灯盏花素对糖尿病心肌病大鼠心脏结构和功能的影响及其机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是由于胰岛素分泌绝对或者相对不足导致慢性持续性高血糖状态引起的一组代谢异常综合症,可伴有或者不伴有胰岛素抵抗。流行病学调查表明,到2030年,糖尿病的患病率将从2000年的2.8%上升到4.4%。糖尿病心肌病(Diabetic Cardiomyopathy, DC)是糖尿病最常见的心血管并发症之一,是独立于冠状动脉病变、微血管病变和心脏自主神经病变之外的心脏结构改变和功能失调。大量临床以及实验研究表明,慢性高血糖状态是糖尿病微血管病变及心血管并发症最重要的始动因子,高血糖可以通过多种信号转导系统,影响心肌细胞的结构和功能,最终导致心功能不全。糖尿病患者心力衰竭进展快,病死率高,但是在病程早期以心脏舒张功能不全为主要表现,具有隐蔽性,给诊断带来困难,因此最理想的治疗应该是在糖尿病心肌病早期进行干预,阻断其向心力衰竭发展的路径。
     糖尿病心肌损害早期就已经存在神经内分泌系统过度激活、氧化应激反应增加、蛋白激酶C(Protein kinase C, PKC)表达水平以及活性异常等改变,所有这些因素综合作用共同导致心肌重构以及功能障碍。近年来研究认为,高血糖可以通过激活PKC相关信号转导系统,调节细胞的生长,影响细胞的收缩性和通透性,使细胞外基质成分和基因表达发生改变,引起心肌细胞肥大,心脏微血管病变和间质纤维化,影响心功能。因此,PKC在糖尿病心肌病的发病机制中起重要作用,抑制心肌细胞PKC的表达对糖尿病心肌病的防治具有重要意义。
     灯盏花素(breviscapine)是从菊科属植物短亭飞蓬全草灯盏细辛中提取的一类黄酮类成分,具有扩张血管,降低血管阻力,增加血流量,改善微循环以及抗血小板聚集的作用,目前已广泛应用于心脑血管疾病的治疗,具有良好的耐受性和安全性。近年来,随着对灯盏花素研究的不断深入,发现其具有较强的抑制PKC活性的作用,并可抑制高糖所诱导的c-fos,c-jun蛋白表达与Ⅳ型胶原合成增加。已有研究表明,灯盏花素对糖尿病肾病具有保护性作用,其机理可能与其抑制PKC的表达和活性有关。但是,关于灯盏花素对糖尿病心肌病是否同样具有保护作用及其相关机制,目前尚未明确。
     鉴于糖尿病心肌病中存在PKC的高表达以及灯盏花素具有抑制PKC的作用,我们从理论上推测灯盏花素可以改善糖尿病导致的心脏结构和功能的损害,对糖尿病心肌病具有保护作用,其机理可能与其抑制心肌细胞PKC的表达有关。因此我们通过建立糖尿病大鼠模型,观察灯盏花素治疗是否能改善糖尿病大鼠的心功能,并且逆转糖尿病导致的心肌肥大和结构损害,同时检测PKC以及相关蛋白的表达水平,试图从PKC角度探讨其对糖尿病心肌病的保护作用。
     1灯盏花素对糖尿病大鼠心功能的改善作用及钙离子调控蛋白表达的影响
     目的:探讨灯盏花素对链脲佐菌素诱导的糖尿病大鼠心功能和PKC(PKC-α、PKC-β2)以及相关钙离子调控蛋白表达水平的影响。
     方法:雄性Sprague-Dawley大鼠一次性腹腔注射STZ诱导糖尿病模型,对照组注射枸橼酸盐缓冲液。建模成功4周后分成4组:(1)正常对照组;(2)糖尿病大鼠组;(3)糖尿病大鼠小剂量灯盏花素处理组(10mg/kg/d);(4)糖尿病大鼠大剂量灯盏花素处理组(25mg/kg/d)。继续分组处理6周后,用心脏超声以及血流动力学方法测定相关心功能指标,采用Western blot方法检测PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及相关钙离子调控蛋白即蛋白磷酸酶抑制子-1(protein phosphatase inhibitor-1,PPI-1),磷酸受纳蛋白(phospholamban, PLB)以及肌浆网钙泵(sarco/endoplasmic reticulum Ca2+-ATPase-2, SERCA-2)表达水平的变化,采用Ca2+-ATPase酶测定试剂盒检测心肌组织Ca2+-ATPase酶的活性。
     结果:与对照组相比,糖尿病大鼠表现出明显的心功能不全,同时心肌组织PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及PLB的表达水平明显增加,而PPI-1、p-PLB、SERCA-2的表达水平以及Ca2+-ATPase酶的活性明显下降,灯盏花素治疗后糖尿病大鼠的心功能得到改善,并且心肌组织PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及PLB的表达水平明显降低,同时PPI-1、p-PLB、SERCA-2的表达水平以及Ca2+-ATPase酶的活性增加。
     结论:灯盏花素治疗可以改善糖尿病大鼠的心功能,对糖尿病心肌病具有保护作用,其机制可能与其抑制PKC的表达,并且调节相关钙离子调控蛋白的表达水平和活性有关。
     2灯盏花素通过抑制PKC的表达逆转糖尿病大鼠心肌肥大以及相关机制
     目的:探讨灯盏花素对链脲佐菌素诱导糖尿病大鼠心肌肥大的影响及其相关机制。方法:雄性Sprague-Dawley大鼠一次性腹腔注射STZ诱导糖尿病模型,对照组注射枸橼酸盐缓冲液。建模成功4周后分成4组:(1)正常对照组;(2)糖尿病大鼠组;(3)糖尿病大鼠小剂量灯盏花素处理组(10mg/kg/d);(4)糖尿病大鼠大剂量灯盏花素处理组(25mg/kg/d)。继续分组处理6周后,通过HE染色以及透射电镜观察心肌细胞结构和形态变化,采用Western blot亏法检测PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及NF-κB、p-NF-κB、c-fos等蛋白表达水平的变化,采用RT-PCR方法检测TNF-α的mRNA表达水平变化。
     结果:与对照组相比,糖尿病大鼠表现出明显的心肌细胞肥大以及超微结构异常,同时心肌组织PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及NF-κB、p-NF-κB、c-fos的蛋白表达水平和TNF-α的mRNA表达水平明显增加,灯盏花素治疗后糖尿病大鼠心肌肥大以及心肌细胞超微结构损害得到改善,并且PKC-α、p-PKC-α、PKC-β2、p-PKC-β2以及NF-κB、p-NF-κB、c-fos的蛋白表达水平和TNF-α的mRNA表达水平均明显降低。
     结论:灯盏花素治疗可以逆转糖尿病大鼠心肌肥大以及心肌细胞超微结构损害,对糖尿病心肌病具有保护作用,其机制可能与其抑制PKC的表达,并进一步调节NF-κB、TNF-α和c-fos的表达水平有关。
Diabetes mellitus is a state of chronic hyperglycemia due to an absolute or relative deficiency of insulin secretion that may or may not be associated with insulin resistance. The world wide prevalence of diabetes was estimated to be 2.8% in 2000 and is projected to reach 4.4% by 2030. Diabetic cardiomyopathy, characterized by structure changes and function impairment of cardiomyocytes, is one of the most prevalent cardiovascular complications of diabetes mellitus that occurs independently of coronary artery disease, microangiopathy and autonomic neuropathy of the heart. Many epidemiological and clinical studies have shown that chronic hyperglycemia is a major initiator of diabetic cardiovascular complications, as high glucose may regulate the growth of cardiomyocytes via activating several signal transduction pathways. The characteristic of diabetic heart failure, manifested by early diastolic dysfunction, followed by late systolic dysfunction, is faster deteriorating with high mortality and is difficult to diagnose in the early stage. Thus, we tried to seek for an ideal treatment to inhibit the pathway towards heart failure in the earlier period of diabetic cardiomyopathy.
     There was a consensus that there were excessive activity of sympathetic nerve system, oxidative stress as well as higher expression and activation of protein kinase C isoforms in the early stage of diabetic cardiomyopathy, all of which accelerated cardiac remodeling and dysfunction. Studies have revealed that hyperglycemia could increase the formation and activity of PKC isoforms, and PKC signal pathway is now considered to be one of the most important intracellular transduction pathways that functions as a core effect in the onset and progression of diabetic cardiomyopathy. Increased PKC activity in diabetic cardiomyopathy could regulate the growth, contractility and permeability of cardiomyocytes, and is associated with remodeling of extracellular matrix, thickening in basement membrane, hypertrophy of cardiomyocytes, as well as microangiopathy and autonomic neuropathy of the heart, which eventually lead to the structure and function impairment of cardiomyocytes in diabetic cardiomyopathy. So inhibiting the expression of PKC and blockade of PKC signal transduction pathway may have preventative and therapeutical effect on the diabetic cardiomyopathy.
     Breviscapine is a flavonoid extracted from Erigeron breviscapus and prepared into a Chinese patent medicine, its essential active ingredient is flavones. Its pharmacologic action is dilating blood vessel, reducing blood viscosity and improving microcirculation. It also possesses an anti-platelet action and can decrease plasma fibrin content and promote fibrinolytic activity. Recent studies have also shown that breviscapine could inhibit the expression of PKC, and decrease the protein expression of c-jun, c-fos and synthesis of type IV collagen induced by hyperglycaemia. There were also researches indicated that breviscapine had a protective effect on diabetic nephropathy through inhibiting the increased expression and activity of PKC-P2. But little is known about the influence of breviscapine on diabetic cardiomyopathy and its underlying mechanisms.
     On the basis of above considerations that PKC is activated in diabetic mellitus, and breviscapine could inhibit the activation and expression of PKC, we hypothesized that breviscapine may have protective effect on the structure and function injury of cardiomyocytes in diabetic cardiomyopathy via inhibiting the cardiac overexpression of PKC. In this study, we use diabetic rats as an animal model to investigate the influence of breviscapine treatment on the cardiac structure and function in diabetic cardiomyopathy, as well as the myocardial expression of PKC and associated proteins and its underlying mechanisms.
     Part 1 Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca2+-cycling proteins in diabetic rats
     Objective:To investigate the influence of breviscapine on the cardiac function in diabetic rats as well as the expression of PKC-α、PKC-β2 and Ca2+-cycling proteins.
     Methods:Diabetes were induced in male Sprague-Dawley rats by a single intraperitoneal injection of streptozotocin and the control rats were injected with citrate buffer solution. After the induction of diabetes for 4 weeks, the animals were divided into four groups:(1)normal rats as control; (2)diabetic rats; (3)diabetic rats treated with low dose of breviscapine(10mg/kg/day); (4)diabetic rats treated with high dose of breviscapine(25mg/kg/day). After treatment with breviscapine for 6 weeks, the echocardiographic parameters and invasive cardiac function were measured. The expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2 and calcium handling regulators, such as protein phosphatase inhibitor-1(PPI-1), phospholamban(PLB) and sarco/endoplasmic reticulum Ca2+-ATPase-2(SERCA-2) were detected by western blot. The activity of Ca2+-ATPase was measured using Ca2+-ATPase kit.
     Result:Diabetic rats showed impaired cardiac function compared with control rats. The expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2 and PLB in diabetic rats increased significantly compared with control rats, while the expression of PPI-1, p-PLB, SERCA-2 and activity of Ca2+-ATPase decreased. Treatment with breviscapine could reverse the cardiac dysfunction in diabetic cardiomyopathy rats, and decrease the expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2 and PLB, as well as increase the expression of PPI-1, p-PLB, SERCA-2 and the activity of Ca2+-ATPase.
     Conclusion:This study showed that breviscapine could ameliorate cardiac dysfunction in diabetic rats, and have protective effect on diabetic cardiomyopathy via regulating the expression of PKC and Ca2+-cycling proteins.
     Part 2 Breviscapine ameliorates cardiac hypertrophy of diabetic rats via inhibiting the expression of PKC and its mechanisms
     Objective:To investigate the influence and mechanism of breviscapine on the hypertrophy of cardiomyocytes in diabetic cardiomyopathy rats.
     Methods:Diabetes were induced in male Sprague-Dawley rats by a single intraperitoneal injection of streptozotocin and the control rats were injected with citrate buffer solution. After the induction of diabetes for 4 weeks, the animals were divided into four groups:(1)normal rats as control; (2)diabetic rats; (3)diabetic rats treated with low dose of breviscapine(10mg/kg/day); (4)diabetic rats treated with high dose of breviscapine(25mg/kg/day). After treatment with breviscapine for 6 weeks, heart tissues were obtained for HE stain and electron microscopestudy. The expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2 and NF-kB、p-NF-KB、TNF-α、c-fos were detected by western blot or RT-PCR.
     Result:Diabetic rats showed cardiac hypertrophy and impaired cardiac structure compared with control rats, the protein expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2、NF-kB、p-NF-KB、c-fos and the mRNA expression of TNF-αall increased significantly. Treatment with breviscapine could reverse the cardiac hypertrophy and structure impairment in diabetic cardiomyopathy rats, as well as decrease the protein expression of PKC-α、p-PKC-α、PKC-β2、p-PKC-β2、NF-kB、p-NF-kB、c-fos and the mRNA expression of TNF-a.
     Conclusion:This study showed that breviscapine could ameliorate cardiac hypertrophy and structure impairment in diabetic rats, and have protective effect on diabetic cardiomyopathy via inhibiting the activity of PKC and then the subsequent expression of NF-kB、TNF-αand c-fos.
引文
[1]Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of Diabetes: estimates for the year 2000 and projections for 2030[J]. Diabetes Care.2004,27(5): 1047-1053.
    [2]Boudina S, Abel ED. Diabetic Cardiomyopathy Revisited[J]. Circ.2007,115(25): 3213-3223.
    [3]Dobrin JS, Lebeche D. Diabetic cardiomyopathy:signaling defects and therapeutic approaches[J]. Expert Rev Cardiovasc Ther.2010,8(3):373-391.
    [4]Thrainsdottir IS, Aspelund T, Thorgeirsson G, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study[J]. Diabetes Care.2005,28(3):612-616.
    [5]Bell DS. Diabetes:a cardiac condition manifesting as hyperglycemia[J]. Endocr Pract.2008,14(7):924-932.
    [6]Naruse K, King G L. Protein kinase C and myocardial biology and function[J]. Circ Res.2000,86(11):1104-1106.
    [7]Okumura K, Akiyama N, Hashimoto H, Ogawa K, Satake T. Alteration of 1,2-diacylglycerol content in myocardium from diabetic rats[J]. Diabetes.1988, 37(9):1168-1172.
    [8]Giles TD, Ouyang J, Kerut EK, et al. Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat[J]. AJP-Heart and Circulatory Physiology.1998,274(1 Pt 2):H295-H303.
    [9]Gutterman DD. Vascular dysfunction in hyperglycemia:Is protein kinase C the culprit[J]? Circ Res.2002,90(1):5-7.
    [10]Johnsen DD, Kacimi R, Anderson BE, Thomas TA, Said S, Gerdes AM. Protein kinase C isozymes in hypertension and hypertrophy:insight from SHHF rat hearts[J]. Mol Cell Biochem.2005,270(1-2):63-69.
    [11]Braun M, Simonis G, Birkner K, Pauke B, Strasser RH. Regulation of protein kinase C isozyme and calcineurin expression in isoproterenol induced cardiac hypertrophy[J]. J Cardiovasc Pharmacol.2003,41(6):946-954.
    [12]Brownlee M. The pathobiology of diabetic complications:a unifying Mechanism[J]. Diabetes.2005,54(6):1615-1625.
    [13]Koide Y, Tamura K, Suzuki A, et al. Differential induction of protein kinase C isoforms at the cardiac hypertrophy stage and congestive heart failure stage in Dahl salt-sensitive rats[J]. Hypertens Res.2003,26(5):421-426.
    [14]Guo M, Wu MH, Korompai F, Yuan SY. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes [J]. Physiol Genomics.2003,12(2):139-146.
    [15]Wold L E, Dutta K, Mason MM, et al. Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats[J]. J Mol Cell Cardiol.2005, 39(2):297-307.
    [16]Vasanji Z, Cantor EJ, Juric D, Moyen M, Netticadan T. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance[J]. Am J Physiol Cell Physiol.2006,291(4): C772-C780.
    [17]Belke DD, Swanson EA, Dillmann WH. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart[J]. Diabetes.2004,53(12): 3201-3208.
    [18]Sakata S, Lebeche D, Sakata Y, et al. Transcoronary gene transfer of SERCA 2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model[J]. Am J Physiol Heart Circ Physiol.2007,292(2): H1204-H1207.
    [19]Hambleton M, Hahn H, Pleger ST, et al. Pharmacological- and gene therapy- based inhibition of protein kinase C alpha/beta enhances cardiac contractility and attenuates heart failure[J]. Circ.2006,114(6):574-582.
    [20]Zhou H, Chen S, Wang L, He Q, Fan X. Regulation of the expression of pulmonary arterial collagen by protein kinase C and breviscapine in chronic hypoxic rats[J]. Zhonghua Jie He He Hu Xi Za Zhi.2002,25(6):347-351.
    [21]Wu yonggui, Lin Hui, Qian Hao, et al. Experimental study of breviscapine and LY333531 on renoprotection in diabetic rats[J]. Chin J Nephrol.2004,20(6): 429-433.
    [22]Mahmoud AA. Induction of Diabetes Mellitus in Rats Using Intraperitoneal Streptozotocin:A Comparison between 2 Strains of Rats[J]. European Journal of Scientific Research.2009,32(3):398-402.
    [23]Akbarzadeh A, Norouzian D, Mehrabi MR, et al. Induction of diabetes by streptozotocin in rats[J]. IJCB.2007,22(2):60-64.
    [24]Chen XJ, Cheng DY, Yang L,Xia XQ, Guan J. Effect of breviscapine on fractalkine expression in chronic hypoxic rats[J]. Chin Med J (Engl).2006, 119(17):1465-1468.
    [25]Wang Hua, Guo Li, Xu Aili, et al. Protective effect of Breviscapine preconditioning during myocardial ischemia-reperfusion injury in rats[J]. BMU Journal.2009,34(4):253-255.
    [26]Chen Su xian, Jia Jun hai, Zhang Qian, Fan Ting lu, Liu Ke zuo, HE Fang fang. Effect of breviscapine on the oxygen free radicals in diabetic rats [J]. Journal of Jiangsu University(Medicine Edition).2007,17 (6):490-492.
    [27]Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy[J]. Dis Model Mech.2009,2(9-10):454-466.
    [28]Mathews C E. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes[J]. Pediatr Diabetes.2005,6(3):165-177.
    [29]Mendez J D, Ramos H G. Animal models in diabetes research[J]. Archives of medical research.1994,25(4):367-375.
    [30]Ito T, Tanimoto M, Yamada K, et al. Glomerular changes in the KKAy/Ta mouse: a possible model for human type 2 diabetic nephropathy[J]. Nephrology (Carlton). 2006,11(1):29-35.
    [31]Wolf G. Insulin resistance associated with leptin deficiency in mice:possible model for noninsulin-dependent diabetes mellitus[J]. Nutr Rev.2001,59(6): 177-179.
    [32]Rahimian R, Masih-Khan E, Lo M, et al. Hepatic over-expression of peroxisome proliferators activated receptor gamma 2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus[J]. Mol Cell Biochem.2001,33(12):721-726.
    [33]Miyasaka K, Nomoto S, Ohta M, et al. Disturbance of response to acute thermal pain in naturally occurring cholecystokinin-a receptor gene knockout Otsuka Long-Evans Tokushima Fatty(OLETF)rats[J]. J Pharmacol Sci.2006,101(4): 280-285.
    [34]Kwon NS, Lee SH, Choi CS, Kho T, Lee HS. Nitric oxide generation from streptozotocin[J]. FASEB J.1994,8(8):529-533.
    [35]Kroncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage[J]. Biol Chem Hoppe Seyler.1995,376(3):179-185.
    [36]Thomas G, Ramwell PW. Streptozotocin:a nitric oxide carrying molecule and its effect on vasodilation[J]. Eur J Pharmacol.1989,61(2-3):279-280.
    [37]Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the ratpancreas[J]. Physiol Res.2001,50(6):537-546.
    [38]Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin[J]. Mutat Res.2002, 512(2-3):221-234.
    [39]Baudry A, Leroux L, Rajiv L, et al. Genetic manipulation of insulin signaling, action and secretion in mice[J]. EMBO Reports.2002,3(4):323-328.
    [40]Takashi K. Insights into insulin resistance and type 2 diabetes from knockout mouse models[J]. J Clin Invest.2000,106(4):459-465.
    [41]Terauchi Y, lwamoto K, Tamemoto H, et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease[J]. J Clin Invest.1997,99(5):861-866.
    [42]Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibition of protein kinase C beta prevents impaired endothelium-dependent vasodilation caused by hyperglycaemi a in humans [J]. Circ Res.2002,90(1):107-111.
    [43]Braz JC, Gregory K, Pathak A, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure[J]. Nat Med.2004,10(3):248-254.
    [44]Hahn HS, Marreez Y, Odley A, et al. Protein kinase C alpha negatively regulates systolic and diastolic function in pathological hypertrophy[J]. Circ Res.2003, 93(11):1111-1119.
    [45]Connelly KA, Kelly DJ, Zhang Y, et al. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and'reduces extracellular matrix production in diabetic cardiomyopathy[J]. Circ Heart Fail.2009,2(2):129-137.
    [46]Flagg TP, Cazorla O, Remedi MS, et al. Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy[J]. Circ Res.2009,104(1):95-103.
    [47]Stolen TO, Hoydal MA, Kemi OJ, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy[J]. Circ Res.2009, 105(6):527-536.
    [48]Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy[J]. Nat Clin Pract Cardiovasc Med.2008,5(11):715-724.
    [49]Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able
    to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy[J]. Am J Physiol Regul Integr Comp Physiol.2008, 295(5):R1439-R1445.
    [50]Pathak A, del Monte F, Zhao W, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1[J]. Circ Res.2005,96(7):756-766.
    [51]Rodriguez P, Mitton B, Waggoner JR, Kranias EG. Identification of a novel phosphorylation site in protein phosphatase inhibitor-1 as a negative regulator of cardiac function[J]. J Biol Chem.2006,281(50):38599-38608.
    [52]Sahin B, Shu H, Fernandez J, et al. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C[J]. J Biol Chem.2006,281(34):24322-24335.
    [53]李法琦,陈运贞.灯盏花素逆转自发性高血压大鼠心室重塑[J].中国循环杂志.2002,17(2):151-152.
    [54]刘晓红,魏振宇,余德芊,秦伟,陈远寿.灯盏花素对去甲肾上腺素诱导的大鼠心肌c-fos表达的影响[J].遵义医学院学报.2004,27(2):112-113.
    [55]吴永贵,林辉,钱浩,等.灯盏花素与LY333531对糖尿病大鼠肾脏的保护作用[J].中华肾脏病杂志.2004,20(6):429-433.
    [56]Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action and insulin resistance[J]. Biochem Soc Trans.2005,33(Pt 2):350-353.
    [57]Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res.2007,55(6):498-510.
    [1]Kannel WB, McGee DL. Diabetes and cardiovascular disease:the Framingham study[J]. JAMA.1979,241(9):2035-2038.
    [2]Nichols GA, Hillier TA, Erbey JR, et al. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors [J]. Diabetes Care.2001,24(9):1614-1619.
    [3]Asghar O, Al-Sunni A, Khavandi K, et al. Diabetic cardiomyopathy[J]. Clin Sci (Lond).2009,116(10):741-760.
    [4]Dobrin JS, Lebeche D. Diabetic cardiomyopathy:signaling defects and therapeutic approaches[J]. Expert Rev Cardiovasc Ther.2010,8(3):373-391.
    [5]Bell DS. Diabetes:a cardiac condition manifesting as hyperglycemia[J]. Endocr Pract.2008,14(7):924-932.
    [6]Guo M, Wu MH, Korompai F, Yuan SY. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes[J]. Physiol Genomics.2003,12(2):139-146.
    [7]Gutterman DD. Vascular dysfunction in hyperglycemia:Is protein kinase C the culprit[J]? Circ Res.2002,90(1):5-7.
    [8]Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action and insulin resistance[J]. Biochem Soc Trans.2005,33 (Pt 2):350-353.
    [9]Das EN, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res.2007,55(6):498-510.
    [10]Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R. NF-kappaB regulation:the nuclear response[J]. J Cell Mol Med.2009,13(4):631-643.
    [11]Hall G, Hasday JD, Rogers TB. Regulating the regulator:NF-kappaB signaling in heart[J]. J Mol Cell Cardiol.2006,41(4):580-591.
    [12]Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes[J]. Proc Natl Acad Sci USA.2001,98(12):6668-6673.
    [13]Chen S, Mukherjee S, Chakraborty C, Chakrabarti S. High glucose- induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1[J]. Am J Physiol Cell Physiol.2003,284(2):C263-C272.
    [14]Chen S, Khan ZA, Cukiernik M, Chakrabarti S. Differential activation of NF-kB and AP-1 in increased fibronectin synthesis in target organs of Diabetic complications [J]. Am J Physiol Endocrinol Metab.2003,284(6):E1089-E1097.
    [15]Behnam SM, Behnam SE, Koo JY. TNF-alpha inhibitors and congestive heart failure[J]. Skinmed.2005,4(6):363-368.
    [16]Freeling J, Wattier K, LaCroix C, Li YF. Neostigmine and pilocarpine attenuated tumour necrosis factor alpha expression and cardiac hypertrophy in the heart with pressure overload[J]. Exp Physiol.2008,93(1):75-82.
    [17]Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state[J]. Circ.2007, 115(11):1398-1407.
    [18]Sriramula S, Haque M, Majid DS, Francis J. Involvement of tumor necrosis factor-alpha in angiotensin Ⅱ-mediated effects on salt appetite, hypertension, and cardiac hypertrophy[J]. Hypertension.2008,51(5):1345-1351.
    [19]Coronella-Wood J, Terrand J, Sun H, Chen QM. c-Fos phosphorylation induced by H.2.0.2. prevents proteasomal degradation of c-Fos in cardiomyocytes[J]. J Biol Chem.2004,279(32):33567-33574.
    [20]Zhu XX, Niu XL, Chen DZ, et al. Inhibitory significantly reverse the cardiac structure disorganization and effects of rosiglitazone against endothelin-1-induced proliferation of rat cardiac myocytes:the role of PKC-c-fos pathway[J]. Nan Fang Yi Ke Da Xue Xue Bao.2008,28(6):1056-1060.
    [21]Zhou H, Chen S, Wang L, He Q, Fan X. Regulation of the expression of pulmonary arterial collagen by protein kinase C and breviscapine in chronic hypoxic rats[J]. Zhonghua Jie He He Hu Xi Za Zhi.2002,25(6):347-351.
    [22]Zhang SJ, Song Y, Zhai WL, et al. Breviscapine alleviates hepatic injury and inhibits PKC-mRNA and its protein expression in brain-dead BA-Ma mini pigs[J]. Hepatobiliary Pancreat Dis Int.2007,6(6):604-609.
    [23]Zhou W, Wang XL, Lamping KG, Lee HC. Inhibition of protein kinase C beta protects against diabetes-induced impairment in arachidonic acid dilation of small coronary arteries[J]. J Pharmacol Exp Ther.2006,319(1):199-207.
    [24]Boudina S, Abel ED. Diabetic cardiomyopathy revisited[J]. Circ.2007,115(25): 3213-3223.
    [25]Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function:the strong heart study [J]. Circ.2000,101(19):2271-2276.
    [26]Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy[J]. Cardiology.2002,98(1-2):33-39.
    [27]Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes:importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy[J]. Diabetes Care,2001,24(1):5-10.
    [28]Vasanji Z, Cantor EJ, Juric D, Moyen M, Netticadan T. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance[J]. Am J Physiol Cell Physiol.2006,291(4): C772-C780.
    [29]Resl M, Hulsmann M, Pacher R, Clodi M. Heart failure in diabetes [J]. Wien Med Wochenschr.2009,159(5-6):134-140.
    [30]Braz JC, Gregory K, Pathak A, et al. PKC-alpha regulate cardiac contractility and propensity toward heart failure[J]. Nat Med.2004,10(3):248-254.
    [31]Hahn HS, Marreez Y, Odley A, et al. Protein kinase Calpha negatively regulates systolic and diastolic function in pathological hypertrophy[J]. Circ Res.2003, 93(11):1111-1119.
    [32]Connelly KA, Kelly DJ, Zhang Y, et al. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy[J]. Circ Heart Fail.2009,2(2):129-137.
    [33]Alter P, Rupp H, Maisch B. Activated nuclear transcription factor kappaB in patients with myocarditis and dilated cardiomyopathy-relation to inlammation and cardiac function[J]. Biochem Biophys Res Commun.2006,339(1):180-187.
    [34]Abe J. Role of PKCs and NF-kappaB activation in myocardial inflammation: enemy or ally[J]? J Mol Cell Cardiol.2007,43(4):404-408.
    [35]Gupta S, Young D, Maitra RK, et al. Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB [J]. J Mol Biol.2008,375(3):637-649.
    [36]Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha[J]. Biochemistry.2010,49(8):1560-1567.
    [37]Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging:regulation via AKT/IKK/NF-kappaB signaling[J]. Cell Signal.2010,22(4):573-577.
    [38]Young D, Popovic ZB, Jones WK, Gupta S. Blockade of NF-kappaB using IkappaB alpha dominant-negative mice ameliorates cardiac hypertrophy in myotrophin-overexpressed transgenic mice[J]. J Mol Biol.2008,381(3):559-568.
    [39]Zelarayan L, Renger A, Noack C, et al. NF-kappaB activation is required for adaptive cardiac hypertrophy [J]. Cardiovasc Res.2009,84(3):416-424.
    [40]Li Y, Ha T, Gao X, et al. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo[J]. Am J Physiol Heart Circ Physiol.2004,287(4): H1712-H1720.
    [41]Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-kappa B is necessary for myotrophin-induced cardiac hypertrophy[J]. J Cell Biol.2002, 159(6):1019-1028.
    [42]Balakumar P, Singh M. Anti-tumour necrosis factor-alpha therapy in heart failure: future directions[J]. Basic Clin Pharmacol Toxicol.2006,99(6):391-397.
    [43]Gupta S, Tripathi CD. Current status of TNF blocking therapy in heart failure[J]. Indian J Med Sci.2005,59(8):363-366.
    [44]Sarman B, Skoumal R, Leskinen H, et al. Nuclear factor-kappaB signaling contributes to severe, but not moderate, angiotensin Ⅱ-induced left ventricular remodeling[J]. J Hypertens.2007,25.(9):1927-1939.
    [45]Mathes E, O'Dea EL, Hoffmann A, Ghosh G. NF-kappaB dictates the degradation pathway of IkappaB-alpha[J]. EMBO J.2008,27(9):1357-1367.
    [46]Moss NC, Stansfield WE, Willis MS, Tang RH, Selzman CH. IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion njury[J]. Am J Physiol Heart Circ Physiol.2007,293(4): H2248-H2253.
    [47]Kawamura N, Kubota T, Kawano S, et al. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy[J]. Cardiovasc Res.2005,66(3):520-529.
    [48]Higuchi Y, Otsu K, Nishida K, et al. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol.2002,34(2):233-240.
    [49]Higuchi Y, Chan TO, Brown MA, et al. Cardioprotection afforded by NF-kappaB ablation is associated with activation of Akt in mice overexpressing TNF-alpha[J]. Am J Physiol Heart Circ Physiol.2006,290(2):H590-H598.
    [50]吴永贵,林辉,钱浩,等.灯盏花素与LY333531对糖尿病大鼠肾脏的保护作用[J].中华肾脏病杂志.2004,20(6):429-433.
    [51]Lin LL, Liu AJ, Liu JG, Yu XH, Qin LP, Su DF. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats[J]. J Cardiovasc Pharmacol. 2007,50(3):327-332.
    [52]Li XL, Li YQ, Yan WM, et al. A study of the cardioprotective effect of breviscapine during hypoxia of cardiomyocytes[J]. Planta Med.2004,70(1): 1039-1044.
    [53]Li FQ, Chen YZ. Effects of scutellarein on cardiomyocyte apoptosis and ventricular remodeling in spontaneously hypertensive rats[J]. J Chongqing Med Univ.2002,27(4):400-402.
    [54]Liu XD, Chen YZ. The effects of breviscapine on cardiac myocyte apoptosis and expression of Bcl-2 during myocardial ischemia/reperfusion course in rats[J]. J Guiyang Med Coll:2004; 29(2):102-104.
    [55]李法琦,陈运贞.灯盏花素逆转自发性高血压大鼠心室重塑[J].中国循环杂志.2002,17(2):151-152.
    [56]刘晓红,魏振宇,余德芊,秦伟,陈远寿.灯盏花素对去甲肾上腺素诱导的大鼠心肌c-fos表达的影响[J].遵义医学院学报.2004,27(2):112-113.
    [57]Wu YG, Wu GZ, Qi XM, et al. Protein kinase C beta inhibitor LY333531 . attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats[J]. J Pharmacol Sci.2006,101(4): 335-343.
    [1]Thrainsdottir IS, Aspelund T, Thorgeirsson G, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study[J]. Diabetes Care.2005,28(3):612-616.
    [2]Rulber S, Dulgush J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am J Cardiol.1972,30(6):595-602.
    [3]Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy [J]. JAMA.1974, 229(13):1749-1754.
    [4]Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function:the Strong Heart Study[J]. Circ.2000,101(19):2271-2276.
    [5]Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options[J]. Am J Med.2008,121(9):748-757.
    [6]Yoshimura M, Anzawa R, Mochizuki S. Cardiac metabolism in diabetes mellitus[J]. Curr Pharm Des.2008,14(25):2521-2526.
    [7]Ma H, Li SY, Xu P, et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy[J]. J Cell Mol Med.2009,13(8B):1751-1764.
    [8]Montagnani M. Diabetic cardiomyopathy:how much does it depend on AGE[J]? Br J Pharmacol.2008,154(4):725-726.
    [9]Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes[J]. Circ.2001,103(22):2668-2673.
    [10]Ren J, Gintant GA, Miller RE, et al. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner[J]. Am J Physiol.1997,273 (6 Pt 2):H2876-H2883.
    [11]Adeghate E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy:a short review[J]. Mol Cell Biochem.2004,261(1-2): 187-191.
    [12]Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications[J]. Diabet Med.2001,18(12):945-959.
    [13]Guo M, Wu MH, Korompai F, Yuan SY. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes [J]. Physiol Genomics.2003,12(2):139-146.
    [14]Lazar HL. Alterations in myocardial metabolism in the diabetic myocardium [J]. Semin Thorac Cardiovasc Surg.2006,18(4):289-292.
    [15]Tyagi SC, Hay den MR. Role of nitric oxide in matrix remodeling in diabetes and heart failure[J]. Heart Fail Rev.2003,8(1):23-28.
    [16]Ligeti L, Szenczi O, Prestia CM, et al. Altered calcium handling is an early sign of streptozotocin-induced diabetic cardiomyopathy [J]. Int J Mol Med.2006,17(6): 1035-1043.
    [17]Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy [J]. Nat Clin Pract Cardiovasc Med.2008,5(11):715-724.
    [18]Stolen TO, Hoydal MA, Kemi OJ, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy[J]. Circ Res.2009, 105(6):527-536.
    [19]Westermann D, Rutschow S, Jager S, et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy:the role of angiotensin type 1 receptor antagonism[J]. Diabetes. 2007,56(3):641-646.
    [20]Jenkins AJ, Best JD, Klein RL, Lyons TJ. Lipoproteins, glycoxidation and diabetic angiopathy[J]. Diabetes Metab Res Rev.2004,20(5):349-368.
    [21]Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications[J]. Curr Pharm Des.2004,10(27): 3395-3418.
    [22]Woodman RJ, Chew GT, Watts GF. Mechanisms, significance and treatment of vascular dysfunction in type 2 diabetes mellitus:focus on lipid-regulating therapy[J]. Drugs.2005,65(1):31-74.
    [23]Chiu HC, Kovacs A, Blanton RM, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy[J]. Circ Res.2005, 96(2):225-233.
    [24]Chiu J, Farhangkhoee H, Xu BY, Chen S, George B, Chakrabarti S. PARP mediates structural alterations in diabetic cardiomyopathy[J]. J Mol Cell Cardiol. 2008,45(3):385-393.
    [25]Ihm SH, Chang K, Kim HY, et al. Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats:the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor [J]. Basic Res Cardiol.2010, 105(3):399-407.
    [26]Gil-Ortega I, Carlos Kaski J. Diabetic myocardiopathy[J]. Med Clin.2006,127(15): 584-594.
    [27]Castellanos-Tapia L, Yepiz-Plasencia G, Moya-Camarenaa SY. Dietary conjugated linoleic acid induces tissue-specific lipoprotein lipase mRNA modulation in high-sucrose-fed mice [J]. Ann Nutr Metab.2009,54(2):131-137.
    [28]Kennedy AL, Lyons TJ. Glycation, oxidation, and lipoxidation in the development of diabetic complications [J]. Metabolism.1997,46(12 Suppl 1):14-21.
    [29]Zhao KX, Xiao Q, Liu QX, Huang CQ, Niu GF, Li LY. Study on the change of myocardial cell and matrix in the rats with insulin resistance and type 2 diabetes mellitus[J]. Sichuan Da Xue Xue Bao Yi Xue Ban.2008,39(3):402-405.
    [30]He RX, Gu CL, Shen F, Zhang XM. Changes in expression of adrenomedullin in the myocardium of streptozotocin-induced diabetic rats[J]. Chin Med J.2007, 120(3):187-191.
    [31]Drimal J, Knezl V, Navarova J, et al. Role of inflammatory cytokines and chemoattractants in the rat model of streptozotocin-induced diabetic heart failure [J]. Endocr Regul.2008,42(4):129-135.
    [32]Schaffer SW, Ballard-Croft C, Boerth S, Allo SN. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart [J]. Cardiovasc Res. 1997,34(1):129-136.
    [33]Sakata S, Lebeche D, Sakata Y, et al. Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model[J]. Am J Physiol Heart Circ Physiol.2007,292(2): H1204-H107.
    [34]Karakikes I, Kim M, Hadri L, et al. Gene remodeling in type 2 diabetic cardiomyopathy and its phenotypic rescue with SERCA2a[J]. PLoS One.2009, 4(7):e6474.
    [35]Zhou BQ, Hu SJ, Wang GB. The analysis of ultrastructure and gene expression of sarco/endoplasic reticulum calcium handling proteins in alloxan-induced diabetic rat myocardium[J]. Acta Cardio.2006,61(1):21-27.
    [36]Vetter R, Rehfeld U, Reissfelder C, et al. Transgenic overexpression of the sarcoplasmic reticulum Ca2+-ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts[J]. FASEB J.2002,16(12):1657-1659.
    [37]Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy[J]. Nat Clin Pract Cardiovasc Med.2008,5(11):715-724.
    [38]Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy [J]. Am J Physiol Regul Integr Comp Physiol.2008, 295(5):R1439-R1445.
    [30]Brown L, Wall D, Marchant C, Sernia C. Tissue-specific changes in angiotensin Ⅱ receptors in streptozotocin-diabetic rats[J]. J Endocrinol.1997,154(2):355-362.
    [40]Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin Ⅱ-dependent[J]. Lab Inves.2000,80(4):513-527.
    [41]Kajstura J, Fiordaliso F, Andreoli AM. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin Ⅱ-mediated oxidative stress[J]. Diabetes.2001,50(6):1414-1424.
    [42]Sechi LA, Griffin CA, Schambelan M. The cardiac renin-angiotensin system in STZ-induced diabetes[J]. Diabetes.1994,43(10):1180-1184.
    [43]Wohaieb SA, Godin DV. Alterations in tissue antioxidant systems in the spontaneously diabetic (BB Wistar) rat[J]. Can J Physiol Pharmacol.1987,65(11): 2191-2195.
    [44]Crespo MJ, Zalacain J, Dunbar DC, Cruz N, Arocho L. Cardiac oxidative stress is elevated at the onset of dilated cardiomyopathy in streptozotocin-diabetic rats[J]. J Cardiovasc Pharmacol Ther.2008,13(1):64-71.
    [45]Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes[J]. Med Hypotheses.2008,71(5):749-751.
    [46]Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase[J]. Diabetes.2004,53(2):463-473.
    [47]Rosen P, Ballhausen T, Bloch W, Addicks K. Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart:influence of tocopherol as antioxidant[J]. Diabetologia.1995,38(10):1157-1168.
    [48]Fioalaliso F, Bianchi R, Staszewsky L, et al. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats[J]. J Mol Cell Cardiol.2004, 37(5):959-968.
    [49]Way KJ, Isshiki K, Suzuma K, et al. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes[J]. Diabetes.2002,51(9):2709-2718.
    [50]Li C, Cao L, Zeng Q. Astragalus prevents diabetic rats from developing cardiomyopathy by downregulating angiotensin Ⅰ type 2 receptors'expression[J]. J Huazhong Univ Sci Technolog Med Sci.2004,24(4):379-384.
    [51]He Z, Way KJ, Arikawa E, et al. Differential regulation of angiotensin Ⅱ-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium[J]. J Biol Chem.2005,280(16):15719-15726.
    [52]Wang X, McLennan SV, Allen TJ, Tsoutsman T, Semsarian C, Twigg SM. Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor [J]. Am J Physiol Cell Physiol.2009,297(6): C1490-C1500.
    [53]Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type Ⅱ diabetic rat model[J]. Circ.2000,101(8):899-907.
    [54]Poirier P, Bogaty P, Garneau C, et al. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes:importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy[J]. Diabetes Care.2001,24(1):5-10.
    [55]Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy:evaluation by Doppler echocardiography[J]. J Am Coll Cardiol.2006,48(8):1548-1551.
    [56]Nagy A, Cserep Z. Link between diabetes and diastolic dysfunction and the diagnostic role of echocardiography[J]. Orv Hetil.2009,150(45):2060-2067.
    [57]Gustafsson I, Hildebrandt P. Early Failure of the Diabetic Heart[J]. Diabetes care. 2001,24(1):3-10.
    [58]Weytjens C, Franken PR, D'hooge J, et al. Doppler myocardial imaging in the diagnosis of early systolic left ventricular dysfunction in diabetic rats[J]. Eur J Echocardiogr.2008,9(3):326-333.
    [59]Balaceanu A, Sopa A, Diaconu C, Ionescu E. Echocardiographic evaluation of left ventricular diastolic dysfunction in patients with diabetes mellitus[J].Rev Med Chir Soc Med Nat Iasi.2007,111(4):922-924.
    [60]王先银,李树森,廖明松,等.多普勒组织成像评价早期糖尿病心肌病左室收 缩功能的实验研究[J].中国超声医学杂志.2003,19(6):401-403.
    [61]李新,郭文彬,朱梅,梁皓,张蕾,张楠.定量组织速度现象评价亚临床朝糖尿病心肌病左室功能的研究[J].医学影像学杂志,2004,14(3):191-193.
    [62]Gibson AA, Schaffer JE, Peterson LR, et al. Quantitative analysis of the magnitude and time delay of cyclic variation of myocardial backscatter from asymptomatic type 2 diabetes mellitus subjects[J]. Ultrasound Med Biol.2009,35(9):1458-1467.
    [63]刘岚,郭瑞强,孙有刚,等.超声背向散射技术评价影响糖尿病患者心肌病变相关因素的临床研究[J].中华超声影像学杂志.2003,12(4):212-214.
    [64]van den Brom CE, Huisman MC, Vlasblom R, et al. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats:studies using positron emission tomography[J]. Cardiovasc Diabetol.2009,22(8):39.
    [65]Gough SC, Smyllie J, Barker M, Berkin KE, Rice PJ, Grant PJ. Diastolic dysfunction is not related to changes in glycaemic control over 6 months in type 2(non-insulin-dependent) diabetes mellitus:A cross-sectional study[J]. Acta Diabetol.1995,32(2):110-115.
    [66]Loganathan R, Bilgen M, Al-Hafez B, Zhero SV, Alenezy MD, Smirnova IV. Exercise training improves cardiac performance in diabetes:in vivo demonstration with quantitative cine-MRI analyses[J]. J Appl Physiol.2007,102(2):665-672.
    [67]Lehti TM, Silvennoinen M, Kivela R, Kainulainen H, Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle[J]. Am J Physiol Endocrinol Metab.2007,292(2):E533-E542.
    [68]Sanchez OA, Snow LM, Lowe DA, Serfass RC, Thompson LV. Effects of endurance exercise-training on single-fiber contractile properties of insulin-treated streptozotocin-induced diabetic rats[J]. J Appl Physiol.2005,99(2):472-478.
    [69]Saraceni C, Broderick TL. Cardiac and metabolic consequences of aerobic exercise training in experimental diabetes[J]. Curr Diabetes Rev.2007,3(1):75-84.
    [70]Broderick TL, Poirier P, Gillis M. Exercise training restores abnormal myocardial glucose utilization and cardiac function in diabetes[J]. Diabetes Metab Res Rev. 2005,21(1):44-50.
    [71]Bell DS. Treatment of heart failure in patients with diabetes:clinical update[J]. Ethn Dis.2002,12(1):12-18.
    [72]钟明,张运,苗雅,等.缬沙坦逆转糖尿病心肌病大鼠心肌间质纤维化的作用[J].中华医学杂志.2006,86(4):232-236.
    [73]Yu W, Zhao YY, Zhang ZW, Guo YL, Jin J. Angiotension Ⅱ receptor 1 blocker modifies the expression of apoptosis-related proteins and transforming growth factor-betal in prostate tissue of spontaneously hypertensive rats[J]. BJU Int.2007, 100(5):1161-1165.
    [74]Zhang CH, Lu J, Yu XJ, Sun L, Zang WJ. Ameliorative effect of Captopril and Valsartan on an animal model of diabetic cardiomyopathy[J]. Biol Pharm Bull. 2008,31(11):2045-2049.
    [75]Xu B, Chibber R, Ruggiero D, Kohner E, Ritter J, Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products [J]. FASEB J.2003,17(10):1289-1291.
    [1]Idirs I, Gray S, Donnelly R. Protein kinase C activation:isozyme-specific effects on metabolism and cardiovascular complications in diabetes[J]. Diabetologia.2001, 44(6):659-673.
    [2]Newton A. Protein kinase C:structure, function and regulation[J]. J Biol Chem. 1995,270(48):28495-28498.
    [3]Naruse K, King GL. Protein kinase C and myocardial biology and function[J]. Circ Res.2000:86(11):1104-1106.
    [4]Bowling N, Walsh RA, Song G, et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart [J]. Circ.1999, 99(3):384-391.
    [5]Giles TD; Ouyang J, Kerut EK, et al. Changes in protein kinase C in early cardiomyopathy an d in gracilis muscle in the BB/Wor diabetic rat[J]. AJP-Heart and Circulatory Physiology.1998,274(1 Pt 2):H295-H303.
    [6]Liu X, Wang J, Takeda N, Binaglia L, Panagia V, Dhalla NS. Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes [J]. Am J Physiol.1999,277(5 Pt 1):E798-E804.
    [7]Guo M, Wu MH, Korompai F, Yuan SY. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes[J]. Physiol Genomics.2003,12(2):139-146.
    [8]Giles TD, Given MB, Greenberg SS, et al. Myocardial effects of ethanol consumption in the rat with streptozotocin-induced diabetes [J]. Alcohol Clin Exp Res.2002,26(8):1128-1133.
    [9]Gutterman DD. Vascular dysfunction in hyperglycemia:Is protein kinase C the culprit[J]? Circ Res.2002,90(1):5-7.
    [10]Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes [J]. Pharmacol Res.2007,55(6):498-510.
    [11]Yamamoto-Honda R, Kadowaki T. Protein kinase C activation and diabetic complications[J]. Nippon Rinsho.2005,63(Suppl 60):67-72.
    [12]Okumura K, Akiyama N, Hashimoto H, Ogawa K, Satake T. Alteration of 1,2-diacylglycerol content in myocardium from diabetic rats[J]. Diabetes.1998, 37(9):1168-1172.
    [13]Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes.1998,47(6):859-866.
    [14]Nobe K, Suzuki H, Sakai Y, Nobe H, Paul RJ, Momose K. Glucose-dependent enhancement of spontaneous phasic contraction is suppressed in diabetic mouse portal vein:association with diacylglycerol-protein kinase C pathway[J]. J Pharmacol Exp Ther.2004,309(3):1263-1272.
    [15]Asuflare K, Kahno M, Kano H, Yokokawa K, Horio T, Yoshikawa J. Possible involvement of phospholipse and protein kinase C in vascular growth induced by elevated glucose concentration[J]. Hypertension.1996,28(2):159-168.
    [16]He Z, Way KJ, Arikawa E, et al. Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium[J]. J Biol Chem.2005,280(16):15719-15726.
    [17]Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy[J]. Kidney Int Suppl.2000,77:S3-S12.
    [18]Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role of protein kinase C and NAD(P)H-oxidase activation[J]. Diabetes.2003,52(11):2795-2804.
    [19]Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes:role of vascular NAD(P)H oxidase[J]. J Am Soc Nephrol.2003,14(8 Suppl 3): S227-S232.
    [20]Drezgic JK, Zhou XP, Babazono T, Dlugosz JA, Hohman T, Whiteside C. Effect of high glucose on mesangial cell PKC -delta and epsilon is polyol pathway-dependent[J]. J Am Soc Nephrol.1999,10(6):1193-1203.
    [21]Crespo MJ, Zalacain J, Dunbar DC, Cruz N, Arocho L. Cardiac oxidative stress is elevated at the onset of dilated cardiomyopathy in streptozotocin-diabetic rats[J]. J Cardiovasc Pharmacol Ther.2008,13(1):64-71.
    [22]Yamagishi S, Matsui T, Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes[J].Med Hypotheses.2008,71(5):749-751.
    [23]Bidasee KR, Zhang Y, Shao CH, et al. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase[J]. Diabetes.2004,53:463-473.
    [24]Wickley PJ, Shiga T, Murray PA, Damron DS. Propofol modulates Na+-Ca2+ exchange activity via activation of protein kinase C in diabetic cardiomyocytes[J]. Anesthesiology.2007,106(2):302-311.
    [25]Hambleton M, Hahn H, Pleger ST, et al. Pharmacological-and gene therapy-based inhibition of protein kinase C alpha/beta enhances cardiac contractility and attenuates heart failure[J]. Circ.2006,114(6):574-582.
    [26]Watanuki S, Matsuda N, Sakuraya F, Jesmin S, Hattori Y. Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic rats[J]. Br J Pharmacol. 2004,141(2):347-359.
    [27]Hambleton M, York A, Sargent MA, et al. Inducible and myocyte-specific inhibition of PKCalpha enhances cardiac contractility and protects against infarction-induced heart failure[J]. Am J Physiol Heart Circ Physiol.2007,293(6): H3768-H3771.
    [28]Braz JC, Gregory K, Pathak A, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure[J]. Nat Med.2004,10(3):248-254.
    [29]Way KJ, Isshiki K, Suzuma K, et al. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes[J]. Diabetes.2002,51(9):2709-2718.
    [30]Yuan SY, Ustinova EE, Wu MH, et al. Protein kinase C activation contributes to micro vascular barrier dysfunction in the heart at early stage of diabetes [J]. Circ Res.2000,87(5):412-417.
    [31]Vinik A. The protein kinase C-beta inhibitor, ruboxistaurin, for the treatment of diabetic microvascular complications[J]. Expert Opin Investig Drugs.2005,14(12): 1547-1559.
    [32]He Z, King GL. Can protein kinase C beta-selective inhibitor, ruboxistaurin, stop vascular complications in diabetic patients[J]? Diabetes Care.2005,28(11): 2803-2805.
    [33]Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factors effect on the activation of protein kinase C, its isoforms, and endothelial cell growth[J]. J Clin Invest.1996,98(9):2018-2026.
    [34]Tdris I, Gray S, Donnelly R. Protein kinase C-beta inhibition and diabetic microangiopathy:effects on endothelial permeability responses in vitro [J]. Eur J Pharmacol.2004,485(1-3):141-144.
    [35]Connelly KA, Kelly DJ, Zhang Y, et al. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy[J]. Circ Heart Fail.2009,2(2):129-137.
    [36]Chen S, Khan ZA, Karmazyn M, Chakrabarti S. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy[J]. Diabetes Metab Res Rev.2007, 23(5):356-367.
    [37]Wiwanitkit V. Endothelin-1 and protein kinase C co-expression in the pathogenesis of diabetic retinopathy[J]. J Diabetes Complications.2007,21(6):359-362.
    [38]Park JY, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression by glucose:an effect of protein kinase C activation[J]. Diabetes.2000,49(7):1239-1248.
    [39]Chen S, Apostolova MD, Cherian MG, Chakrabarti S. Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelia cells[J]. Lab Invest.2000,80(8):1311-1321.
    [40]Muniyappa R, Srinivas PR, Ram JL, Walsh MF, Sowers JR. Calcium and protein kinase C mediate high-glucose-induced inhibition of inducible nitric oxide synthase in vascular smooth muscle cells[J]. Hypertension.1998,31(1 Pt 2): 289-295.
    [41]Wickley PJ, Shiga T, Murray PA, Damron DS. Propofol decreases myofilament Ca2+ sensitivity via a protein kinase C-, nitric oxide synthase-dependent pathway in diabetic cardiomyocytes[J]. Anesthesiology.2006,104(5):978-987.
    [42]Nagareddy PR, Soliman H, Lin G, et al. Selective inhibition of protein kinase C beta(2) attenuates inducible nitric oxide synthase-mediated cardiovascular abnormalities in streptozotocin-induced diabetic rats[J]:Diabetes.2009,58(10): 2355-2364.
    [43]Wu Y, Wu G, Qi X, et al. Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats[J]. J Pharmacol Sci.2006,101(4):335-343.
    [44]Way K J, Isshiki K, Suzuma K, et al. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes[J]. Diabetes.2002,51(9):2709-2718.
    [45]He Z, Way KJ, Arikawa E, et al. Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium[J]. J Biol Chem.2005,280(16):15719-15726.
    [46]Idris I, Donnelly R. Protein kinase C beta inhibition:A novel therapeutic strategy for diabetic microangiopathy[J]. Diab Vase Dis Res.2006,3(3):172-178.
    [47]Nakarnum J, Kato K, Hamada Y, et al. A Protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats[J]. Diabetes. 1999,48(10):2090-2095.
    [48]Wu yonggui, Lin Hui, Qian Hao, et al. Experimental study of breviscapine and LY333531 on renoprotection in diabetic rats[J]. Chin J Nephrol.2004,20(6): 429-433.
    [49]Katare RG, Caporali A, Oikawa A, Meloni M, Emanueli C, Madeddu P. Vitamin bl analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through akt/pim-1-mediated survival pathway[J]. Circ Heart Fail.2010, 3(2):294-305.
    [50]Kohda Y, Shirakawa H, Yamane K, et al. Prevention of incipient diabetic cardiomyopathy by high-dose thiamine[J]. J Toxicol Sci.2008,33(4):459-472.
    [51]Shirpoor A, Salami S, Khadem-Ansari MH, Ilkhanizadeh B, Pakdel FG, Khademvatani K. Cardioprotective effect of vitamin E:rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat[J]. J Diabetes Complications.2009,23(5):310-316.
    [52]Ganz M B, Seftel A. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E[J]. AM J Physiol Endocrinol Metab.2000,278(1): E146-E152.
    [53]Kowluru RA, Engerman RL, Kern TS. Diabetes-induced metabolic abnormalities in myocardium:effect of antioxidant therapy[J]. Free Radic Res.2000,32(1): 67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700