IBV中国分离株mRNA5及mRNA6 5'端独特区基因遗传变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从我国四川省一疑似鸡传染性支气管炎(Avian infectious bronchitis virus, IB)的雏鸡病料中成功分离到一株鸡传染性支气管炎病毒(Infectious Bronchitis Virus, IBV)(命名为SC)。病毒经鸡胚传代、血凝实验监测和负染电镜检查,证实为IBV。采用自行设计的引物经反转录聚合酶链式反应(Reverse-translation polymerase-chain reaction, RT-PCR)技术扩增得到了SC株、HN株(河南分离株)mRNA 5 cDNA(可编码重叠的5a、5b两个蛋白)及SC、HN、HLJ(黑龙江分离株)、SD(山东分离株)、AH(安徽分离株)五株IBV mRNA 6 cDNA(编码N蛋白)。应用DNAstar 5.06,Clustal 1.8,Antheprot 5.0分析软件将克隆测序的5a,5b蛋白基因和N蛋白基因分别与GeneBank中14株国内外参考毒株进行序列比较分析和基因同源性分析,绘制了5a、5b和N基因的进化树,同时描述了核蛋白的抗原表位、疏水性等基本特性。结果如下:
    1. 对5a基因核苷酸、氨基酸进行了序列同源性和系统进化树分析,结果表明:SC、HN两毒株间有较近的亲缘关系,在同一进化群内,两毒株间5a基因核苷酸和氨基酸的同源性均较高;两毒株与国内外参考毒株相比存在多处独特的点突变,导致相应区域的氨基酸发生改变;在5a基因核苷酸及推导的氨基酸同源性上,SC株、HN株与H52疫苗株较高,推测5a基因的遗传变异与该疫苗株的应用可能有一定关系。
    2. 对5b基因核苷酸、氨基酸序列同源性分析表明:在5b基因核苷酸及氨基酸同源性上,HN株与SC株间最高;HN和SC株5b基因核苷酸及推导的氨基酸同源性均明显高于5a基因,其它参考毒株的5a和5b序列分析亦如此,说明5b基因的保守性要高于5a基因;对5 b基因进化树分析表明,SC株、HN株亲缘关系较近,进化过程中发生的变异可能相似。
    3. 从序列同源性、进化树及二级结构预测三个方面分析了相对保守的N基因的遗传变异,结果表明:HN、SC、AH三个分离株N基因的变异相似,SD、HLJ两个分离株的变异相似;HN、SC、AH三个分离株的变异独特,明显不同于国内外参考毒株,推测该三个毒株具有共同的起源,但其确切的起源还需要分析最能反映IBV田间进化的S1基因的变异情况;HN、SC、AH株三个分离株在起源相同,进化相似的可能情况下在病毒与宿主、病毒与环境的相互作用等选择压力下进行着不同程度的衍化而在基因的局部区域具备了各自的特征。
    综上所述,本文分析了HN、SC两株IBV 5a、5b基因和五株IBV N基因的遗传变异,这将为进一步揭示国内不同IBV毒株的遗传演化关系、IBV的分子流行病学以及IBV基因工程疫苗的下游研究工作提供重要的理论依据。
In this study,we successfully isolated an infectious bronchitis virus (IBV) strain (named SC isolate) from a chicken flock with typical clinical symptom of infectious bronchitis (IB) in Sichuan Province in China. The virus was passaged in chicken embryos, characterized by Haemagglutination (HA) experiment and detected by electron microscope. cDNA of mRNA5 (encoded two overlap protein 5a, 5b) gene of IBV SC and HN strains, mRNA6 (encoded N protein) gene of IBV SC, HN and AH strain (isolated in Anhui Province), SD strain (isolated in Sandong Province) and HLJ strain (isolated in Heilongjiagn Province) were amplified according to designed specific primers by reverse transcription polymerase chain Reaction (RT-PCR) from viral RNAs. Compared the 5a, 5b gene and N gene respectively with the other 14 IBV strains from GeneBank, homology of nucleotide and deduced amino acid sequence were analysed by DNAstar software. Phylogenetic tree was mapped with N gene, 5a gene and 5b gene. Hydrophobility and antigen epitop were described.These results were as follows:
    1. Analysis of homology and phylogenetic tree of 5a gene indicated that HN and SC isolate had closer relationship and were classified as the same phylogenetic group. HN strain shared high homology with SC isolate in nucleotide and deduced amino acid sequence. The genetic variation of HN and SC isolate differed from other strains because of existence of some specific point mutations. The genetic variation in 5a gene of SC isolate was more obvious compared with HN isolate. The 5a gene of HN and SC strain shared high homology with gene 5a of H52 strain. This indicated that the evolution of 5a gene of the two virus isolate was influnced by application of vaccine strain.
    2. Analysis of 5b gene showed that the homology of nucleotide and deduced amino acid sequence of HN and SC isolate were all the highest compared with those of other strains. The homology of nucleotide and deduced amino acid sequence of 5b gene of HN and SC isolate was obviously higher than that of 5a gene. So was the analysis of 5a, 5b gene of other reference strains. This indicated that the 5b gene was more conservative than 5a gene. The phylogenetic tree analysis of 5b gene of HN and SC isolate showed that the two isolates had closer genetic relationship. The genetic variation of 5b gene of SC and HN isolate was similar to each other.
    3. Through annlysis of homology, phylogetic tree and predicted secondary structure of relative conservative N gene, we observed that the genetic variation was similar among N
    
    
    gene of SC, HN and AH isolate. The genetic variation of these three isolate was different from all the freign strains and other China strains. The three isolates, HN, AH and SC isolate, had the same original and experienced the same evolution process in vicinity areas, but not originated from vaccine strain. So was the HLJ, SD strain. The genetic analysis of S1 gene will help us to interpret the origin of HN, SC and AH isolates. The strains, isolated in different area of China, perhaps experienced different evolution under the condition of different time and space, but in the same area, the isolate was influnced by complicated selected pressur which led to the different genetic characterization in local gene region.
    In conclusion, the genetic variation of non-structural proteins genes 5a, 5b of HN and SC strains, N gene of HN, SC, AH, SD, HLJ isolate were analysed in this paper. It would be useful for the study of molecular epidemiology of IBV and help us to study the evolution relationships of different IBV isolates and develop new IBV vaccines.
    
    Candidate: Ma Dexing
    Major: Basic Veterinary Science
    Supervisor: Prof. Li Guangxing
引文
步志高, 江国托, 刘思国等. 鸡传染性支气管炎病毒我国地方分离株病原性和基因型的比较研究 畜牧兽医学报, 1999, 30 (1): 50~56.
    戴亚斌, 陈德胜, 潘杰彦等. 鸡传染性支气管炎病毒两个地方分离株S1基因的扩增克隆与序列分析 中国病毒学, 2002, 17 (2): 172~177 .
    黄祯祥, 洪涛, 刘崇柏. 医学病毒学基础及实验技术 北京科学出版社, 1990, 155.
    江国托, 刘思国, 康丽娟等.鸡传染性支气管炎病毒中国流行株免疫原基因的分子克隆与基因分型 中国免疫学杂志, 1998, 1: 57~59.
    江国托, 祁贤, 王秀荣等.传染性支气管炎病毒血凝谱 中国家禽, 1998, 9: 6-7.
    邝荣禄, 养禽与禽病防治, 1982, 3: 44.
    刘胜旺, 杜恩岐, 孔宪刚等.鸡传染性支气管炎病毒LX4 mRNA5和mRNA6 cDNA的分子特征 中国病毒学, 2003, 18(3): 265~270.
    刘玉芬, 荣骏弓, 刘胜旺等.鸡传染性支气管炎病毒国内分离株D9715a、5b及核蛋白基因的克隆与序列分析 中国预防兽医学报, 2003, 25 (1): 1~4.
    潘杰彦, 陈德胜, 戴亚斌等.鸡传染性支气管炎病毒青岛腺胃分离株基质蛋白、 5a 、5b蛋白基因的克隆和序列分析 中国兽医学报, 2002, 22 (2): 108~109.
    潘杰彦, 陈德胜, 王忠田等 传染性支气管炎病毒腺胃青岛株(SD/97/02)核衣壳蛋白基因的克隆和鉴定 南京农业大学学报, 2000, 23 (4): 118~120.
    荣俊弓, 吴东来, 谷守林等.腺胃病变型传染性支管炎病毒强毒株的培育. 中国兽医学报, 2000, 21 (4): 327~330.
    王红宁主编,禽传染性支气管炎综合防治, 中国农业出版社, 2000.
    王林川, 赵振芬, 张桂云等. 中国肾型IBV毒株的基因型及其S1基因的巢式PCR. 中国兽医学报, 1999, 19 (1): 12~14..
    王淑如, 苗连叶. 我省发生腺胃型传染性支气管炎. 河南畜牧兽医, 1997, 18 (3) : 20.
    王永坤, 朱国强, 田慧芳等. 鸡传染性腺胃病的研究. 江苏农学院学报, 1996, 17 (1): 52~53.
    王玉东, 张子春, 王永玲等.鸡腺胃型传染性支气管炎研究初报. 中国动物检疫, 1997, 14 (3): 6~8.
    殷震, 刘景华, 动物病毒学, 第二版, 北京:科学出版社1997, 736~767
    周继勇.传染性腺胃炎病毒(暂命名)ZJ971株的一些生物学特性. 畜牧兽医学报,2000, 31 (3): 227~234.
    朱建国. 单克隆抗体在鸡传染性支气管炎病毒分子生物学研究中的应用. 中国兽医杂志, 1996, 22 (12): 44~45.
    Abdul N., Anna K, Zhu M. et al Recombinant nucleocapsid protein is potentially an inexpensive effective serodiagnostic reagent for infectious bronchitis virus. J Virol Meth, 1998, 70: 37-40.
    Williams A.K., Wang L., Sneed L.W. et al. Collission. Analysis of a hypervariable region
    
    
    in the 3’non-coding end of the infectious bronchitis virus genome. Virus Reseach, 1993, 28: 19-27.
    Akin A., Lin T.L.,Bryan T.A. et al. Nucleocapsid protein gene sequence analysis reveals close genomic relationship between turkey coronavirus and avian infectious bronchitis virus Acta Virol, 2001, 45 (1): 31-8.
    Bernard .N., David M.K. Fields, Virology. 2nded, NewYork: Raven Press, 1990, 841-8 56.
    Bingham R.W., Madge M.H., Tyrell D.A. Haemagglutination by avian infectious bronchitis virus coronavirus. J.Gen.Virol., 1975, 28: 381-390.
    Binns M.M., Boursnell M.E., Tomley F.M., Brown D.K., Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beau. J Gen Virol, 1986 Dec, 67 (12): 2825-31.
    Boots A.M., Benaissa Trouw B.J., Hesselink W. et al Induction of antiviral immune responses by immunization with recombinant DNA encoded avian coronavirus nucleocapsid protein. Vaccine, 1992, 10 (2): 119-24.
    Boots.A.M.H, Kusters .J.G, Noort.J.M.V et al. Lalization of a T-cell epitope with the nucleocapsid protein of avian coronavirus. Immunol, 1991, 74: 8-13.
    Bos J.L., Polder L.J., Bernards R., Schrier P.I. et al The 2.2 kb E1b mRNA of human Ad12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell. 1981 Nov; 27(1-2): 121-31.
    Boots A.M.H., Lierop M.J.V., Kusters J.G. et al. MHC class II-restricted T-Cell hybridomas recognizing the Nucleocapsid protein of avian coronavirus. IBV Immunology, 1991, 72: 10-14.
    Boursnel M.E.G, Binns M.M., Foulds I.J. et al. Seqence of the nucleocapsid gene from two different strains of avian infectious bronchitis virus. J Gen Virol, 1985, 66: 573-580.
    Boursnell M.E., Brown T.D., Foulds I.J. et al Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol., 1987 68: 57-77.
    Boursnell M.E., Brown T.D. Sequencing of coronavirus IBV genomic RNA: a 195-base open reading frame encoded by mRNA B. Gene. 1984 Jul-Aug, 29 (1-2): 87-92.
    Budzilowicz C.J., Weiss S.R. In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology,1987 Apr, 157 (2): 509-15.
    Butcher G.D., Gelb J.J. , Collisson E.W Comparisons of the genomic RNA of Arkansas DPI embryonic passages 10 and 100, Australian T, and Massachusetts 41 strains of infectious bronchitis virus. Avian Dis., 1990 Apr-Jun, 34 (2): 253-259.
    Cavanagh D. and Davis P.J. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol., 1986, 6: 1443-1448.
    
    Cavanagh D., Davis P.J., Darbyshire J.H. et al. Coronavirus IBV: virus retaining spike glucopoly peptide S2 but not S1 is unable to induce virus-neutralizing of haemagglutination inhibiting antibody,or induce chicken tracheal protection. J Virol, 1986, 67 (7): 1435 – 1442.
    Cavanagh D., Davis P.J., Mockett A.P. .Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes.Virus Res, 1988 Sep, 11 (2): 141-50.
    Cavanagh.D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch virol, 1997, 142 (3): 629-633.
    Chang Seron, Song Jame, Hong Kim et al. Detection and classification of infectious bronchitis virus isolated in Korea by Dot-immunobloting Assay uding monoclonal antibodies. Avian Dis, 1998, 440: 503-17.
    Collission E.W., Pei J,Dzielawa J, Seo S.H. Cytotoxic T lymphocytes are critical in control of infectious bronchitis virus in poutry. Develop Comp Immunol, 2000, 24 (2-3) : 187-200. 45 (2): 340-8.
    Cowen B.S., Hitchner S.B., Lucio B. Characterization of a new infectious bronchitis virus isolate.I.Serological and pathogenicity studies of Clark 333, Avian Dis. 1971, Jul-Sep, 15 (3): 518-526.
    Cunningham C.H. Immunologic methods in avian research: neutralization test. Avian Dis. 1973, Jan-Mar; 17 (1): 227-235
    Curran J.A., Richardson C., Kolakofsky D. Ribosomal initiation at alternate AUGs on the Sendai virus P/C mRNA. J Virol, 1986 Feb, 57 (2): 684-7.
    Liu D.X., Inglis S.C. Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus. Virology. 1992; 186 (1) : 342-7.
    Dalton K., Casais R, Shaw K. et al. cis-Acting sequences of required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol, 2001, 75 (1): 125 - 133.
    Dorner A.J., Semler B.L., Jackson R.J. et al. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol. 1984 May, 50(2) 507 - 514.
    Koch G., Hartog L., Kant A et al. Antigenic differiention of avian bronchitis virus variant strains employing monoclonal antibodies. Virus Res, 1985, 42 (2) : 89-97.
    Giorgi C., Blumberg B.M., Kolakofsky D. Sendai virus contains overlapping genes expressed from a single mRNA. Cell, 1983 Dec; 35 (3 Pt 2): 829-36.
    Hiscox.J.A., Wurum .T., Wilson .L et al. The coronavirus infectious bronchitis virus nucleoprotein localized to the nucleolus. J Virol , 2001, 75 (1): 506-12.
    Holmes K.V., and Lai M.M.C In: Fund Amental Virology, 3rded, B N Fields ed Lippincott Raven Phiadelphia 1996.
    
    Jagoda I.G. , Lisa Ga. The S1 glycoprotein but not the N or M proteins of avian infectous bronchitis virus induces protection in vaccinated chickens. Arch.Virol, 1994, 138: 117-134.
    Jia W., Karacal K., Parrish C.R. et al. A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains.Arch Virol., 1995, 140: 259-271.
    Johnson R.B., Marquardt W.W. The neutralizing characteristics of strains ofinfectious bronchitis virus as measured by the constant-virus variable-serum method in chicken tracheal cultures, Avian Dis., 1975 Jan-Mar; 19 (1): 82-90.
    King D.J. Observations on the preparation and stability of infectious bronchitis Virus hmagglutination Antigen from virus propagated in chicken embryos and chicken kidney cell cultures. Aivian. Dis., 1984, 28 (2): 504-513.
    Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res., 1987 Oct 26;15 (20): 8125-48.
    Ksiazek Y.G., Erdman D., Cynthis S. et al. A novel coronavirus associated with severe acute respiratory syndrome. N EngI J Med, 2003, 348: 1947-1958.
    Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb; 108 (2): 229-41.
    Kusters J.G., Niesters H.G., Lenstra J.A. et al. Phylogeny of antigenic variants of avian coronavirus IBV. Virology, 1989 Mar; 169 (1): 217-21.
    Kwon H.M., Jackwood W.M., Brown T.P. et al. Polymerase chain reaction and a biotin-labeled DNA probe for detection of infectious bronchitis virus in chickens. Avian Dis, 1993, 37: 149-156.
    Kwon H.M., Jackwood M.W. Molecular cloning and sequence comparison of the S1 glycoprotein of the Gray and JMK strains of avian infectious bronchitis virus. Virus Genes, 1995, (9) 219-229.
    L Yu, Wang Z., Jing Y. et al. Molecular Epidemiology of infectous bronchitis virus isolated from China and Southeast Asia.Avian Dis, 2001, 45: 201-209.
    L Yu,Yihai J., Sharon L. et al. Characterisition of three infectious bronchitis virus isolates from china associated with proventriculus in vaccined chickens. Avian Dis, 2001, 45: 416-424.
    Yu L, Liu W, Schnizlein W.M., Frippathy D.N., Kwang J. Study of protection by recombinant fowl poxvirus expressing C-teminal nucleocapsid protein of infectious bronchitis virus against challenge. Avian Dis, 2001, 45(2):340-348.
    Lai.M.M.C., Brayton.P.R., Armen.R.C. et al Mouse hepatitis virus A59: messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV 3, J.Virol, 1981, 39: 823-834.
    Lai.M.M.C, Patton.C.D.and Stohlman.S.A, Replicatio of mouse hepatitis virus Negative
    
    
    stranded RNA and replicative form RNA are of genome length. J.Virol, 1982, 44, 487 – 492.
    Lashgari M.S., and J.A. Preparing hemagglutinating antigen from isolates of infectious bronchitis virus. Avian .Dis. 1982, 26: 508-519.
    Lashgari M.S., Newman J.A. Serological comparison and antigenic relationships of seven serotypes of infectious bronchitis virus using the hemagglutination-inhibition test, Avian Dis. 1984, Apr-Jun; 8 (2): 435-443.
    Lee C.W., Jackwood M.W. Evidence of genetic diversity genetated by recombination among avian coronavirus infectious bronchitis virus. Arch Virol, 2000, 145 : 2135-2148.
    Lin Z., KatoY. A new typing method fort he avian infectious bronchitis virus using polymerase chain reaction and restriction fragment length polymorphism. Archvirol, 1991, 19 (2): 710-716.
    Liu D.X., Cavanagh X. et al. A polycistronic mRNA specifed by the coronavirus infectious bronchitis virus. Virology, 1991, 184: 531-544.
    Liu D.X., Inglis S.G. et al. Identification of two new polypeptide edcoded by mRNA5 of the coronavirus infectious bronchitis virus Virology, 1992, 186 (1): 342-347.
    Miller W.A., Dreher T.W., Hall T.C. Sythesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genomic RNA.Nature, 1985, 313: 68-70
    Miller W.A., Gennadity K, Minireview: Sythesis of subgenomic RNAs by positive strand RNAvirus. Virology, 2000, 273, 1-8.
    Minglong Z., Collisson E.W. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3’genomic RNA. Virus Res. 2000, 67 (1): 31-39.
    Molenkamp R., Spaan W.J. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology, 1997, 239: 78-86.
    Sang H.S., Jianwu P., Briles W.E. et al. Adaptive transfer of infectious bronchitis virus primed αβT cells bearing CD8 antigen protects chicks from acute infection.Virology, 2000, 269(1): 183-189.
    Sapats S.I., Ashton F., Wreight P.J. et al. Novel variation in the N protein of avian infectious bronchitis virus. J Gen Virol, 1996, 226 (2): 412-417.
    Sapats S.I., Ashton F., Wright P.J. et al. Sequence analysis of the S1 glycoprotein of infectious bronchitis vaccine:identification of an ovel genotypic group in Australia. Journal of General Virology. 1996, 77: 413-418.
    Sawicki .S.G., Sawicki .D.L. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis, J.Virol, 1986, 57: 328-334
    Schalk,A.F., Hawn M.C. An apparently new respiratory disease of baby chicks,J Am Vet Med Assoc, 1930, 78: 413-422.
    
    Schreiber S.S., Kamahora T., Lai .M.M.C. Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E, Virology, 1989, 169: 142-151.
    Schuhze B., Herrler G. Bovine coronavirus uses N-acetyl-9-o-acetylneuraminic acid as recepor determinant to initiate the infection of cultured cells J.Gen.Virol 1992, 73: 901 – 906.
    Schultz B.D., Cavanagh, .G. Herroer. Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containning receptors on erythrocytes. Virology, 1992, 189: 792-794.
    Schultze B.L., Enjuanes D., Cavanagh, and G herreler, In: Coronaviruses H laude, and J F Vautherot eds. Plenum Press. New York, 1994, 305-310.
    Schultze B.K., Wahn H.D., Klenk et al. Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor binding activity.Virology, 1991, 180: 221-22.
    Seah J.N., Yu L. and Kwang J. Localization of linear B cell epitopes on infectious bronchitis virus nucleocapsid protein.Vet Microbiol, 2000, 75 (1): 11-16.
    Sedman S.A., Mertz J.E. Mechanisms of synthesis of virion proteins from the functionally bigenic late mRNAs of simian virus 40. J Virol, 1988, Mar; 62 (3): 954-961.
    Seo S.H., Collision W.M. Specific cytotoxic T lymphocytes are involved in vivo clearance of infectious bronchitis virus. J Virol, 1997, 71, 5173-5177.
    Sit T.L.,Vaewhongs A.A., Lommel S.A. RNA-mediated transactivation of transcription from a viral RNA. Science, 1998, 1: 829-832.
    Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame.J Gen Virol, 1985, Mar; 66 ( Pt 3): 581-592.
    Soe H.S., Wang L., Smith R. The carboxy-terminal 120-residue polypeptide of infectious bronchitis virus from nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol, 1997, 1: 7889-7894.
    Soe L.H., Shieh C.K., Baker S.C. et al Sequence and translation of the murine coronavirus 5' - end genomic RNA reveals the N-terminal structure of the putative RNA polymerase, J Virol, 1987, 61: 3968-3976.
    Sapats S.I.,Ashton F,Wright P.J., et al. Novel variation in the N protein of avian infectious bronchitis virus.Virol, 1996, 226, 412-417.
    Stirrrups K., Shaw K., Evans S. et al. Expression of reportor genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus.J. Gen. Virol, 2000, 81: 1687-1698.
    Swift A.M., Machamer C.E.A. Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J, Cell Biol. 1991 Oct;115 (1) : 19-30.
    Wang L., Junker D., and Collisson, E.W. Evidence of natural recombination within the S1
    
    
    gene of infectious bronchitis virus, Virology, 1993., 192: 710-716.
    Wang L.,Junker D.,HookL et al. Evolutionary implication of genetic variations in the S1 gene of infectious bronchitis virus. Virus Research, 1994, 34:327-338
    William A. Wang L., Sneed L. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronavirus. Virus Res, 1992,25 213 -222.
    Wurm T., Chen H., Hodgson T. et al. Location to the nucleolus is a common feature of coronavirus nucleoproteins and the proteins may disrupt host cell division. J. Virol, 2001, 75 (19): 9345 - 9356.
    Yu X., Bi W., Weiss S.R. et al. Mouse hepatitis virus gene 5b protein is a new virion envelope protein, Virology, 1994, 202 (2): 1018-1023.
    Zhang X., Lai M.M. Unusual heterogenicity of leader mRNA fusion in a murine coronavirus:imphications for the mechanism of RNA-transcription and recombination. J Viral, 1994, 68: 6626 - 6633.
    Zhao X., Show K., Cavsngh D. Presence of subgenemic mRNAs in virions of coronavirus Virology, 1993, 196 (1):172-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700