混凝土早期力学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外对于早龄期混凝土力学性能的试验研究比较少见,特别是在外加剂的影响,研究文献较少。因此,本文针对强度等级为C25的混凝土在高效减水剂、早强减水剂的不同掺量影响下,分别进行立方体抗压强度、劈裂抗拉强度和轴心抗拉强度随龄期增长规律的研究,并对抗拉试验进行有限元分析,为混凝土结构施工阶段的验算及裂缝控制提供依据。
     通过对7组立方体试块在4个龄期的抗压试验,拟合出了标准养护条件下不同龄期混凝土立方体强度统一计算公式,它不但可以应用到普通混凝土中,而且可以应用到掺外加剂混凝土强度的推算等方面,具有较好的适用性。
     混凝土的抗拉强度通常以劈裂抗拉试验这一间接测试混凝土抗拉强度的实验方法来代替。本文推荐的方法很好的解决了混凝土在轴心抗拉试验中的“对中”问题,且试件易于制作,费用低,试件与试验机装夹方便,模具能重复利用,同心度好,测量结果稳定可靠,建议推广使用。
     工程中混凝土抗拉强度大多数采用劈裂法,探明劈裂强度与轴心抗拉强度之间的关系及其随龄期的变化有着工程实际意义。本文通过大量实验得到了混凝土劈裂强度和轴心抗拉强度之间随龄期变化的关系。
     由于混凝土材料是非匀质、非线性的,脆性人工混合材料,力学性能较为复杂,且随时间而变化,性能指标的离散性很大。因此,以试验相关数据作为参数进行有限元分析,并和试验结果加以比较,以弥补试验的观测性较差的不足。
Few experimental research have been done about the early age mechanicalproperties of concrete at home and abroad, especially with the influences ofadmixture. Therefore, here is a research on the effect of the different blending amountof high efficiency water reducer and early-strength water-reducing agent on thedeveloping rules with age of the cube compressive strength, the indirect tensilestrength and the direct tensile strength of C25 concrete, and finite element analysison tensile strength was done at the same time. It provides a basis of concretestructure or checking computations and the control of cracks during construction.
     As results of compressive tests for 7 groups of cubic specimens in 4 ages, aformula for computing the cubic compressive strength of concrete in different agesunder standard curing conditions was fitted, which coincides not only with theordinary concrete but also with the concrete with addictives for its suitability.
     The tensile strength of concrete is usually obtained by splitting test, which is anindirect method. The paper designs the experimental apparatus for concrete of thedirect tension, which resolves the difficulty of ensuring that the load is truly axial, atthe same time, the making of the specimens is easy and cheap. The method in thispaper which is used to measuring the direct tensile strength is suggested to furtherapplication.
     The splitting tensile method for the tensile strength of concrete is usually usedin structural applications, so there is great importance in the investigating the relationbetween the direct tensile strength and the splitting strength, which have beenobtained in this paper on the base of tests.
     Concrete is anisotropic、non-linear、brittle and time-dependent, its mechanismproperties is very complex, and performance index is very disperse. Therefore, finiteelement analysis based on the parameter of the experimental data, compared with theresults of experiment, will compensate the deficiency of experimental observation.
引文
[1] 过镇海,混凝土的强度和本构关系原理和应用,中国建筑工业出版社,2002,pp4
    [2] 江见鲸,混凝土结构工程学,中国建筑工业出版社,1998
    [3] 桂海清,混凝土早期收缩与抗裂试验研究,浙江大学硕士学位论文,2002.6
    [4] S.N.Lim, T.ILWee, Autogenous shrinkage of ground-granulate blast furnace slag concrete ACI Materials Journal, 1997,No.S, pp: 587-593.
    [5] S.igarashi, Effects of microstructure on restrained autofenous shtinkage behavir in high strengh concrete at early age, mater.stuct. 2002 No.35, pp:80-84.
    [6] H.Li, T.H. Wee, Early-age creep and shrinkage of blended cement concrete, AC1 Materials Journal,2002,No.1, pp:3-10.
    [7] B.Persson Experiment studies on shrinkage of high-performance. C C R, No.7, pp: 1023-1036.
    [8] Salah A.Altoubat, David A.Lange,Creep, shrinlcage, and cracking of restrained concrete at early age, ACI Materials Jouxnal,2001,No.4, pp:323-331.
    [9] Effect of silica fume on the plastic shrinkage and pore water pressure of high-strength concretes, matex.stuct. 2001, No.34, pp:273-278.
    [10] Paillere.A M. Effect of rider addition on the autogenous shrinkage of silica fume concrete. ACI Materials Jourmal. 1989, No.2, pp. 139-144.
    [11] Ei-ichi Tazawa, Shingo Miyazawa. Influence of cement and admixture on autogenous shrinkage of cement paste,Cement and Concrete Research, 1995, No.2.pp:281-287.
    [12] Chan Y W, Liu C Y, Lu Y S. Effects of slag and fly ash on the autogenous shrinkage of high performance concrete. Japan Concrete Institute 1998. pp:213-220.
    [13] 祝永年,沈威,陈志源,Mehta P K,混凝土的结构、性能与材料,上海:同济大学出版社,1991
    [14] Plowman JM, Maturity and strength of concrete, Magazine of Concrete Research, 1956, 8 (22): 13-22
    [15] Oluokun F A. Early-ages concrete strength prediction by maturity another look. ACI Materials Journal. 1990, 87(6): 565-72
    [16] 袁勇,混凝土结构早期裂缝控制.科学出版社出版社.2004
    [17] 王伟,高性能混凝土早期自身收缩的试验研究,兰州理工大学硕士学位论文,2004.6
    [18] Jolicoeur C, Simard M A, Cement-Superplasticizer Compatibility in High Performance Concrete:The Role of Sulphates. Selected Papers on Superplasticizer Prepared, Hundy Chemical I.td. CA., 1995
    [19] 申爱琴,水泥与水泥混凝土,北京:人民交通出版社 2000.4
    [20] 魏海汉,卢经杨,建筑材料,中国建筑工业出版社,2003
    [21] 陈文豹,混凝土外加剂及其在工程中的应用,北京:煤炭工业出版社,1998
    [22] 陈建奎,混凝土外加剂的原理与应用,北京:计划出版社,1996.12
    [23] 陈嫣兮,顾德诊:高性能混凝土外加剂的选择原则,建筑技术,1998.1
    [24] 李金旺,李强:净浆裹石法拌制混凝土增强效应的研究,混凝土与水泥制品,1993.3 陈嫣兮,顾德诊“高性能混凝土外加剂的选择原则”《建筑技术》1998.1
    [25] B. H. Bharatkumar et al. Mix proportioning of high performance concreteCement&Concrete Composites 23(2001) pp: 71-80
    [26] 湖南大学、天津大学、同济大学、东南大学合编,建筑材料,中国建筑工业出版社,1996.PP.100-105
    [27] 混凝土结构工程施工质量验收规范(GB50204-2002),中国建筑工业出版社,2002
    [28] 普通混凝土配合比设计规程(JGJ55-2000),中国建筑工业出版社,2000
    [29] 中华人民共和国国家标准(GB50081-200),普通混凝土力学性能试验方法[S].北京:中国建筑工业出版社,2002.
    [30] NevilleA M.李国泮等译,混凝土的性能.北京:中国建筑工业出版社,1983
    [31] 刘文锋,混凝土结构设计原理,高等教育出版社,2004.8,pp.26-30
    [32] 马智英,钢纤维混凝土早期力学性能发展规律的试验研究田].北京工业大学.2003
    [33] 罗才毅,不同掺合料混凝土早龄期力学性能试验研究[D].浙江大学.2002
    [34] 杨伯科,混凝土实用新技术手册,长春:吉林科学技术出版社.1998
    [35] 徐子芳,氨基磺酸盐减水剂及改性水泥混凝土性能研究,安徽理工大学硕士学位论文,2006.6
    [36] 谢芳芳,新型高效减水剂的制备及性能研究,成都理工大学硕士学位论文,2004.6
    [37] Carmel J, Marc A S o Chemicala dmixture-cement interactions phenomenologyand physico-chemical concepts[J]. cement and concrete composites, 1998, 20(2, 3): 87-102
    [38] 覃维祖,高效减水剂的作用与发展[J]混凝土,1994(5):5-11
    [39] 卞利军,聚羧酸系高效减水剂的研究,大连理工大学硕士学位论文,2003.12
    [40] 李红,傅智,张劲泉,公路工程水泥混凝土早强剂应用技术,公路,2006.4
    [41] 要秉文,丁庆军,梅世刚,姚少巍;新型早强剂对混凝土性能的影响研究,混凝土,2005.9
    [42] 刘文锋,混凝土结构设计原理,高等教育出版社,2004.8,pp.26-30
    [43] 玛乃谦,使用混凝土大全[M],北京:科学出版社,2001
    [44] Agron A S,Shack W J.Theories of fiberand fiber concrete,PILEM Symposium.1975
    [45] 金贤玉,沈毅,李宗津,高强混凝土的早龄期特性试验研究,混凝土与水泥制品.2003,(5):5-7
    [46] 过镇海,时旭东,钢筋混凝土原理和分析,清华大学出版社.2003.5
    [47] 黄承连等,混凝土动态拉伸试验方法的研究[J],大连理工大学学报.1997,8(37):110-114
    [48] 党进谦等,混凝土单轴拉裂特性的研究[J],水力发电学报.200 1,4(75):44~48
    [49] 崔国帅等,部分预应力混凝土轴拉试件裂缝闭合的试验研究[J].南京建筑工程学院学报.1997,2(2):15-18
    [50] 王德法等,轴拉荷载下混凝土徐变性能的研究[J].西安交通大学学报.20003(34):95-98
    [51] 黄承连等,钢筋钢纤维混凝土轴拉构件裂缝宽度计算方法[J],建筑结构学报,1997.6(18):2-11
    [52] 吕克顺等,钢筋钢纤维轴拉构件的受力变形过程分析[J].大连水产学院学报.1998,6(13):43-48
    [53] 张林俊等,混凝土轴拉试验轴拉保证措施的研究[J].建筑经济.2001,(11):47-48
    [54] 赵茜,混凝土极限拉伸测试技术及误差分析[J].大连水产学院学报.1998,6(13):43-48.
    [55] 周士琼,普通混凝土受拉性能的试验研究[J].中国公路学报.1994,2(7):15-17
    [56] 周士琼,高强度性能混凝土极限拉应变性能研究[J].工业建筑.2000,30(7):47-49
    [57] Arshad A.Khan, William D.Cook, and DenisMitheli. Early ages tensile strength of low, medium, and high strength concretes at early ages[J] ACI Material Journal.Vol(9-10), 1995, 487-493
    [58] 王铁梦,工程结构裂缝控制,中国建筑工业出版社,1997
    [59] GB50010-2002.混凝土结构设计规范[S],中国建筑工业出版社,2002
    [60] Propovis S, Strength and Related Properties of Concrete. New York: John Wiley & Sons, 1998
    [61] 王勖成,有限单元法,清华大学出版社,2002.5
    [62] 梅毕祥,桩基与桩间土共同工作研究,南昌大学硕士学位论文,2006.6
    [63] 吕西林,金国芳,吴晓涵,钢筋混凝土结构非线性有限元理论与应用,同济大学出版社,1996.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700