聚氯乙烯/尼龙6共混物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查阅了大量国内外有关聚氯乙烯(PVC)改性的文献资料的基础上,提出了先对尼龙6(PA6)进行改性,降低PA6的熔点,再用低熔点PA6与PVC共混来提高PVC性能,实现PVC工程化的设想。
     本文首先对PA6进行了挤出接枝改性,制备了挤出接枝改性的PA6(ePA6),研究了PVC/ePA6共混工艺、共混物的结构与性能,研究结果显示:与纯PVC相比,PVC/ePA6共混试样的拉伸强度有所提高,但幅度不大,冲击强度大大下降,共混物呈断性脆裂。然后对PA6进行了溶液接枝改性,制备了溶液接枝改性的PA6(sPA6),用sPA6与PVC共混制备了PVC/sPA6共混物,通过DSC、IR和万能力学实验机等研究了sPA6、PVC/sPA6共混物的结构与性能,结果表明:sPA6的熔点为187℃,PA6与SMA发生了接枝反应,PVC/sPA6共混试样的拉伸强度从纯PVC的40MPa提高到70MPa,冲击强度从纯PVC的45kJ/m~2提高到67.3kJ/m~2,表明溶液接枝改性PA6具有较好改性PVC性能的作用。
     本文还用JKS超细粉碎机对结晶PA6进行粉碎,制备了超微细PA6粉(uPA6),重点研究了在剪切作用下PA6的颗粒形态和微晶结构变化。通过SEM、XRD和DSC测试表明:超细粉碎制得的uPA6结构疏松;粉碎破坏了PA6的晶体结构,使uPA6的熔点从215℃下降到175℃。通过SEM、XRD、DSC和DMTA等近代测试技术重点研究了PVC/uPA6共混工艺、共混物的结构与性能。研究结果显示:PVC/uPA6共混试样的拉伸强度从纯PVC的40MPa提高到87.7Mpa以上,冲击强度从纯PVC的45kJ/m~2提高到95kJ/m~2,表明uPA6具有很好改性PVC性能作用。SEM照片显示SMA促进了uPA6在基体中的分散,XRD、DSC证明,PVC与PA6形成了共晶,DMTA显示SMA是PVC和PA6良好的增容剂。
On the basis of surveying of the relative literature about the modification of PVC, this paper raised that PA6 was modified first in order to decrease the melting point of PA6, then blending the PA6 of low melting point and PVC to enhance the properties of PVC and making PVC become engineering materials.
    In this paper the PA6 of modification (ePA6) was prepared by melting extrusion graft method in two-screwed extruder, the blending process of PVC/ePA6, micromorphology and properties of blends were studied, experimental results indicated that tensile strength of PVC/ePA6 blends was improved slightly, but impact strength decreased drastically, blends showed brittle fracture. Then the PA6 of modification (sPA6) was prepared through solution graft, PVC/sPA6 blends was prepared with sPA6 and PVC, micromorphology and properties of sPA6, blends were studied with DSC, IR, etc, results indicated that the melting point of sPA6 was 187℃, graft reaction happened between PA6 and SMA, the mechanical properties of PVC/sPA6 blends were increased, tensile strength increased from 40 MPa to 70 MPa, as well as impact strength from 45 kJ/m2 to 67.3 kJ/m2, which showed sPA6 could improve the properties of PVC better.
    In this paper micro-power PA6(uPA6) was manufactured by JKS microsmasher, micromorphology of PA6 particle and microcrystalline structure changes were emphatically studied in shear force too. Results indicated crystal structure was damaged by milling, which induces the melting point of PA6 decreases from 215℃ to 175℃ through SEM, XRD and DSC. In this paper the blending process of PVC/uPA6, micromorphology and properties of blends were emphatically studied either through SEM, XRD, DSC and DMTA, experimental results indicated that the mechanical properties of PVC/uPA6 blends were increased, tensile strength increased from 40 MPa to 87.7 MPa, as well as impact strength from 45 kJ/m2 to 95kJ/m2, which showed uPA6 could improve the properties of PVC and enhance the mechanical properties. SEM photos indicated SMA induced uPA6 dispersion in PVC, XRD and DSC proved PVC and PA6 informed commoncrystal, DMTA indicated SMA was favorable compatibilization.
引文
[1] 张桂云,张联,李静.共混改性聚氯乙烯的研究状况.高分子材料科学与工程,1998,3:4-6
    [2] 赵磊,梁国正,秦华玉.我国聚氯乙烯增韧改性研究的最新进展.中国塑料,2000,14(1):8-10
    [3] 黄兴.国内硬质PVC共混增韧改性研究现状.塑料科技,1999,2:32-34
    [4] S Zhu, C Chan, S Wong, Y Mai. Mechanical Properties of PVC/SBR Blends Compatibilized by Acrylonitrile-Butadiene Rubber and Covulcanization. Polymer Engineering and Science, 1999, 39(10): 1998-2006
    [5] E Crawford, J Lesser. Mechanics of rubber particle cavitation in toughened polyvinylchloride(PVC). Polymer, 2000, 41:5865-5860
    [6] 宋谋道,张邦华等.EVA增容PVC/SBS共混体系的研究.南开大学学报(自然科学版),1995,28(3):36~39
    [7] 王英.国内聚氯乙烯抗冲击改性剂现状发展趋势.中国塑料,2000,14(9):12~14
    [8] E Crawford, J Lesser. Mechanics of rubber particle cavitation in toughened polyvinylchloride(PVC). Polymer, 2000, 41:5865-5860
    [9] N Kitayama, H Keskkuula. Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymerblends: Phase inversion behavior. Polymer,2001,42(22):8041~8052
    [10] Akira Takaki and Hideo Yasui. Fracture and Impact Strength of Poly(Vinyl Chloride)/Methyl Methacrylate/Butadiene/Styrene Polymer Blends. Polymer Engineering and Science, 1997, 37(1): 105-119
    [11] L P M Janssen. On the Stability of Reactive Extusion. Polym. Eng. Sci., 1998,38(12):2010~2015
    [12] M Xanthos. Reactive Extusion: Principles and Pratics. HANSER PUBLISHER, 1992
    [13] 周南桥,彭响方等.聚合物反应性挤出加工及挤出反应器.中国塑料,2000,14(6):13-17
    [14] Z N Frund. Plast Compos, 1986,9(15):24~28
    [15] C Tzoganakis. Advance in Polymer Technology, 1989,9(4):321~325
    [16] 王益龙.反应性挤出接枝概述.合成树脂及塑料,1995,12(3):62~66
    [17] 王志平,陈颖.烯烃类聚合物的改性.中国塑料,1999,13(11):10~14,
    
    
    [18] 赵清香,王玉东,刘民英等.尼龙6纤维与丙烯酸的接枝共聚反应研究[J].高分子材料科学与工程,1998,14(7):46~49
    [19] Munmayak A Mishra. Graft Copolymerization of Methyl Methacrylate onto Silk Using Potassium Peroxydiphosphate-cysteine Redox System[J]. J.Appl.Polym. Sci., 1982,(27):2403~2408
    [20] Kvelisi Albert A Catena, Robert J. Water-based printing ink prepared from printing ink prepared from polyamide/acrylic graft copolymers. [P].U.S.5026755
    [21] A Munmayak, Subasini Lenka, et al. Graft Copolymerization of Acrylamide onto PA6 Using Quinquevalent Vanadium Ion [J]. J.Appl. Polym. Sci,1981,(26):2593~2598
    [22] A Hebeish, M H El-Rafie, et al. Thiourea-Potassium Bromate Redox Ststem-Initiated Graft Polymerization of Methyl Methacrylate and Methacrylic Acid on Nylon[J]. J.Polymsci, 1976,14(12):2895~2899
    [23] Lin Yinghai, Song Xingru, Liu Baopi, et al. Grafting Copolymerization of Acrylonitrileon Polyacrylamide Initiated by Potassium Diperiodato cuprate. [J].Chem. J.Chinese Universities, 1991,12(10):1407~1410
    [24] 刘盈海,刘卫宏等.二过碘酸合银氧化还原引发丙烯酸甲酯在尼龙1010上接技共聚合反应的研究.高分子学报,1997,10(5):597~600
    [25] Ruckenstein et al.. Nanocomposites of rigid polyamide dispersed inflexible vinyl olymer. Polymer, 1997, 15:3855-3860
    [26] 吴和融,王彬芳编.高分子物理.上海:华东化工学院出版社,1990
    [27] 王贵恒主编.高分子材料成型加工原理.北京:化学工业出版社,1982,157-161
    [28] Kojima Y. et al.. Crystallization of Nylon 6-Clay Hybrid by Annealing Under Elevated Pressure. J. of Appl. Polym. Sci., 1994, 51:683-688
    [29] 王旭,黄锐.聚合物基纳米复合材料的研究进展.塑料,2000,29(4):25-30
    [30] 胡显奎,林少全,刘振兴.聚合物基无机纳米粒子复合材料的制备技术及应用展望.材料导报,2000,14(10):62-65
    [31] 胡圣飞,徐声钧,李纯青.纳米级无机粒子对塑料增韧增强研究进展.塑料,1998,27 (4):14-16
    [32] 杨中文,刘西文.纳米技术在高分子材料改性中的应用.现代塑料加工应用,2000,11 (6):38-40
    [33] 郭少云,徐僖.振磨降解制得的低分子量PVC对PVC增塑作用的研究.高分子材料科学与工程,1995,11(2):81-85
    
    
    [34] 乔放,李强,漆宗能.聚酰胺/粘土纳米复合材料的制备结构表征及性能研究.高分子通报,1997,9(3):135-137
    [35] 李凤生等编著.超细粉体技术.北京:国防工业出版社,2000,84-97
    [36] 刘宏英等.三种用于含能材料超细粉碎的设备及技术.含能材料,1999,7(4):185~187
    [37] 李凤生.我国超细粉体技术研究中一些重要而急待解决的问题.化工进展,1994(3):46~49
    [38] 李凤生.气流粉碎过程中的静电问题.化工进展,1995(2):15~18
    [39] 徐华蕊.国内外制备纳米材料研究情况综述.仪器仪表学报,1996,22(5):29~31
    [40] 张汝冰.纳米技术在生物及医药学领域的应用.现代化工,1999,19(7):49~51
    [41] 小川明[著] .气体中颗粒的分离.北京:化工出版社,1989
    [42] Small H J. Colloid and Interface Sci. 1974,48 (1): 147~161
    [43] Small H. Advances in Colloid and Interface Sci. 1976,6:237~266
    [44] Darch T, Wasan, et al. Surfactants in chemical/progress engineering..Surface Science Series(V28), New York: Marcel Dekker, 1988
    [45] 杨华明,邱冠周,王淀佐.超细粉碎机械化学的发展.金属矿山,2000,291(9):21~25
    [46] Peters K. Mechanoche mische Reaktionen. Frankfurt, 1962:78~98
    [47] Jahasz A Z. Mechanical Activation of Mine by Grinding-Pulverizing and Morphology of Particles. Chichester-Ellis Horwood Limited, 1990,11: 11~17
    [48] Masato T. Manufacturing technology of polymer matrix composite particles. J Soc Powder Technol,Japan, 1996(33):415~419
    [49] 乐志强等.无机粉体表面表面处理适用技术.无机盐工业,1990(2):27~32
    [50] Iguchi Y, Senna M. Mechanochemical polymorphic transformation and its stationary state between aragonite and calcite. Powder Technologh, 1985 (43): 155~162
    [51] Kunio U,etal. The effect of surfactant on ultrafine grinding done simultaneously with the surface treatment of magnetite particles. J Soc Powder Technol, Japan, 199027(3): 165~169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700