] Mohamed Maalej, Toshiyuki Hashida, Victor C. Li. Effect of fiber volume fraction on the off-crack-plane fracture energy in strain-hardening engineered cementitious composites. Journal of Ceramic Society, 1995, 78(12):3369-3375.
    [122] H. Mihashi, Joo P. de Barros Leite, S. Yamakoshi, et al. Controlling fracture toughness of matrix with mica flake inclusions to design pseudo-ductile fibre reinforced cementitious composites. Engineering Fracture Mechanics, 2006: 1-13.
    [123] 中国航空研究院.应力强度因子手册.北京:科学出版社,1981.
    [124] SHILANG XU, HANS W. REINHARDT. Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture. International Journal of Fracture, 1998, 92: 71-99.
    [125] 高丹盈,汤寄予,赵军.纤维高强混凝土弹性模量的试验研究.工业建筑,2004,134(11):47-49.
    [126] Hans W. Reinhardt, Shilang Xu. Crack extension resistance based on the cohesive force in concrete. Engineering Fracture Mechanics, 1999, 64:563-587.
    [127] 陈兴周,常亮,刘杰等.关于常用断裂判据.西北水力发电,2005,21(2):24-27.
    [128] Victor C. Li. Applicability of J-integral to tension-softening materials. Journal of Engineering Mechanics, 1997, May: 531-533.
    [129] 裴桂珠,崔建华.弹塑性断裂韧变J积分试验分析.安徽建筑工业学院学报(自然科学版).1995,3(2):43-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700