大跨度刚构桥地震响应分析及振动台试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波在传播过程中具有行波效应、部分相干效应、场地效应和衰减效应。山脊地形对地震地面运动有放大作用,对建于复杂山区场地中的大跨桥进行地震响应分析应考虑地形条件的影响。曲线型桥由于几何特征的复杂性,动力性能有别于直线型桥。合成更接近实际情况的考虑空间变化特性的时-频非平稳地震动,对曲线桥在多点激励下的抗震性能进行理论分析和大尺寸空间结构模型的模拟地震振动台试验研究可为评价大跨桥的抗震性能以及今后同类结构的抗震设计提供理论和试验依据。本文针对这些情况,主要进行了以下几个方面的研究:
     1、考虑地形效应的多点地震地面运动。将3条具有不同频谱特性的实际地震记录分别以P波、SV波的形式以不同角度入射,计算出两座山峰及其间自由场地的加速度、速度、位移时程。得到了包含地震波传播时山体散射和行波效应综合影响的地震动场。
     2、复杂地形条件下大跨刚构桥多点激励下的地震响应分析。将得到的考虑地形与行波综合影响的地震动作为输入,以建于两山之间的总长440m的4跨连续刚构直线型桥为例,对大跨桥的地震响应进行了数值模拟,并与忽略地形影响仅考虑行波效应时的计算结果进行对比分析。指出抗震设计中考虑地形效应影响的必要性,从而为连续刚构桥的工程应用及提高抗震安全性提供理论依据。
     3、人工合成了非平稳地震动场并进行了曲线桥在多点地震动激励作用下的动力响应分析。用相位差谱表征地震动频率的非平稳特性;用相干函数表征地震动空间变化的部分相干效应;采用随频率变化的等效相速度代替随意给定的视波速表征地震动的行波效应,生成了具有强度和频率非平稳特性的多点地震动场。将这种考虑时间和空间变化的地震动沿水平和竖向分别作用于5跨连续刚构曲线桥桥墩基础上,计算了墩顶位移及墩底内力,并与一致输入、特定视波速下曲线桥计算结果进行比较。分析了大跨曲线桥多点输入下部分相干效应和行波效应对结构动力响应的影响。
     4、多点激励下大尺寸曲线桥结构模型的模拟地震振动台试验研究。在相似理论的基础上,对曲率半径R=620m,跨度68m+120m×3+68m的5跨曲线刚构桥原形制作了整体模型。利用北京工业大学9子台振动台台阵系统对模型桥进行了水平地震动振动台试验。通过试验得到了在多点激励地震动作用下该结构相应部位的加速度、位移、应变响应,并与相应的理论计算结果进行了比较。为评价大跨桥结构在地震作用下的抗震性能及今后同类结构的抗震设计提供了试验的基础和数据。
There are some characters about the seismic in the process of propagation, such as wave passage effect, incoherence effect, site-response effect and attenuation affect etc. It has been verified that ground motion is obviously amplified along the ridge. Therefore, the topographic effect on seismic response of large-span bridge under complex landform must be considered. Due to the complex geometric character, the dynamic responses of the curved bridge are different from that of the straight one. Simulating the non-stationary spatial correlative time histories of multi-point ground motion, studying the seismic responses of the curved bridge under multi-point excitations, and simulating earthquake shaking table test for such large-scale spatial structures could provide a guideline to structural performance evaluating and a seismic design reference for curved bridge theoretically and experimentally. The main contents are as following.
     1. Generation of the multi-point earthquake ground motions considering the topographic effect.
     The seismic ground motions of two neighboring mountains and the free surface between them are calculated under the P and SV seismic waves with several different incident angles. The incoming waves are chosen from three actual earthquake records with different spectrum characteristics. The ground motion responses reflect a combined influence of ridge scattering effect and traveling-wave effect.
     2. Seismic responses of large-span rigid-frame bridge under multiple-point excitations and complex topographic conditions.
     The results derived from the first analysis stage were then used as the inputs in the second analysis stage. Taking a four-span rigid-frame straight bridge of 440m as an example, which was assumed to be built between two neighboring asymmetric mountains, the seismic responses of the bridge are numerically simulated, and the results were compared against those when only the wave passage effect is taken into account. A conclusion is given that the irregular topography will have significant effect on the wave propagation, which cannot be ignored in the seismic design. The conclusion provides an important theoretical reference for the engineering application and for improving the seismic safety of the continuous rigid-framed bridges.
     3. Simulation of non-stationary artificial ground motion and analysis of seismic response of curved bridge under multi-support earthquake excitations.
     The phase difference spectrum was introduced to consider the non-stationary properties of frequency contents, the statistic model of the coherence function was used to consider the coherence character, and the apparent wave velocity varying with the frequency of earthquake wave was adopted rather than an arbitrary one, the non-stationary random field considering the temporal-spatial variation was simulated. This random field was then used as the multi-point excitation of a five span continuous rigid-frame curved bridge in horizontal and vertical directions respectively. The pier-top displacement and the pier-bottom internal force of the bridge were calculated, and then the results were compared with those considering uniform and traveling-wave excitation. The influences of incoherency effect and the wave passage effect on the seismic responses of the bridge were discussed.
     4. Shaking table test on large-scale curved bridge model under multi-point excitation.
     The curved bridge is a five span structure of 68m+120mx3+68m total length. The curvature radius is R=620m. Based on similar theory, the whole model was made. The horizontal shaking table test of the model bridge by the multiple vibration table array system, located in Beijing University of Technology, was carried out. The acceleration, displacement and strain of the structure under the horizontal earthquake are gained. These test dates were then compared with the theoretical results. The results can provide test data and basis to evaluate the seismic performance of such curved bridge and can be a reference for seismic analysis of similar structure in future.
引文
[1]Geli L, Bard P Y, Jullien B. The effects of topography on earthquake ground motion:A review and new results[J]. Bulletin of the Seismological Society of America,1988,78(1):42-63.
    [2]范力础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001:4-7.
    [3]Kiureghian A D. A coherency model for spatially varying ground motions[J]. Earthquake Engingeering and Structural Dynamic,1996,25(1):99-111.
    [4]李正农,楼梦麟.大跨度桥梁结构地震输入问题的研究现状[J].同济大学学报,1999,27(5):592-597.
    [5]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993(1):30-36.
    [6]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992.25(3):1-8.
    [7]张亚辉,李丽媛,陈艳,林家浩.大跨度结构地震行波效应研究[J].大连理工大学学报,2005.45(4):481-486.
    [8]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003.23(2):68-76.
    [9]Loh C H, Ku B D. An efficient analysis of structural response for multiple-support seismic excitations[J]. Engineering Structure,1995,17(1):15-26.
    [10]Leger P, Ide I M, P Paultre. Multiple-support seicmic analysis of large Structures[J]. Computer and Structures,1990,36 (6):1153-1158.
    [11]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(3):1-8.
    [12]Harichandran R S, E H Vanmarcke. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics,1986,112 (2):154-175.
    [13]Hariehandran R S, Wang W. Effect of spatially varying seismic excitation on surface lifelines[A].4th National Conference on Earthquake Engineering[C]. Palm Springs, California, 1990,1:885-894.
    [14]Harichandran R S. Estimation the Spatial Variation of Earthquake Ground Motion from Dense Array Recording[J]. Structural Safety,1991,10, issues 1-3:219-233.
    [15]Hao H, Olinerira C S, Penzien J. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nuclear Engineering and Design,1989,111(3):293-310.
    [16]Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherence functions for application to soil-structure interaction analyses [J]. Earthquake Spectra,1991,7(1):1-27.
    [17]屈铁军.地面运动的空间变化特性及地下管线地震反应分析[D].黑龙江哈尔滨:国家地震工程局力学研究所,1995.
    [18]刘先明,叶继红,李爱群.竖向地震动场的空间相干函数模型[J].工程力学,2004.21(2):140-144.
    [19]Hao H. Response of multiply supported rigid plate to spatially correlated seismic excitation[J]. Earthquake Engineering and Structural Dynamics,1991,20:821-838.
    [20]田景元.土石坝多点输入地震反应分析及相关方法研究[D].江苏南京:河海大学,2003.
    [21]Ramadan O and Novak M. Simulation of spatially incoherent random ground motions[J]. Journal of the Engineering Mechanics,1993,119(5):997-1016.
    [22]夏友柏,王年桥,张尚根.一种合成多点地震动时程的方法[J].世界地震工程,2002,18(1):119-122.
    [23]刘先明,叶继红,李爱群.空间相关多点地震动合成的简化方法[J].工程抗震,2003,(1):30-33.
    [24]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [25]Yamamura N, Tanaka H. Response analysis of flexible MDOF systems for multiple-support seismic excitation[J]. Earthquake Engineering and Structural Dynamics,1992, (19):345-357.
    [26]Trifunac M D, M I Todorovska. Response spectra for differential motion of columns[J]. Earthquake Engineering and Structural Dynamics,1997,26(2):251-268.
    [27]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1992,21(8):713-740.
    [28]Heredia-Zavoni, E, E H Vanmarcke. Seismic random vibration analysis of multi-support structural systems[J]. Journal of Engineering Mechanics, ASCE,1994,120(5):1107-1128.
    [29]Burdisso, R A, M P Singh. Multiple supported secondary systems Part I:response spectrum analysis[J]. Earthquake Engineering and Structural Dynamics,1987,15:53-72.
    [301 Kiureghian A.D, ANeuenhofer. A discussion on seismic random vibration analysis of multi-support structural systems[J]. Journal of Engineering Mechanics, ASCE,1995,121(9):1037.
    [31]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [32]Lin J H, Zhang Y H, Li Q S, Williams F W. Seismic spatial effects for long-span bridges using the pseudo excitation method[J]. Engineering Structures,2004,26(9):1207-1216.
    [33]Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions[J]. Earthquake Engineering and Structural Dynamics,1992,21(6):461-470.
    [34]Berrah M, E A Kausel. Modal combination rule forspatially varying seismic motions[J]. Earthquake Engng Struct.Dyn,1993, (22):791-800.
    [35]王淑波.大型桥梁抗震反应谱分析理论及应用研究[D].上海:同济大学.1997.
    [36]Dibaj M, Penzien J. Response of Earth Dams to Travelling Seismic Waves. ASCE,1969,95(SM2).
    [37]Abdel-Ghaffar A M, Rubin L I. Suspension Bridge Response to Multiple Support Excitations[J]. Journal of Engineering Mechanics Division, ASCE,1982,108(2):419-434.
    [38]Nazmy A S, Abdel-Ghaffar A M. Nonlinear earthquake response analysis of long-span cable-stayed bridges:Theory[J]. Earthquake Engineering and Structural Dynamics,1990,19(1):45-62.
    [39]Nazmy A S, Abdel-Ghaffar A M. Non-linear earthquake response analysis of long-span cable-stayed bridges:Applications[J]. Earthquake Engineering and Structural Dynamics,1990,19(1):63-76.
    [40]Yamamura N, Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitation[J]. Earthquake Engineering and Structural Dynamics,1990,19(3):345-357.
    [41]袁万城,王玉贵,杨玉民.曲线梁桥空间地震反应分析[A].第十二届全国桥梁学术会议论文集[C].广州,1996:585-590.
    [42]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983,2:1-9.
    [43]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-68.
    [44]刘吉柱.大跨度拱桥地震反应的行波效应分析[D].上海:同济大学博士学位论文,1987.
    [45]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992,25(3):2-8.
    [46]Zerva A. Response of multi-span beams to spatially incoherent seismic ground motions[J]. Earthquake Engineering and Structural Dynamics,1990,19(6):819-832.
    [47]Harichandran R S, Hawwari A, Sweidan B N. Response of long-span bridges to spatially varying ground motion[J]. Journal of Structural Engineering,1996,122(5):476-484.
    [48]Soyluk K, Dumanoglu A A. Comparison of asynchronous and stochastic dynamic responses of cable-stayed bridges[J]. Engineering Structures,2000,22(5):435-445.
    [49]Betti R, Abdel-Ghaffar A M, Niazy A S, Kinematic soil-structure interaction for long-span cable-supported bridges. Earthquake Engineering and Structural Dynamics,1993,22(5):415-430.
    [50]王君杰,王前信,江近仁.大跨拱桥在空间变化地震动下的响应[J].振动工程学报,1995,8(2):119-126.
    [51]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报,1995,27(5):567-576.
    [52]林家浩,张亚辉.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93.
    [53]林家浩,李建俊,张文首.大跨度结构考虑行波效应时非平稳随机地震响应[J].固体力学学报,1996,17(1):65-68.
    [54]张文首,林家浩.大跨度结构考虑行波效应时平稳随机地震响应的闭合解[J].固体力学学报,2004,25(4):446-450.
    [55]Trifunac M D. Surface motion of semi-cylindrical alluvial valley for incident plane SH waves. Bulletin of Seismological Society of America,1971,61(6):1755-1770.
    [56]Trifunac M D. Scattering of plane SH wave by a semi-cylindrical canyon[J]. Earthquake Engineering and Structural Dynamics,1973,1(3):267-281.
    [57]Lee V W. Three dimensional diffraction plane P, SV and SH wave by a hemisherical alluvial valley[J]. Soil Dynamics and Earthquake Engineering,1984,3(3):133-144.
    [58]Lee V W, Cao H. Diffraction of SV by circular canyons of various depth[J]. Journal of Engineering Mechanics, ASCE,1989,115(9):2035-2056.
    [59]Cao H, Lee V W. Scattering and diffraction of plane P waves by circular-cylindrical canyons with variable depth-to-width ratio[J]. Soil Dynamics and Earthquake Engineering,1990,9(3):141-150.
    [60]Boore D M. A note on the effect of simple topography on seismic SH waves. Bulletin of the Seismological Society of America,1972,62(1):275-284.
    [61]Smith W D. The application of finite element analysis to body wave propagation problems[J]. Geophysical Journal of the Royal Astronomical Society,1975,42(2):747-768.
    [62]Bouchon M. Effect of topography on surface motion. Bulletin of the Seismological Society of America,1973,63(2):615-632.
    [63]Bard P Y. Diffracted waves and displacement field over two dimensional elevated topographies[J]. Geophysical Journal of the Royal Astronomical Society,1982,71(3):731-760.
    [64]Sanchez-Sesma F J, Campillo M. Diffraction of P, SV and Rayleigh waves by topographic features. A boundary integral formulation. Bulletin of the Seismological Society of America,1991,81(6): 2234-3353.
    [65]Celebi M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bulletin of the Seismological Society of America,1987,77(4):1147-1157.
    [66]Hartzell S H, Carver D L, King K W. Initial investigation of site and topographic effects at Robinwood ridge, California. Bulletin of the Seismological Society of America,1994,84(5): 1336-1349.
    [67]Ashford S A, Sitar N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America,1997,87(3):692-700.
    [68]Ashford S A, Sitar N, Lysmer J, Deng N. Topographic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America,1997,87(3):701-710.
    [69]Bouckovalas G D, Papadimitriou A G. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil dynamic and earthquake engineering,2005,25(7-10):547-558.
    [70]Louse G, Bard P Y, Beatrice J. The effect of topography on earthquake ground motion:A review and new results. Bulletin of the Seismological Society of America,1988,78 (1):42-63.
    [71]Dominic A, George G, Eduardo K. Effects of Local Soil Conditions on the Topographic Aggravation of Seismic Motion:Parametric Investigation and Recorded Field Evidence from the 1999 Athens Earthquake. Bulletin of the Seismological Society of America,2005,95(3):1059-1089.
    [72]Jonathan P S, Shawn E S. Case study of strong ground motion variations across cut slope[J]. Soil Dynamics and Earthquake Engineering,2005,25(7-10):539-545.
    [73]刘洪兵.大跨度桥梁考虑多点激励及地形效应的地震响应分析[D].北京:北方交通大学,2002.
    [74]金星,崔杰.我国防震减灾体系及地震工程研究中的若干问题[M].科学出版社,1997:190-196.
    [75]Ohsaki Y. On the Significance of Phase Content in Earthquake Ground Motions[J]. Earthquake Engineering and Structural Dynamic,1979,7(5):427-439.
    [76]赵风新,胡幸贤.地震动反应谱与相位差谱的关系[J].地震学报,1996,18(3):287-291.
    [77]杨庆山,姜海鹏,陈英俊.基于相位差谱的时频非平稳人造地震动的生成[J].地震工程与工程振动,2001,21(3):10-16.
    [78]杨庆山,姜海鹏.基于相位差谱的时一频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [79]朱昱,冯启民.相位差谱的分别特征和人造地震动[J].地震工程与工程振动,1992,12(1):37-44.
    [80]金星,廖振鹏.地震动强度包线函数与相位差谱频数分布函数的关系[J].地震工程与工程振动,1990,10(4):20-25.
    [81]金星,廖振鹏.地震动相位特性的研究[J].地震工程与工程振动,1993,13(1):7-13.
    [82]Thrainsson H, Kiremidjian A S. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform[J]. Earthquake Engineering and Structural Dynamics,2002,31(12): 2023-2048.
    [83]Sato T, Murono Y, Mishimura A. Phase spectrum modeling to simulate design earthquake motion[J]. Journal of Natural Disaster Science,2002,24(2):91-100.
    [84]屈铁军,王君杰,王前信.空间变化的地震动功率谱的使用模型[J].地震学报,1996,18(1):55-62.
    [85]Wolf J P土-结构动力相互作用[M].北京:地震出版社,1985:150-152.
    [86]Williams D, Godden W. Seismic response of long curved bridge experimental model studies[J]. Earthquake Engineering and Structural Dynamics,1979,7 (2):107-128.
    [87]Hakuno M, Shidawara M, Hara T. Dynamic destructive test of a cantilever beam controlled by an analog-computer[J]. Transactions Japan Society of Civil Engineering,1969,171:1-9.
    [88]Takanashi K. Seismic failure analysis of structures by computer pulsator on-line system[J]. Journal of the Institute of Industrial Science, University of Tokyo,1974,26(11):13-25.
    [89]Usami T, Suzuki T, Itoh Y. Pseudo dynamic tests of concrete-filled steel columns with prototype details[A].土木学会论文集[C].1995,525:1-33,55-67.
    [90]Saizuka K et al, Hybrid testing of steel bridge pier models using the Hyogoken-Nanbu earthquake accelerogams[A].土木学会论文集[C].1997,556:1-38,119-129.
    [91]Pinto A V, Verzelelti G, Pegon P, Magonetle G, Negro P, Guedes J. Pseudo dynamic testing of large scale R/C bridges in ELSA[A].11th WCEE[C].1996:2046.
    [92]DeSortis A, Nuti C. Seismic response by pseudo dynamic tests of RC bridges designed to EC8[A]. 11th WCEE[C].1996:1310.
    [93]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法[J].土木工程学报,1999,32(5):28-34.
    [94]邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社,1999.
    [95]王进廷,金峰,张楚汉.结构抗震试验方法的发展[J].地震工程与工程振动,2005,25(4):37-43.
    [96]樊珂,李振宝,闫维明.拱桥多点动力响应振动台模型试验与理论分析[J].铁道科学与工程学报,2007,14(6):19-24.
    [97]樊坷,李振宝,夏兵,闰维明,周锡元.国家体育馆屋盖模型模拟地震振动台试验研究[J].北京工业大学学报,2008,34(2):159-166.
    [98]李小军.非线性场地地震反应分析方法的研究[D].黑龙江哈尔滨:国家地震局工程力学研究所,1993.
    [99]Liao Z P, Wong H L, Yang B P, Yuan YF. A transmitting boundary for transient wave analyses[J]. Scientia Sinica (series A),1984,27(10):1063-1076.
    [100]Liao Z P, Wong H L. A transmitting boundary for the numerical simulation of elastic wave propagation[J]. Soil Dynamic and Earthquake Engineering,1984,3(4):174-183.
    [101]廖振鹏,周正华,张艳红.波动数值模拟中透射边界的稳定实现[J].地球物理学报,2002,45(4):533-543.
    [102]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2001:263-264.
    [103]王智峰.局部场地地震响应的有限元模拟分析[D].北京:北京交通大学,2004.
    [104]胡聿贤.地震工程学(一)[M].北京:地震出版社,1988:287-289.
    [105]Clough R W, Penzien Ji(著).王光远等(译).结构动力学.1983,北京:科学出版社.418.
    [106]Kanai K. Semi-empirical formula for the seismic characteristics of ground [R]. B.E.R.I. University of Tokyo,1957,35:306-325.
    [107]徐国栋.强震地面运动超随机特性[D].北京:北京工业大学,2005.
    [108]AASHTO. Guide Specifications for LRFD Seismic Bridge Design[M]. Washington,D C,1999.
    [109]AASHTO. LRFD Bridge Design Specifications [M]. Washington,D C,1998.
    [110]CEN.prEN 1998-1:2003.Eurocode 8(Stage 49 Draft No.6). Design of Structures for Earthquake Resistance,2003.
    [111]JTJ004-89.公路工程抗震设计规范[S].北京:人民交通出版社.
    [112]GB 50111-2006.铁路工程抗震设计规范[S].北京:中国计划出版社.
    [113]张敏政.地震模拟试验中相似律应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700