扬子鳄微卫星位点的筛选及其多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬子鳄(Alligator sinensis)是我国特有的珍稀濒危保护动物。虽然扬子鳄饲养种群近年来有了较大发展,但由于奠基者效应,已发现子代繁殖衰退的迹象。随着重引入工程的启动,正确评价扬子鳄种群的遗传多样性现状,从而制定更加有效的保护策略,已成为当务之急。
     本研究利用磁珠富集法,筛选扬子鳄自身的多态性微卫星位点,同时利用这些位点对两个扬子鳄种群的遗传多样性和种群结构进行了比较分析,主要研究结果如下:
     1.共挑取4000个克隆,检测后得到260个阳性克隆。随机抽取其中的150个克隆进行测序,其中92个序列可供设计微卫星引物,56对引物能成功扩增出预期大小的产物。对这56对引物进行多态性检测后,最终获得扬子鳄的11个多态性微卫星位点。
     2.57只扬子鳄经以上11个多态性微卫星位点检测后,共获得31个等位基因,平均每个位点的等位基因数为2.82个。其中,有4个等位基因(Alsi05-1;Alsi06-1;Alsi07-1;Alsil0-1)为长兴本土种群所特有,1个等位基因(Alsi05-2)为美国重引入种群所特有。11个位点的平均多态信息含量(PIC)为0.384。
     3.对所筛选的11个多态性微卫星位点进行了个体识别机率的有效性评估。结果显示,累计个体识别机率达到了0.9998,表明这些微卫星标记可被用于扬子鳄圈养种群的遗传谱系构建和重引入奠基种群的个体筛选。
     4.利用8对跨物种的多态性微卫星引物进行了群体检测分析,其中6对引物得到了有效性扩增,从而加上之先前筛选的11个多态性微卫星位点,本文得到的扬子鳄父权鉴定概率达到了0.991,达到了预期的研究效果。
     5.利用BAPS(Bayesian Analysis of Population Structure)软件在未知种群信息的前提下对57只扬子鳄个体进行类群分析,发现这些个体可以被划分为2个种群(长兴本土种群和美国重引入种群)。同时遗传混合分析显示,长兴种群和美国重引入种群虽然存在着一定程度的遗传差异,但是两者间出现了一定的混合。
     6.微卫星分析结果显示,扬子鳄种群的遗传多样性较低,但长兴本土种群和美国重引入种群均具有自身特有的稀有等位基因。因此,基于保护扬子鳄这一极度濒危物种的遗传多样性之目的,作者建议在野外放归或重引入工程中,管理者以选取不同地域(种群)的个体组成扬子鳄的奠基种群为佳。
Chinese alligator (Alligator sinensis) is a critically endangered species endemic to China. Although the captive Chinese alligator populations have been greatly developed in recent years, there has been genetic depression in the filial generation because of the founder effect. As the startup of the reintroduction project for the captive Chinese alligator population, it is urgent to investigate the genetic status of this species and provide feasible strategies for its conservation.
     In this study, we isolated polymorphic microsatellite loci from the Chinese alligator based on magnetic beads enrichment protocol, and did comprehensively research on genetic diversity and population structure of this species. The major results are:
     1. Approximately 4,000 clones were screened and a total of 260 recombinants that potentially contained microsatellite sequence were obtained. 150 positive clones were chosen randomly for DNA sequencing, out of which 92 clones had sufficient flanking sequence for primer design. The result of PCR amplification revealed that 56 primer pairs could yield consistent specific products. Further experiments showed that 11 pairs of them were polymorphic and well amplificated for each sample.
     2. The 11 polymorphic microsatellites presented a total of 31 alleles among 57 individuals scored, yielding an average of 2.82 alleles per locus. One allele was unique to the American reintroduced population(Alsi05-2) but four private alleles(Alsi05-1; Alsi06-1; Alsi07-1; Alsi10-1) were detected in the Changxing indigenous population. The average PIC (polymorphic information content) of the 11 polymorphic loci obtained in this study is 0.384.
     3. The individual identity probability was evaluated for the 11 polymophic markers. Results suggested that when the 11 polymorphic loci were combined, the individual identity probability was 0.9998. Therefore, the microsatellite markers could be utilized to genetic pedigree construction for the captive Chinese alligator populations. In addition, it could be helpful in the selecting of proper individuals for the reintroduction program.
     4. In this study, we also used 8 polymorphic loci isolated by cross-species amplification to assess the genetic status of this species, of which 6 loci was amplificated effectively. Finally, the exclusion probabilities of paternity testing went up to 0.991 if 11 species-specific polymorphic loci calculated in combination with 6 previous cross-species markers, which achieved the desired results.
     5. A complete Bayesian method in BAPS (Bayesian Analysis of Population Structure) was chosen to perform individual clustering without prior population information. The results showed that the 57 individuals were grouped into 2 clusters (named as the Changxing indigenous population and the American reintroduced population). The further genetic admixture analysis revealed that although genetic difference was present between the two populations, there was certain admixture among them.
     6. Based on the microsatellite analysis results, we conclude that the Chinese alligator has very low genetic diversity, but the Changxing indigenous population and the American reintroduced population still has some rare genes of their own. Hence, we strongly suggest that individuals from different populations should be chosen as the founders in the reintroduction program to largely protect the genetic diversity of this critically endangered species.
引文
1.陈壁辉,李炳华,谢万树.1981.扬子鳄食性冬眠的补充研究.安徽师范大学学报(自然科学版),(1):52-54
    2.陈壁辉,王朝林.1984.扬子鳄的人工繁殖.两栖爬行动物学报,3(2):49-54
    3.陈壁辉,花兆合,李柄华.1985.扬子鳄.合肥:安徽科技出版社,205-239
    4.陈壁辉.1986.扬子鳄现状.生物学杂志,2:10-13
    5.陈壁辉.1993.扬子鳄属名研究现况.中国黄山国际两栖爬行动物学学术会论文集.蛇蛙研究丛书,4:18-22
    6.陈壁辉,吴孝兵,华田苗.2003.扬子鳄研究.上海:科技教育出版社,120-126
    7.陈冬生,聂刘旺,程双怀,闻显照,王朝林,谢万树.2003.扬子鳄4个Sox 基因保守区的克隆及序列分析.动物学研究,24(2):127-131
    8.丁由中,王小明,何利军,Thorbjarnarson J,McMurry T.2001.野生扬子鳄物种及栖息地现状研究.生物多样性,9(2):102-108
    9.丁由中,王小明.2004.野生扬子鳄种群动态与致危因素.生物多样性,12(3):324-332
    10.方盛国.2001.浙江省长兴扬子鳄放归自然行动方案.中国扬子鳄及世界鳄类的保护现状与未来.北京:中国林业出版社,160-171
    11.何利军,王小明,丁由中,邵民,汪国宏,谢万树,Thorbiamarson J.2002.温度对扬子鳄卵野外孵化的影响.动物学报,48(3):420-424
    12.黄磊,王义权.2004.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析.遗传学报,31(2):143-150
    13.刘辉,吴孝兵,晏鹏,蒋志刚.2007.扬子鳄种群MHCⅡ类B基因第3外元多态性分析.遗传学报,34(10):918-929
    14.莫鑫泉,王为先,史瀛仙.1988.扬子鳄与密河鳄基因组DNA的复性动力学和组织结构的研究.遗传学报,15(6):436-441
    15.莫鑫泉,赵铁军,秦鹏春.1991.扬子鳄的起源.中国科学B辑,10:1047-1053
    16.盛岩,郑蔚虹,裴克全,马克平.2002.微卫星标记在种群生物学研究中的应用.植物生态学报,26:119-126
    17.史燕,吴孝兵,晏鹏,陈壁辉.2004.扬子鳄MHC Ⅱ类B基因第二外元的克 隆及序列分析.动物学研究,25(5):415-421
    18.史瀛仙,李士鹏,高庆生,黄祝坚,曹玉茹,刘维新,马连科,陈立东.1984a.扬子鳄和密河鳄染色体组型的比较.两栖爬行动物学报,3(3):10-16
    19.史瀛仙,李士鹏,高庆生,黄祝坚,曹玉茹,刘维新,陈立东,马连科.1984b.扬子鳄和密河鳄血清蛋白、血红蛋白和乳酸脱清酶凝胶电泳的比较.两栖爬行动物学报,3(2):21-24
    20.王丽娟.1996.微卫星DNA及其PCR技术的进展.国外医学遗传学分册,18:169-173
    21.汪仁平,周应健,王朝林,叶日全.1998.扬子鳄生活习性与环境温度的关系.动物学杂志,33(2):32-35
    22.王维胜.2001.扬子鳄保护现状与今后工作思路.中国扬子鳄及世界鳄类的保护现状与未来.北京:中国林业出版社,15-22
    23.王义权,周开亚,徐洛珊,徐国钧.1998.金钱白花蛇及其伪品cytb基因片断序列分析和PCR鉴别研究.药学学报,33(12):941-947
    24.王义权,周开亚,徐堵珊,徐国钧.1999.中药材乌梢蛇及其混淆品的DNA 序列分析鉴别.药学学报,34(1):67-71
    25.王义权,朱伟锉,王朝林.2003.扬子鳄饲养种群线粒体DNA控制区的序列多态性.遗传学报,30(5):425-430
    26.文焕然,黄祝坚,何业恒.1981.试论扬子鳄的地理变迁.湘潭大学学报(自然科学版),5:112-122
    27.吴孝兵,陈壁辉.1999a.扬子鳄资源数量、价值及开发利用现状.自然资源学报,2:183-186
    28.吴孝兵,王义权,周开亚,聂继山,王朝林,谢万树.1999b.安徽宣城扬子鳄饲养种群繁殖率分析.应用与环境生物学报,5(6):585-588
    29.吴孝兵,王义权,周开亚,,童宗中,,聂继山,王朝林,谢万树.2001.从12s rRNA基因序列探讨8种鳄类的系统发生.动物学报,5:522-527
    30.吴孝兵,王义权,周开亚,朱伟铨,聂继山,王朝林.2003.扬子鳄的线粒体全基因组与鳄类系统发生.科学通报,48(18):1954-1958
    31.张海军,张小爱,程双怀,耿红,聂刘旺,阚显照.2001.扬子鳄SOX基 因的PCR-SSCP分析.安命师范大学学报(自然科学版),24(3):248-249
    32.张孟闻,宗愉,马积藩.1998.中国动物志爬行纲第一卷.北京:科学出版社,25-40
    33.张亚平,王文,宿兵等.1995.大熊猫微卫星DNA的筛选其应用.动物学研究,16(4):301-306
    34.张云武,张亚平.2001.微卫星及其应用.动物学研究,22:315-320
    35.张正东,丁吉仁,赵耀宗等.1986.扬子鳄初生幼鳄在人工饲养条件下的生长.两栖爬行动物学报,5(3):217-222
    36.张正东,王保洲.1987.扬子鳄初生幼鳄越冬期生长规律的观察.两栖爬行动物学报,6(3):16-20
    37.郑多和,夏家辉.1998.DNA的简单串联重复扩展与遗传病.生命科学研究,2(2):79-85
    38.郑济芳,朱睦元.2003.扬子鳄的CaSox4基因的分子克隆和进化分析.动物学报,49(3):404-407
    39.周应健.1997.扬子鳄野生种群衰落探析.四川动物,16(3):137
    40.朱承馆.1954.扬子鳄.生物学通报,9:9-11
    41.朱承馆.1957.扬子鳄生活史的初步研究.动物学报,9(2):129-143
    42.朱伟铨,王义权,吴孝兵等.2001.4种鳄类的Cyt b和ND4基因部分序列的分子系统学研究.遗传学,5:435-438
    43.Bailer U,Leisch F,Meszaros K,et al.2000.Genome scan for susceptibility loci for schizophrenia.Neuropsychobiology,42:175-182
    44.Beckmann J S,Soller M.Toward.1990.A unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites.Biotechnology,8(10):930-932
    45.Berretini W H,Ferraro T N,Alexander R C,et al.1994.Quantitative trait loci mapping of three loci controlling morphine preference Using in bred mouse strains.Nature Genetics,7:54-58
    46.Cohen M M,Gans C.1970.The chromosomes of the order Crocodilea.Cytogenetics,9:81-105
    47.Creste S,Tulmann A.2001.Figueira A.Detectinon of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant M olecular Biology Reporter, 19: 299-306
    
    48. Crim J L, Spotila L D, Spotila J R, O'Connor M, Reina R, Williams C J, Paladino F V. 2002. The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and eolygyny. Mol. Ecol, 11(10): 2097-2106
    
    49. Estoup A. Anges B. 1998. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In: Carvalho G R. ed. Advances in molecular ecology, Amsterdam: IOS Press, 55-86
    
    50. Fisher R A. 1951. Standard calculations for evaluating a blood group system. Heredity. 5: 95-102
    
    51. Fitzsimmons N N, Buchan L J, Lam P V, Polet G, Hung T, Thang N Q , Graten J. 2002. Identification of purebred Crocodylus siamensis for reintroduction in Vietnam.J. Exp. Zool, 294(4): 373-381
    
    52. Frydenberg J, Pertoldi C, Dahlgaard J, Loeschcke V. 2002. Genetic variation in original and colonizing Drosophila buzzatii populations analysed by microsatellite loci isolated with a new PCR screening method. Mol. Ecol., 11: 181-190
    
    53. Glenn TC, Dessauer HC, Braun MJ. 1998. Characterization of microsatellite DNA loci in American alligator. Copeia, 3: 591-601
    
    54. Glenn TC, Staton JL, Vu AT, Davis LM, Alvarado-Bremer JR, Rhodes WE, Brisbin L, Sawyer RH. 2002. Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. J Exp Zool (Mol Dev Evol), 294: 312-324
    
    55. Guo S W., Thompson, E A. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometric, 48(2): 361-372
    
    56. Hebert C, Danzman R G, Jones M W, Bernatchez L. 2000. Hydrography and population genetic structure in brook chary(Salvelinus fontinalis, Mitchill)from eastern Canada. Mol. Ecol., 9: 971-982
    
    57. He LP, Wan QH, Fang SG, et al. 2006. Development of novel microsatellite loci and assessment of genetic diversity in the endangered Crested Ibis, Nipponia Nippon. Conserv Genet., 7:157-160
    
    58. Jame P, Lagoda J L. 1996. Microsatellites from molecules to populations and back. Trendsin Ecology and Evolution, 11: 424-429
    
    59. Kandpal R P, Kandpal G, Weissman S M. 1994. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc. Natl. Acad Sci., 91: 88-92
    
    60. Koskinen M T, Nilsson J, Veselov A J, Potutkin A G, Ranta E, Primmer C R. 2002. Microsatellite data resolve phylogeographic paterns in European grayling, (Thymallus thymallus), Salmonidae. Heredity, 88(5): 391-401
    
    61. Lang J.W., Andrews H.V. 1994. Temperature-dependent sex determination in crocodilians. Journal of Experimental Zoology, 270: 28-44
    
    62. Lift M, Luty J A. 1989. A hyper variable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 44(3): 397-401
    
    63. Marshall T C, Slate J, Kruuk L, PembertonJ M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7: 639-655
    
    64. Moore S S, Sergeant L L, King T J, et al. 1991. The conservation of dinulceotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 10: 654-660
    
    65. Murra V, Monchawin C, England P R. 1993. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucl Acid Res, 21: 2395-2398
    
    66. Paetkau D. 1999. Microsatellites obtained using strand extension: An enrichment protocol. Biotechniques, 26: 690-697
    
    67. Panaud O et al. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism in rice(Oryza sativa L.). Mol.Gen. Genet., 252: 597-607
    
    68. Powell W, Morgante M, Andre C, Hanafey M., Vogeel J, Rafaski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 12: 225-238
    
    69. Rannala, B, Mountain, J.L. 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA: 94: 9197-9221
    
    70. Ray, D.A., Densmore, L.D. 2003. Repetitive sequences in the crocodilian mitochondrial control region: poly-A sequences and heteroplasmic tandem repeats. Mol. Biol. Evol., 20: 1006-1013
    
    71. Refseth, U.H., Fangan, B.M., Jakobsen, K.S. 1997. Hybridization capture of microsatellites derectlu from genomic DNA. Electrophoresis, 18: 1519-1523
    
    72. Rooney A P, Honeycut R L, Davis S K, Derr J N. 1999. Evaluating a putative bottleneck in a population of bowhead whale from patems of microsatellite diversity and genetic disequilibria. Mai.Evol., 49: 682-690
    
    73. Rusell J.R., Fuller, J.D., Macaulay, M., Hatz, B.G., JaHoor, A., Powell, W., Waugh, R. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet, 95: 714-722
    
    74. Sambrook, J., Fritsh, E.F., Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
    
    75. Simberl D. 1988. The contribution of population and community biology to conservation science. Annual Reviews of Ecology and Systematics, 19: 473-511
    
    76. Skinner D M, Beattie W G, Blattner F R, et al. 1974. The sequence of a herm it crabsatellite DNA in (-TAGG-)n(-TAGG-)n. Biochemistry, 13: 3930-3937
    
    77. Tautz D. 1989. Hypervariability of simples sequences as general source for polymorphic DNA markers. Nucleic Acids Res, 17: 6463-6471
    
    78. Tautz D, Schlotterer C. 1994. Simple sequences. Curr. Opin. Genet. Dev., 4:832-837
    
    79. Thorbjarnarson J. 1992. Crocodiles: An action plan for their conservation. IUCN. Gland. Switzerland, 38-39
    
    80. Valsecchi E, Amos W. 1996. Microsatellite markers for the study of cetacean population. Mol.Ecol., 5: 151-156
    
    81. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. 2004. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol.Ecol. Notes, 4: 535-538
    
    82. Wan ZM, C.M, Gu XM, et al. 1998. Conservation management and farming of crocodiles in China. Crocodiles: Proceedings of the 14th working meeting of the Crocodile Specialist Group Singapore, 80-100
    
    83. Weber J L. 1990. Informative ness of human (dC-dA)n (dG-dT)n polymorphisms[J]. Genomics, 7: 524-530
    
    84. Weber J L, May P E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 44: 388-396
    
    85. Weissenbach J. 1993. Microsatellite polymorphisms and the genetic linkage map of the human genome. Current opinion in Genetics and Development, 3: 414-417
    
    86. Wu XB, Wang YQ, Zhou KY, Zhu WQ, Nie JS, Wang CL., Xie WS. 2002. Genetic variation in captive population of Chinese alligator(Alligator sinensis), revealed by random amplified polymorphic DNA (RAPD). Biological Conservation, 106: 435-441
    
    87. Xu QH, Fang SG, Wang ZP, Wang ZW. 2005. Microsatellite analysis of genetic diversity in the Chinese alligator (Alligator sinensis) Changxing captive population. Conserv Genet., 6: 941-951
    
    88. Yan P., Wu X.B., Shi Y, Gu C.M., Wang R.P., Wang C.L. 2005. Identification of Chinese Alligators (Alligator sinensis) Meat By Diagnostic PCR of the Mitochondrial Cytocrome b Gene. Biological Conservation, 121: 45-51
    
    89. Zane L, Bargelloni L, Patarnello T. 2002. Strategies for microsatellite isolation:a review. Mol. Ecol., 11: 1-16
    
    90. Ziegle J S, Su Y, Corcoran K P, et al. 1992. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics, 14: 1026-1031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700