酵母来源血管紧张素转移酶抑制多肽的制备及其抑制机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然来源的生物活性多肽因其具有明显的生理功能和很好的生物相容性而被广泛应用于医药、保健、食品、化妆品等行业;血管紧张素转移酶(ACE)抑制多肽是降血压药物及保健品潜在的代替品之一。
     本论文应用多酶复合水解、膜分离和层析分离获得了具有单一组成的ACE抑制六肽,并获得了六肽的氨基酸序列,探讨了其热稳定性和抗消化性能;进一步应用酶动力学、分子模拟、化学定点改性、结构生物学等技术手段阐述了抑制多肽与ACE的相互作用的分子机制,构建了六肽抑制ACE活性的机理模型,取得主要研究内容和结果如下:
     (1)酶解法制备酵母来源ACE抑制多肽。采用酵母水解酶提取并水解酵母蛋白质,当料液比为1:10(w/v)、加酶量为1%(w/w)时,在40℃提取2h的条件下,酵母蛋白质的提取效率达到最高,为81.32%±1.27%,此时,酵母蛋白质的水解度为23.38±1.26%;在酵母水解液中添加4倍乙醇可以较好地去除其中大分子杂质,核酸和多糖的去除率分别为87.9±1.74%和64.2±2.15%,蛋白质的损失率仅为6.88±1.28%;进一步超滤分级分离发现透过截留分子量为10kDa的超滤膜的组分活性最高,对该组分依次采用凝胶柱层析和阴离子交换柱层析后获得了一种ACE抑制活性较高的多肽组分AP1。
     (2)ACE抑制多肽的结构鉴定和性能测试。基质辅助激光解吸电离飞行时间质谱分析(MALDI-TOF-MS)和氨基酸N端测序结果表明,AP1是计算分子量660Da的单一组成多肽,其氨基酸组成为Thr-Pro-Thr-Gln-Gln-Ser;AP1对ACE的半抑制浓度(IC_50)为0.11μmol/mL,与已知的食源性ACE抑制多肽相比,AP1具有更高的ACE抑制活性;酶抑制动力学和等温滴定量热分析表明,AP1对ACE的抑制为非竞争性抑制,AP1不能改变ACE催化反应的米氏常数Km值,但可以改变酶反应的最大反应速率Vmax;采用本文建立的反相-高效液相色谱法(RP-HPLC)探讨了AP1的的热稳定性及抗消化性能,发现RP-HPLC法定量分析AP1具有较好的准确度和精确度,AP1的水溶液在37℃-60℃具有良好的热稳定性,能够抵抗人工胃液和人工肠液的消化。
     (3)AP1对ACE非竞争性抑制机理的研究。应用分子对接技术建立了AP1与ACE的分子对接结构模型,根据AP1与ACE活性中心间的相互作用确定了影响AP1活性的关键氨基酸残基,采用化学定点改性AP1的方法获得残基性质不同或肽链长度不同的改性多肽,并考察改性对多肽ACE抑制活性的影响规律,结果表明AP1的C-末端的Ser6与其抑制ACE活性有直接关系,而N-端的Thr1、Thr3、Gln4则是AP1作为ACE非竞争性抑制剂的结构基础,在解析AP1抑制ACE活性的分子机制的基础上构建了相关的机理模型,AP1的N-端的Thr1、Thr3和Gln4将其锚定在ACE亚结构域Ⅰ的盖子结构上,C-末端的Ser6则吸引ACE活性中心的Zn~(2+)使其位置发生偏离,因此,结合了AP1的ACE虽然能继续与底物HHL结合,但是由于催化过程缺少Zn~(2+)的参与而不能将HHL催化生成HA。
Bioactivity peptide has been widely applied to industries such as medicine, health care,food and makeup, because of its extensive physiological and medical functions.Angiotensin-converting enzyme (ACE)-inhibitory peptide has become potential alternative tohealth care products and hypotension drugs for its natural attribute.
     In this research, preparation technology of producing ACE from yeast throughmulti-enzyme hydrolysis was studied systematically. Based on these studies, purity, aminoacid sequence and stability of an ACE peptide with high ACE-inhibitory activity weredetermined. On the basis of these studies, the inhibition mechanism and model of reactionsbetween the ACE-inhibitory peptide and ACE were obtained using knowledge on enzymekinetics and thermodynamics, molecular simulation, designated chemical modification,structure biological, etc. The main experimental results are as follows:
     1. Preparation of ACE-inhibitory peptide by hydrolysis of yeast hydrolytic enzyme. Thehighest yeast protein extraction efficiency of81.32%±1.27%and the degree of yeast proteinhydrolysis of23.38%±1.26%were obtained when solid-liquid ratio is1:10, enzyme loading is1%(w/w), extraction temperature is40℃and extraction time is2hours. Yeast hydrolysatewas then roughly purified with4times (V/V) ethanol by ethanol precipitation method. Afterremoving impurities, the removal rates of polysaccharide and nucleic acid were64.2±2.15%and87.9±1.74%respectively, and the loss rate of protein was only6.88±1.28%. Furthermore,the component with MWCO-10kDa has the highest ACE-inhibitory activity withultrafiltration separation, and was purified with gel filtration chromatography and anionexchange chromatography. An ACE-inhibitory peptide AP1was purified.
     2. Structure identification and performance test of AP1. A hexapeptide,Thr-Pro-Thr-Gln-Gln-Ser, with a calculated molecular weight of660Da, was identified byMALDI-TOF-MS and automated edman degradation. The hexapeptide showed remarkableACE-inhibitory activity, with an IC50of0.11μmol/mL. The level of ACE-inhibitory activityof the hexapeptide is higher than other ACE-inhibitory peptides food-derived. Based on theresearch of enzyme inhibition kinetics and thermodynamics, the type of ACE inhibited by AP1is noncompetitive inhibition, and AP1could not change Kmof ACE, but change VmaxofACE. RP-HPLC determination method of AP1was established, and thermal stability andresistant of digestion were researched. The results showed that AP1demonstrated goodthermal stability at37-60℃, and resistant of digestion was good.
     3. ACE-Inhibitory mechanism of AP1. The docking model of AP1and ACE wasestablished. Based on the docking results, the key amino acids which affected the inhibitoryactive of AP1were concerned, and modified peptides with different length and amino acidcomposition were researched. The results showed that the hexapeptide bound to ACE viainteractions of the N-terminal Thr1, Thr3, and Gln4residues with the residues on the lidstructure of ACE, and the C-terminal Ser6attracted the zinc ion, which is vital for ACEcatalysis. The displacement of the zinc ion from the active site resulted in the inhibition ofACE activity. The structural model based on the docking simulation was supported byexperiments in which the peptide was modified. This study provides a new inhibitorymechanism of ACE by a peptide which broads our knowledge for drug designing againstenzyme targets.
引文
[1]杨闯.生物活性肽在营养保健中的应用[J].食品科学.2003,24:153-154.
    [2]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[D].中国海洋大学;2007.
    [3]冯秀燕,计成.寡肽在蛋白质营养中的作用[J].动物营养学报.2001,13:8-13.
    [4]姜晓光,宋博,迟春萍,等.生物活性肽的生理功能及研究进展[J].微生物学杂志.2006,26:82-85.
    [5]单春乔,赵红岩,崔丽,等.生物活性肽生理作用及功能研究[J].粮食与油脂.2011:15-17.
    [6]刘海军,乐超银,邵伟,等.生物活性肽研究进展[J].中国酿造.2010,5:5-8.
    [7] Gomes I, Dale CS, Casten K, et al. Hemoglobin-derived peptides as novel type ofbioactive signaling molecules[J]. The AAPS journal.2010,12:658-669.
    [8] Ida T, Takahashi T, Tominaga H, et al. Identification of the novel bioactive peptidesdRYamide-1and dRYamide-2, ligands for a neuropeptide Y-like receptor in Drosophila[J].Biochemical and Biophysical Research Communications.2011,410(4):872-877.
    [9]于志鹏,赵文竹,刘博群,等.血管紧张素转化酶抑制肽研究进展[J].食品科学.2010,31.308-311.
    [10] Ferreira SH, Bartelt DC, Greene LJ. Isolation of bradykinin-potentiating peptides fromBothrops jararaca venom[J]. Biochemistry.1970,9:2583-2593.
    [11] Ondetti MA, Williams NJ, Sabo E, et al. Angiotensin-converting enzyme inhibitors fromthe venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis[J].Biochemistry.1971,10:4033-4039.
    [12] Korhonen H, Pihlanto A. Bioactive peptides: production and functionality[J].International dairy journal.2006,16:945-960.
    [13]尹文,徐晨,马戈甲.抗菌肽的研究进展[J].细胞与分子免疫学杂志.2005,21:136-138.
    [14] Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobialpeptides[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes.2008,1778:357-375.
    [15]岳昌武,莫宁萍,刘坤祥,等.抗菌肽的结构特点·作用机理及其应用前景[J].安徽农业科学.2008,36:1736-1739.
    [16]李钦青,孙明江,代龙,等.壁虎不同提取工艺成分抗肿瘤作用的研究[J].时珍国医国药.2010,21:1629.
    [17] Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularizationfrom cartilage[J]. Science.1990,248:1408-1410.
    [18] Yamauchi F, Suetsuna K. Immunological effects of dietary peptide derived from soybeanprotein[J]. The Journal of nutritional biochemistry.1993,4:450-457.
    [19] Yamauchi K, Tomita M, Giehl T, et al. Antibacterial activity of lactoferrin and apepsin-derived lactoferrin peptide fragment[J]. Infection and Immunity.1993,61:719-728.
    [20]巢警殳,张岚,杜娟,等.生物活性肽的研究进展[J].吉林医药学院学报.2010,31(6):359-361.
    [21]殷雪婷.生物活性肽的制备方法及其功能[J].河南科技.2011,4:57.
    [22] Rizzello C, Losito I, Gobbetti M, et al. Antibacterial activities of peptides from thewater-soluble extracts of Italian cheese varieties[J]. Journal of dairy science.2005,88:2348-2360.
    [23] Tasiemski A, Vandenbulcke F, Mitta G, et al. Molecular characterization of two novelantibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzontessulatum[J]. Journal of Biological Chemistry.2004,279:30973-30982.
    [24]张少斌,张力,梁玉金,等.生物活性肽制备方法的研究进展[J].黑龙江畜牧兽医.2011,(6):39-41.
    [25]温鸿清,南克俊,刘兴汉,等.重组人内皮抑素30肽的抗肿瘤作用研究[J].现代肿瘤医学.2009,17:2280-2282.
    [26]丁文锋,李振南,韦静,等.胸腺五肽最小保护液相合成工艺的研究[J].中国药师.2007,10:781-783.
    [27]刘国都,周乐.活性三肽法氏囊素的液相合成[J].西北农业学报.2008,17:46-49.
    [28]杜林,李亚娜.生物活性肽的功能与制备研究进展[J].中国食物与营养.2005,(8):18-21.
    [29] Iroyukifujita H, Eiichiyokoyama K, Yoshikawa M. Classification and AntihypertensiveActivity of Angiotensin I‐Converting Enzyme Inhibitory Peptides Derived from FoodProteins[J]. Journal of Food Science.2000,65:564-569.
    [30] Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized bycasein phosphopeptides: a review[J]. Special care in dentistry.1998,18:8-16.
    [31]耿秀芳,李耀辉.猪骨胶蛋白降压成分的提取与生物活性的研究[J].西安医科大学学报.2001,22:418-421.
    [32]王竹清,李八方.生物活性肽及其研究进展[J].中国海洋药物.2010:60-68.
    [33] Gohlke P, Linz W, Scholkens BA, et al. Angiotensin-converting enzyme inhibitionimproves cardiac function. Role of bradykinin[J]. Hypertension.1994,23:411-418.
    [34] Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors ofangiotensin-converting enzyme: new class of orally active antihypertensive agents[J]. Science.1977,196:441.
    [35]黎观红.食物蛋白源血管紧张素转化酶抑制肽的研究[D]:无锡:江南大学博士学位论文;2005.
    [36] Jaspard E, Wei L, Alhenc-Gelas F. Differences in the properties and enzymaticspecificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studieswith bradykinin and other natural peptides[J]. Journal of Biological Chemistry.1993,268:9496-9503.
    [37] Natesh R, Schwager SLU, Evans HR, et al. Structural details on the binding ofantihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-convertingenzyme[J]. Biochemistry.2004,43:8718-8724.
    [38] Natesh R, Schwager SLU, Sturrock ED, et al. Crystal structure of the humanangiotensin-converting enzyme-lisinopril complex[J]. Nature.2003,421:551-554.
    [39] Hubert C, Houot AM, Corvol P, et al. Structure of the angiotensin I-converting enzymegene. Two alternate promoters correspond to evolutionary steps of a duplicated gene[J].Journal of Biological Chemistry.1991,266:15377-15383.
    [40] Deddish PA, Wang J, Michel B, et al. Naturally occurring active N-domain of humanangiotensin I-converting enzyme[J]. Proceedings of the National Academy of Sciences.1994,91:7807.
    [41] Coates D, Isaac RE, Cotton J, et al. Functional conservation of the active sites of humanand Drosophila angiotensin I-converting enzyme[J]. Biochemistry.2000,39:8963-8969.
    [42] Cornell MJ, Williams TA, Lamango NS, et al. Cloning and expression of an evolutionaryconserved single-domain angiotensin converting enzyme from Drosophila melanogaster[J].Journal of Biological Chemistry.1995,270:13613-13619.
    [43] Danilczyk U, Eriksson U, Crackower MA, et al. A story of two ACEs[J]. Journal ofmolecular medicine.2003,81:227-234.
    [44] Corradi HR, Schwager SLU, Nchinda AT, et al. Crystal structure of the N domain ofhuman somatic angiotensin I-converting enzyme provides a structural basis fordomain-specific inhibitor design[J]. Journal of molecular biology.2006,357:964-974.
    [45] de Andrade MCC, Affonso R, Fernandes FB, et al. Spectroscopic and structural analysisof somatic and N-domain angiotensin I-converting enzyme isoforms from mesangial cellsfrom Wistar and spontaneously hypertensive rats[J]. International journal of biologicalmacromolecules.2010,47:238-243.
    [46] Wei L, Alhenc-Gelas F, Corvol P, et al. The two homologous domains of humanangiotensin I-converting enzyme are both catalytically active[J]. Journal of BiologicalChemistry.1991,266:9002-9008.
    [47] Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme2is anessential regulator of heart function[J]. Nature.2002,417:822-828.
    [48] Georgiadis D, Beau F, Czarny B, et al. Roles of the two active sites of somaticangiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin[J]. Circulationresearch.2003,93:148-154.
    [49] Sturrock E, Natesh R, Rooyen J, et al. Whats new in the renin-angiotensin system?:Structure of angiotensin I-converting enzyme[J]. Cellular and Molecular Life Sciences CMLS.2004,61:2677-2686.
    [50] Towler P, Staker B, Prasad SG, et al. ACE2X-ray structures reveal a large hinge-bendingmotion important for inhibitor binding and catalysis[J]. Journal of Biological Chemistry.2004,279:17996-18007.
    [51] Pelmenschikov V, Blomberg MR, Siegbahn PE. A theoretical study of the mechanism forpeptide hydrolysis by thermolysin[J]. Journal of Biological Inorganic Chemistry.2002,7:284-298.
    [52]赵钰岚,许传莲.血管紧张素转换酶的结构功能及相关抑制剂[J].生物工程学报.2008,24:171-176.
    [53]朱明燕,柳景景,石雷.血管紧张素转换酶抑制剂研究进展与临床应用[J].中国医药导报.2011,8:9-10.
    [54] Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and highdoses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality inchronic heart failure[J]. Circulation.1999,100:2312-2318.
    [55] Je JY, Park JY, Jung WK, et al. Isolation of angiotensin I converting enzyme (ACE)inhibitor from fermented oyster sauce, Crassostrea gigas[J]. Food Chemistry.2005,90:809-814.
    [56]季闽春,王永铭.血管紧张素转换酶抑制剂的皮肤不良反应[J].中国临床药理学杂志.1996,12:112-114.
    [57] Shin Z, Ahn C, Nam H, et al. Fractionation of angiotensin converting enzyme (ACE)inhibitory peptides from soybean paste[J]. Korean Journal of Food Science and Technology.1995,27:230-234.
    [58] Wu J, Ding X. Hypotensive and physiological effect of angiotensin converting enzymeinhibitory peptides derived from soy protein on spontaneously hypertensive rats[J]. Journal ofagricultural and food chemistry.2001,49:501-506.
    [59] Shin ZI, Yu R, Park SA, et al. His-His-Leu, an angiotensin I converting enzymeinhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity invivo[J]. Journal of agricultural and food chemistry.2001,49:3004-3009.
    [60] Matsumura N, Fujii M, Takeda Y, et al. Angiotensin I-converting enzyme inhibitorypeptides derived from bonito bowels autolysate[J]. Bioscience, biotechnology, andbiochemistry.1993,57:695.
    [61] Hata Y, Yamamoto M, Ohni M, et al. A placebo-controlled study of the effect of sourmilk on blood pressure in hypertensive subjects[J]. The American journal of clinical nutrition.1996,64:767-771.
    [62] Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization ofangiotensin I-converting enzyme inhibitors from sour milk[J]. Journal of dairy science.1995,78:777-783.
    [63] Matsui T, Li CH, Osajima Y. Preparation and characterization of novel bioactive peptidesresponsible for angiotensin I‐converting enzyme inhibition from wheat germ[J]. Journal ofPeptide Science.1999,5:289-297.
    [64] Matsui T, ChunHui L, Tanaka T, et al. Depressor effect of wheat germ hydrolysate and itsnovel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism inrat and human plasma[J]. Biological&pharmaceutical bulletin.2000,23:427-431.
    [65] Yoshii H, Tachi N, Ohba R, et al. Antihypertensive effect of ACE inhibitoryoligopeptides from chicken egg yolks[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology.2001,128:27-33.
    [66] Oshima G, Shimabukuro H, Nagasawa K. Peptide inhibitors of angiotensin I-convertingenzyme in digests of gelatin by bacterial collagenase[J]. Biochimica et Biophysica Acta(BBA)-Enzymology.1979,566:128-137.
    [67] Maruyama S, Suzuki H. A peptide inhibitor of angiotensin I converting enzyme in thetryptic hydrolysate of casein[J]. Agricultural and Biological Chemistry.1982,46:1393-1394.
    [68] Kohmura M, Nio N, Kubo K, et al. Inhibition of angiotensin-converting enzyme bysynthetic peptides of human β-casein[J]. Agricultural and Biological Chemistry.1989,53:2107-2114.
    [69]辛志宏,马海乐,吴守一.食品蛋白质中血管紧张素转化酶抑制肽的研究[J].江苏大学学报:自然科学版.2003,24:17-21.
    [70] Wang ZL, Zhang SS, Wang W, et al. A novel angiotensin I converting enzyme inhibitorypeptide from the milk casein: Virtual screening and docking studies[J]. Agricultural Sciencesin China.2011,10:463-467.
    [71] Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived fromfish protein[J]. Immunopharmacology.1999,44:123-127.
    [72]何海伦,陈秀兰,孙彩云,等.血管紧张素转化酶抑制肽的研究进展[J].中国生物工程杂志.2004,24:7-11.
    [73]吴建平,丁霄霖.食品蛋白质降血压肽的研究进展[J].中国粮油学报.1998,13:10-14.
    [74]薛照辉.菜籽肽的制备及其生物活性的研究[D]:武汉:华中农业大学;2004.
    [75]辛志宏,吴守一,马海乐,等从麦胚蛋白质中制备降血压肽的研究[J].食品科学.2003,24:120-123.
    [76]许金光,杨智超,刘长江,等血管紧张素转化酶(ACE)抑制肽的研究进展[J].食品工业科技.2011,5:425-427.
    [77] Cushman D, Cheung H. Spectrophotometric assay and properties of theangiotensin-converting enzyme of rabbit lung[J]. Biochemical Pharmacology.1971,20:1637-1648.
    [78] Wu J, Ding X. Characterization of inhibition and stability of soy-protein-derivedangiotensin I-converting enzyme inhibitory peptides[J]. Food Research International.2002,35:367-375.
    [79] Vermeirssen V, Van Camp J, Verstraete W. Optimisation and validation of anangiotensin-converting enzyme inhibition assay for the screening of bioactive peptides[J].Journal of biochemical and biophysical methods.2002,51:75-87.
    [80]赵海珍,陆兆新,刘战民.天然食品来源的血管紧张素转换酶抑制肽的研究进展[J].中国生化药物杂志.2004,25:315-317.
    [81]郝记明,章超桦,郭顺堂.食源性血管紧张素抑制肽(ACEIP)的评价方法[J].湛江海洋大学学报.2004,24:77-81.
    [82]于一丁,于志鹏,赵文竹,等.血管紧张素转化酶抑制肽稳定性研究[J].食品工业科技.2010,1:412-414.
    [83] Raha D, Tortorella C, Neri G, et al. Atrial natriuretic peptide enhances cortisol secretionfrom guinea-pig adrenal gland: evidence for an indirect paracrine mechanism probablyinvolving the local release of medullary catecholamines[J]. International journal of molecularmedicine.2006,17:633-636.
    [84]刘静波,于志鹏,赵文竹,等.蛋清源ACE抑制肽结构鉴定及其稳定性[J].吉林大学学报:工学版.2011,41:579-584.
    [85] Pauletti GM, Gangwar S, Siahaan TJ, et al. Improvement of oral peptide bioavailability:Peptidomimetics and prodrug strategies[J]. Advanced drug delivery reviews.1997,27:235-256.
    [86] Vermeirssen V, Van Camp J, Verstraete W. Bioavailability of angiotensin I convertingenzyme inhibitory peptides[J]. British Journal of Nutrition.2004,92:357-366.
    [87] Alcaide-Hidalgo JM, Martínez-Rodríguez AJ, Martín-álvarez PJ, et al. Influence of theelaboration process on the peptide fraction with angiotensin I-converting enzyme inhibitoractivity in sparkling wines and red wines aged on lees[J]. Food Chemistry.2008,111:965-969.
    [88] Ondetti M, Cushman D. Enzymes of the renin-angiotensin system and their inhibitors[J].Annual review of biochemistry.1982,51:283-308.
    [89] Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors ofangiotensin converting enzyme[J]. Hypertension.1991,17:589-592.
    [90] Li GH, Le GW, Shi YH, et al. Angiotensin I–converting enzyme inhibitory peptidesderived from food proteins and their physiological and pharmacological effects[J]. NutritionResearch.2004,24:469-486.
    [91] Lopez-Fandino R, Otte J, Van Camp J. Physiological, chemical and technological aspectsof milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity[J].International dairy journal.2006,16:1277-1293.
    [92] Otte J, Shalaby S, Zakora M, et al. Fractionation and identification of ACE-inhibitorypeptides from [alpha]-lactalbumin and [beta]-casein produced by thermolysin-catalysedhydrolysis[J]. International dairy journal.2007,17:1460-1472.
    [93] Kobayashi Y, Yamauchi T, Katsuda T, et al. Angiotensin-I converting enzyme (ACE)inhibitory mechanism of tripeptides containing aromatic residues[J]. Journal of bioscienceand bioengineering.2008,106:310-312.
    [94] Lee JK, Lee MS, Park HG, et al. Angiotensin I converting enzyme inhibitory peptideextracted from freshwater zooplankton[J]. Journal of medicinal food.2010,13:357.
    [95] Lee JK, Hong S, Jeon JK, et al. Purification and characterization of angiotensin Iconverting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis [J].Bioresource technology.2009,100:5255-5259.
    [96] Jang JH, Jeong SC, Kim JH, et al. Characterization of a new antihypertensive angiotensinI-converting enzyme inhibitory peptide from Pleurotus cornucopiae[J]. Food Chemistry.2011,48(3):423-431.
    [97] Fan J, Hu X, Tan S, et al. Isolation and characterisation of a novel angiotensinI‐converting enzyme‐inhibitory peptide derived from douchi, a traditional Chinesefermented soybean food[J]. Journal of the Science of Food and Agriculture.2009,89:603-608.
    [98] Muguruma M, Ahhmed AM, Katayama K, et al. Identification of pro-drug type ACEinhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effectsin vivo[J]. Food Chemistry.2009,114:516-522.
    [99] Sheih I, Fang TJ, Wu TK. Isolation and characterisation of a novel angiotensinI-converting enzyme (ACE) inhibitory peptide from the algae protein waste[J]. FoodChemistry.2009,115:279-284.
    [100] Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptidefrom tuna frame protein hydrolysate and its antihypertensive effect in spontaneouslyhypertensive rats[J]. Food Chemistry.2010,118:96-102.
    [101] Jung WK, Mendis E, Je JY, et al. Angiotensin I-converting enzyme inhibitory peptidefrom yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect inspontaneously hypertensive rats[J]. Food Chemistry.2006,94:26-32.
    [102] Himaya S, Ngo DH, Ryu BM, et al. An active peptide purified from gastrointestinalenzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1converting enzyme(ACE) activity and cellular oxidative stress[J]. Food Chemistry.2011,132(4):1872-1882.
    [103] Balti R, Nedjar-Arroume N, Bougatef A, et al. Three novel angiotensin I-convertingenzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestiveproteases[J]. Food Research International.2010,43:1136-1143.
    [104] Ramachandran K, Deepa G, Namboori K. Computational chemistry and molecularmodeling: principles and applications[M]: Springer Verlag;2008.
    [105] Allen MP, Tildesley DJ. Computer simulation of liquids[M]: Oxford university press;1989.
    [106]刘明.蛋白质与配体相互作用机理的分子模拟研究[D]:北京工业大学;2010.
    [107] Warshel A. Computer modeling of chemical reactions in enzymes and solutions[M].1991.
    [108]胡建平.用分子模拟方法研究蛋白质受体与配体的相互作用[D]:北京工业大学;2008.
    [109]孙庭广.用分子模拟方法研究周质转运体系蛋白的结构与功能关系[D]:北京工业大学;2009.
    [110] Bronckaers A, Gago F, Balzarini J, et al. The dual role of thymidine phosphorylase incancer development and chemotherapy[J]. Medicinal research reviews.2009,29:903-953.
    [111] Gowthaman U, Jayakanthan M, Sundar D. Molecular docking studies ofdithionitrobenzoic acid and its related compounds to protein disulfide isomerase:computational screening of inhibitors to HIV-1entry[J]. BMC bioinformatics.2008,9:S14.
    [112]郭龙,王欣欣,黄建新.啤酒废酵母蛋白的提取工艺研究[J].安徽农业科学.2011,34:19566-19567.
    [113]孙伟峰,周素梅,王强.酵母蛋白肽酶解制备工艺研究[J].食品工业科技.2009,5:194-196.
    [114]凌秀梅,邱树毅,黄永光,等.自溶法从啤酒废酵母中制取多肽的研究[J].食品科学.2008,29,336-339.
    [115]程涛,孙艳波,李健.双缩脲法测定乳中酪蛋白含量[J].中国乳品工业.2000,28:33-35.
    [116]李娟,张耀庭.应用考马斯亮蓝法测定总蛋白含量[J].中国生物制品学杂志.2000,13:118-120.
    [117]李晓东,牛治霞,张柏林.乳清蛋白水解物水解度3种测定方法的比较[J].中国乳品工业.2006,34:59-62.
    [118]徐志祥,李刚.苯酚—硫酸法测定灵芝多糖含量的条件研究[J].食用菌.2000,22:6-8.
    [119]吴春敏,龚蜜.定磷法测定复方制剂中核酸含量[J].中国生化药物杂志.1997,18:44-45.
    [120] Ma C, Ni X, Chi Z, et al. Purification and characterization of an alkaline protease fromthe marine yeast Aureobasidium pullulans for bioactive peptide production from differentsources[J]. Marine Biotechnology.2007,9:343-351.
    [121]侯升杰,丁明玉.高效液相色谱法测定啤酒中的11种核苷和碱基[J].第十七届全国色谱学术报告会.
    [122]岑沛霖,蔡谨.工业微生物学[M]:化学工业出版社;2000.
    [123]周德庆.微生物学教程[M]:高等教育出版社;2002.
    [124]刘静,潘映红,徐琴,等.小麦叶片蛋白质组的2D-LC分离及Nano LC-MS/MS分析[J].中国农业科学.2009,42:772-780.
    [125]栾伟.液相色谱串联质谱法(LC-MS/MS)分析宠物食品中三聚氰胺[J].分析测试学报.2007,26:285-286.
    [126]项赟,李立军,阿不力孜再帕尔.液相色谱-质谱联用方法在药用植物成分分析中的作用[J][J].药学学报.2002,37:389-395.
    [127]孙学辉,路铁刚,贾士荣,等.水稻中富含亮氨酸的重复序列和核普酸结合位点(LRR-NBS)基因家族的生物信息学分析[J].中国农业科学.2004,37(1):1-7.
    [128] Vadassery J, Oelmüller R. Calcium signaling in pathogenic and beneficial plant microbeinteractions: what can we learn from the interaction between Piriformospora indica andArabidopsis thaliana[J]. Plant signaling&behavior.2009,4:1024.
    [129] Bateman A, Bycroft M. The structure of a LysM domain from E. coli membrane-boundlytic murein transglycosylase D (MltD)1[J]. Journal of molecular biology.2000,299:1113-1119.
    [130]何慧,王进,裴凡,等.蛋白质水解物与苦味的构效关系及脱苦研究[J].食品科学.2006,27:571-574.
    [131]曾繁典.血管紧张素转化酶抑制剂的临床药理研究进展[J].中国临床药理学杂志.1991,7:85-85.
    [132]吴建平,潘文彪.乳蛋白生物活性肽的研究概述[J].中国乳品工业.1999,27:12-15.
    [133]韩飞,于婷婷,周孟良.酶法生产大豆蛋白ACE抑制肽的研究[J].食品科学.2008,29:369-374.
    [134]倪莉,陶冠军,戴军,等.血管紧张素转化酶活性抑制剂──丝素肽的分离,纯化和结构鉴定[J].色谱.2001,19:222-225.
    [135]李天娇,徐响,孙丽萍,等.油菜蜂花粉ACE抑制活性水解物的制备及分离[J].食品科学.2010,31.
    [136] Matsui T, Matsufuji H, Seki E, et al. Inhibition of angiotensin I-converting enzyme byBacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle[J].Bioscience, biotechnology, and biochemistry.1993,57:922.
    [137] Bougatef A, Balti R, Nedjar-Arroume N, et al. Evaluation of angiotensin I-convertingenzyme (ACE) inhibitory activities of smooth hound (Mustelus mustelus) muscle proteinhydrolysates generated by gastrointestinal proteases: identification of the most potent activepeptide[J]. European Food Research and Technology.2010,231:127-135.
    [138]胡文婷,张凯.酶解海洋生物源蛋白制备活性肽研究进展[J].海洋科学.2010,5:83-88.
    [139] Fujita H, Yamagami T, Ohshima K. Effects of an ace-inhibitory agent, katsuobushioligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensivesubjects[J]. Nutrition Research.2001,21:1149-1158.
    [140] Wang J, Hu J, Cui J, et al. Purification and identification of a ACE inhibitory peptidefrom oyster proteins hydrolysate and the antihypertensive effect of hydrolysate inspontaneously hypertensive rats[J]. Food chemistry.2008,111:302-308.
    [141] Tsai JS, Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle proteinhydrolysate of hard clam (Meretrix lusoria)[J]. Process Biochemistry.2008,43:743-747.
    [142]郑建仙.功能性食品生物技术[M]:中国轻工业出版社;2004.
    [143]高德民,刘金锋,王凤山.多肽类药物结构稳定性的研究进展[J].中国医药生物技术.2007:380-382.
    [144]钟延强,鲁莹.多肽及蛋白质类药物在可注射性聚合物释放系统中的稳定性研究进展[J].中国药学杂志.2005,40:1361-1366.
    [145]潘正安,孙小芳.中华人民共和国药典.北京:化学工业出版社;2005.
    [146]王镜岩,朱圣庚,徐长法.生物化学(下册).北京:高等教育出版社;2002.
    [147] Sturrock E, Natesh R, Rooyen J, et al. Whats new in the renin-angiotensin system?:Structure of angiotensin I-converting enzyme. Cellular and Molecular Life SciencesCMLS2004. p.2677-2686.
    [148] Ko SC, Lee JK, Byun HG, et al. Purification and characterization of angiotensinI-converting enzyme inhibitory peptide from enzymatic hydrolysates of Styela clava fleshtissue[J]. Process Biochemistry.2012,47(1):34-40.
    [149] Persson IAL. The Pharmacological Mechanism of Angiotensin‐converting EnzymeInhibition by Green Tea, Rooibos and Enalaprilat–A Study on Enzyme Kinetics[J].Phytotherapy Research.2011.
    [150] Pedroche J, Yust MM, Girón‐Calle J, et al. Utilisation of chickpea protein isolates forproduction of peptides with angiotensin I‐converting enzyme (ACE)‐inhibitory activity[J].Journal of the Science of Food and Agriculture.2002,82:960-965.
    [151] Matsufuji H, Matsui T, Seki E, et al. Angiotensin I-converting enzyme inhibitorypeptides in an alkaline protease hydrolyzate derived from sardine muscle[J]. Bioscience,biotechnology, and biochemistry.1994,58:2244-2245.
    [152] Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin I convertingenzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus[J].Journal of agricultural and food chemistry.2007,55:8398-8403.
    [153] Si D, Wang Y, Zhou YH, et al. Mechanism of CYP2C9inhibition by flavones andflavonols[J]. Drug metabolism and disposition.2009,37:629-634.
    [154] Cai L, Cao A, Lai L. An isothermal titration calorimetric method to determine thekinetic parameters of enzyme catalytic reaction by employing the product inhibition asprobe[J]. Analytical biochemistry.2001,299:19-23.
    [155] Pagano A, Rüegg D, Litschig S, et al. The non-competitive antagonists2-methyl-6-(phenylethynyl) pyridine and7-hydroxyiminocyclopropan [b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in thetransmembrane region of group I metabotropic glutamate receptors[J]. Journal of BiologicalChemistry.2000,275:33750-33758.
    [156] Ciulli A, Abell C. Biophysical tools to monitor enzyme-ligand interactions of enzymesinvolved in vitamin biosynthesis[J]. Biochemical Society Transactions.2005,33:767.
    [157] Andújar-Sánchez M, Cámara-Artigas A, Jara-Perez V. A calorimetric study of thebinding of lisinopril, enalaprilat and captopril to angiotensin-converting enzyme[J].Biophysical chemistry.2004,111:183-189.
    [158] Kuba M, Tanaka K, Tawata S, et al. Angiotensin I-converting enzyme inhibitorypeptides isolated from tofuyo fermented soybean food[J]. Bioscience, biotechnology, andbiochemistry.2003,67:1278-1283.
    [159] Liekens S, Bronckaers A, Hernández AI, et al.5′-O-tritylated nucleoside derivatives:inhibition of thymidine phosphorylase and angiogenesis[J]. Molecular pharmacology.2006,70:501-509.
    [160] Hariprasad G, Kumar M, Srinivasan A, et al. Structural analysis of a group IIIGlu62-phospholipase A2from the scorpion, Mesobuthus tamulus: targeting and reversibleinhibition by native peptides[J]. International journal of biological macromolecules.2011,48(3):423-431.
    [161] Venkatachalam C, Jiang X, Oldfield T, et al. LigandFit: a novel method for theshape-directed rapid docking of ligands to protein active sites[J]. Journal of MolecularGraphics and Modelling.2003,21:289-307.
    [162] Liu YQ, Zhao CY, Yang L, et al. Evaluation of insecticidal activity of podophyllotoxinderivatives against Brontispa longissima [J]. Pesticide Biochemistry and Physiology.2011,99:39-44.
    [163] Watermeyer JM, Kro ger WL, O’Neill HG, et al. Probing the Basis ofDomain-Dependent Inhibition Using Novel Ketone Inhibitors of Angiotensin-ConvertingEnzyme [J]. Biochemistry.2008,47:5942-5950.
    [164] Wei L, Clauser E, Alhenc-Gelas F, et al. The two homologous domains of humanangiotensin I-converting enzyme interact differently with competitive inhibitors[J]. Journal ofBiological Chemistry.1992,267:13398-13405.
    [165] Watermeyer JM, Sewell BT, Schwager SL, et al. Structure of testis ACE glycosylationmutants and evidence for conserved domain movement[J]. Biochemistry.2006,45:12654-12663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700