β-环糊精及其聚乳酸接枝共聚物对氨基酸和胰岛素的包络作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精及其衍生物具有疏水性空腔和亲水性外壁,作为主体分子可包络识别各种有机、无机和生物分子而形成主—客体超分子包合物,故作为优良的酶模型和分子受体在科学和技术等诸多领域有着极为广泛的应用。氨基酸是构成蛋白质的基本单元,通过对环糊精与氨基酸以及多肽之间包络识别行为的研究,对于认识生命现象的本质、理解超分子中的自组装、分子识别等概念具有十分重要的意义,并为进一步研究和认识环糊精高聚物与蛋白质之间的包络行为奠定基础。
     本文研究了β—环糊精与芳香族氨基酸L—苯丙氨酸、L—酪氨酸和L—色氨酸之间的包合作用,考察了β—环糊精用量、温度、时间和pH值等因素对包合作用的影响。由于β—环糊精对芳香族氨基酸的疏水性识别作用,β—环糊精与芳香族氨基酸形成了包合物。从紫外光谱和荧光光谱测试结果表明,β—环糊精用量的增加、温度的降低、时间的延长,有利于β—环糊精与这三种芳香族氨基酸形成较为稳定的包合物。随着β—环糊精用量的增加和作用时间的延长,β—坏糊精对芳香族氨基酸的包合作用增强,揭示了β—环糊精与芳香族氨基酸包合物在水溶液中的形成是一动态平衡过程。温度的降低有利于β—环糊精与这三种芳香族氨基酸包合物的稳定性,表明包合过程是一热力学放热过程,即包合识别过程的熵变和焓变为分子识别和包合物稳定存在的驱动力之一。由于受主客体之间的尺寸匹配性的影响,β—环糊精与这三种芳香族氨基酸形成了不同包合比的包合物,β—环糊精分别与L—苯丙氨酸和L—酪氨酸形成了1:1的包合物,而与L—色氨酸却形成了2:1的包合物,各包合物的稳定常数也有所不同。总之,β—环糊精与这三种芳香族氨基酸之间的包合是多种因素协同作用的综合效果。
     此外,进一步研究了β—环糊精及其聚乳酸接枝共聚物与客体胰岛素之间的包合作用,同样考察了β—环糊精用量、温度、时间和pH值等因素对包合识别作用的影响,结果显示主体β—环糊精及其聚乳酸接枝共聚物对客体胰岛素之间的包合作用和识别机理与β—环糊精对芳香族氨基酸的识别作用和识别机理类似。另外,紫外光谱和荧光光谱测定结果表明,由于胰岛素复杂的三维立体结构特点以及其聚集体表面极性基团对β—环糊精的空间位阻和排斥作用,
    
    日一环糊精单体与胰岛素之间存在着较弱的包合识别作用;而对于p一环糊精
    接枝聚乳酸共聚物,由于环糊精高聚物存在的高分子效应,即各环糊精单体之
    间的协同识别和高分子链的骨架效应等,与小分子环糊精单体的包合作用有显
    著的差异,与胰岛素之间则存在着稳定的包合作用。因此,p一环糊精及其聚
    乳酸接枝共聚物有望用作肤类药物释放体系的载体,并可能达到较高的载药
    量。
Cyclodextrin and their derivatives have the hydrophobic cavities and hydrophilic wall. As the molecular host they are well known to have the property of forming inclusion complexes with organic, inorganic and biological molecules which possess suitable polarity and dimension. As the excellent enzyme model and molecule receptor, cyclodextrins have been widely used in many fields in science and technology. And peptides and proteins are composed of amino acids. The study on the inclusion behaviors of cyclodextrins with amino acids, peptides and proteins would help us to recognize the essence of life, the conception of self-assembly, molecular recognition and so on in the supramolecular chemistry. In our laboratory, supramolecular inclusion behaviors of polylactide- grafted copolymer of 3 梒yclodextrin with peptides and proteins were investigated so as to evaluated the possibilities of polylactide grafted copolymer of 3 梒yclodextrin as a carrier of pept.ide drug delivery system.
    The inclusion behaviors of B -cyclodextrin with some aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan were studied via ultraviolet and fluorescent spectrometry. The results indicated that inclusion complexes of β-cyclodextrin with aromatic amino acids could be formed and the inclusion behaviors were affected by the amount of β-cyclodextrin, temperature and pH value. With the increase of β-cyclodextrin concentration, the decrease of temperature and prolongation of time, the inclusion complexes of β-
    
    
    cyclodextrin with these aromatic ami no acids became more stable. These results showed that the inclusion was a reversible equilibrium process and the inclusion of β-cyclodextrin with these aromatic amino acids was exothermic. The 1:1 inclusion complexes of β-cyclodextrin with phenylalanine and tyrosine were formed; but 2:1 complex was afford from β-cyclodextrin with tryptophan owing to the various sites and chaps of different amino acids.
    The inclusion behaviors of β-cyclodextrin and its polylactide-garfted copolymer with insulin were also studied via ultraviolet and fluorescent spectrometry. It was observed that the inclusion complexes of 3 -cyclodextrin and its polylactide-garfted copolymer with insulin could be formed and the inclusion behaviors were affected by the amount of 3 -cyclodextrin, temperature as well as pH value. The formation mechanism of the supramolecular systems between 3 -cyclodextrin and insulin was the similar to that between 3 -cyclodextrin and the above-mentioned aromatic amino acids. Because of the three-dimensional structure of insulin and the exterior polar groups of its aggregates, the molecular recognition and inclusion of 3 -cyclodextrin with insulin were hindered. As a result, there was a weak interaction between 3 -cyclodextrin and insulin. However, the interaction of polylactide-garfted copolymer of 0 -cyclodextrin with insulin was much stronger owing to the polymer effects of cyclodextrin polymer. The polymer
    
    ic effects of polylactide-garfted copolymer of β-cyclodextrin, including cooperation effect, neighboring effect and polymer chain effect were discussed. Such a result suggested that polylactide-garfted copolymer of β-cyclodextrin would be a carrier of drug delivery system for peptides and proteins with high loading capacity.
引文
[1] Lehn J.M.,Sixteenth International Symposium on Macrocyclic Chemistry Abstracts, 1991,KL26
    [2] 何炳林,赵晓斌.新型β~环糊精固载高分子合成研究(Ⅰ).中国科学(B辑),1992,12:1240-1247
    [3] 何炳林,赵晓斌.新型β~环糊精固载高分子合成研究(Ⅱ).高等学校化学学报,1992,13(11):1472-1475
    [4] 赵晓斌,何炳林.β~CD高聚物对芳香类化合物包络吸附性能研究.功能高分子学报,1994,7(2)148-152
    [5] 苏小笛,刘六战,沈含熙.水溶性β~CD高聚物对客体芳香席夫碱的荧光识别作用.高等学校化学学报,1997,18(8):1275—1280
    [6] G Crini, S Bertini, G Torri. Sorption of aromatic compound in water using insoluble CD polymers. Jounral of polymer science, 1998, 68: 1973—1978
    [7] 刘勇,章道道.环糊精高聚物研究.功能高分子学报,1995,8(1):101—108
    [8] Bender, M.L..Cyclodextrin Chemistry. Springer-Verlag, Berlin, 1978
    [9] Kaneto Uekama, Fumitoshi Hirayama, Tetsumi Irie. Cyclodextrin Drug Carrier Systems. Cbwm. Rev.,1998,98 (5):2045-2076
    [10] 宋乐新,郭子建.氨基酸、多肽的环糊精化学.无机化学学报,2001,17(4):457—470
    [11] Noltemeyer M..Nature, 1976, 259: 629
    [12] Harata K..Bull. Chem. Soc. Jpn., 1977,50:1259
    [13] Braun T. Fullerene Sci. Technol., 1997,5(3): 615
    [14] Yoshida Z, Takekuma H, Matsubara Y, Angew. Chem.,1994,106(15/16):1658
    [15] Hacker F, Coteron JM, Schneider H J, Kazachenko V P. Can. J. Chem.,1997 75(1):52
    [16] Imata H, Takahashi K, Hattori K,Kobunshi Ronbunshu.1995,52(10):637
    [17] Harada A, Kamachi M. New Macromol. Archit. Funct.,Proc. Oums'95,2nd,
    
    Macromol. Archit. Funct.,Proc. Oum'95,2nd, 1995,107
    [18] Harada A. Adv. Polym. Sci.,1997,133:141
    [19] Amiel C, Sandier A, Sebille B, Valat P, Wintgens V. Int. J. Polym. Anal. Charact.,1995,1(4):289
    [20] Harada A. Suoramol. Sci.,1996,3(1-3):18
    [21] Duchene D.,Wouessidjewe D. Polysaccarides Med. Appl.,1996,575
    [22] Donze C, Coleman A W.J. Inclusion Phenom. Mol. Recognit. Chem.,1995,23 (1):11
    [23] Yang H, Bohne C.J. Phys. Chem.,1996,100(34):14533
    [24] 赵瑜,李隆第,童爱军.分析化学,1997,9:1016
    [25] Kano K. J. Phys. Org. Chem., 1997, 10(5) :286
    [26] 刘育,尤长城,韩宝航等.高等学校化学学报,1997,8:1316
    [27] 刘育,历斌,张毅民等.科学通报,1995,40(20):1858
    [28] Amiel C, SebilleB. J. Inclusion, K Mosbach. Carbohydr. Polym., 1996, 25 (1—3): 61
    [29] Kamachi M. Korea Polym. J., 1996, 4(2) :94
    [30] Easton C J, Van Eyk S J, Lincoln S F, May B L, Papageorgiou J, Williams M.L. Aust. J. Chem., 1997, 50 (1) :9
    [31] Zhu X X, Brizard F, Wen C C, Brown G R. J. Macromol. Sci,. Pure Appl. Chem., 1997, A34 (2) :335
    [32] Loftsson T, Guomundsdottir T K, Frioriksdottir H. Drug Dev. Ind. Pharm., 1996, 22 (5) : 401
    [33] 刘勇,王立峰,张道道.Chin.Sci.Bull.,1995,40(20):1759
    [34] Asanuma H, Kakazu M, Shibata M, Hishiya T, Komiyama M. Chem. Commun. (Cambridge).,1997,20:1971
    [35] 刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装.天津:南开大学出版社,2001
    [36] 刘育,韩宝航.超分子体系中的分子识别研究—Ⅶ竞争包结法研究β~CD氨基酸生物分子的手性识别.科学適报,1997,42(14):1516-1519
    
    
    [37] 童林荟.环糊精的化学—基础与应用.北京:科学出版社,2001
    [38] 刘育,厉斌,张毅民等.超分子体系中分子识别研究—环糊精双核铜配合物对芳香氨基酸的手性识别.科学通报,1995,40(20):1858-1861
    [39] 宋乐新,柯晓康,郭子建.荧光标识的环糊精二聚体与小肽衍生物之间的包合行为研究.化学学报,2002,60(8):1419-1427
    [40] 孙维星,刘志强,宋凤瑞等.β~CD/芳环氨基酸包络物的电喷雾质谱研究.高等学校化学学报,1998,19(5):708-710
    [41] 朱振峰,杨菁,宋存先.药物纳米控释系统的最新研究进展.国外医学:生物医学工程分册,1998,21(6):327-332
    [42] 朱屯,王福明,王习东等.国外纳米材料技术进展与应用.北京:化学工业出版社,2002
    [43] 梅之南,杨祥良,徐辉碧.生物降解聚合物长循环纳米粒.中国医院药学杂志,2202,22(7):433-435
    [44] 邓嵘,陈济民,姚崇舜等.长循环纳米粒的研究进展.中国药学杂志,2001 36 (8):511-513
    [45] Duchene D, Wouessidjewe D, Ponchel G. Cyclodextrins and carrier system Journal of Controlled Release, 1999, 62(2): 263
    [46] 查刘生,高海峰,杨武利等.聚合物纳米粒子用于给药载体.高分子通报,2002.3:24-32
    [47] 陈庆华,瞿文.多肽、蛋白类药物缓释剂型的研究进展.中国药学杂志,2000,35(3):147-150
    [48] 潘妍,徐辉,赵会英等.胰岛素乳酸/羟基乙酸共聚物纳米粒的制备及口服药效学研究.药学学报,2002,37(5):374-377
    [49] 袁弘,胡富强,应晓英等.胰岛素纳米粒的制备.中国药学杂志,2002,37(5):249-352
    [50] 赵海霞,陈浩,田景振.环糊精包合技术.山东中医杂志,2000,19(4):241
    [51] 姚康德,成国祥.智能材料.北京:化学工业出版社,2002:80-96
    [52] JIRIHORSKY, JOSEF PITHA. Inclusion complexes of protein: Interaction of cyclodextrins with peptides containing amino acids studied by
    
    competitive spectrophotometry. Journal of inclusion phenomena molecular recognition chemistry, 1994, 18: 291-300
    [53] Tetsumi Irie, Kaneto Uekorma. cyclodextrin in peptide and protein delivery. Advanced Drug Delivery Reviews, 1999,36:101-123
    [54] Marcus E. Brewster, Maninder S. Hora, James W. Simpkins, et. al..Use of 2-Hydroxypropy1-β-Cyclodextrin as a Solubilizing and Stabilizing Excipient for Protein Drugs. Phanraceutical Reseach, 1991,8(6): 792-795
    [55] Zezhi Shao, Ramesh Krishnamoorthy, Ashim Krishnamoorthy, Ashim K. Mitra. Cyclodextrin as Nasal Absorption Promotes of Insulin: Mechanistic Evaluations. Pharmacutical Research, 1992,9(9): 1157-1163
    [56] Nicolaas G.M. Schipper, Stefan G. Romeijn, J. Coss Verhoef, et. al..Nasal Insulin Delivery with Dimethyl-β-Cyclodextrin as an Absorption Enhancer in Rabbits:Powder More Effective than Liquid Formulations. 1993,10(5): 682-686
    [57] Zezhi Shao, Yuping Li, Todd Chermak, et. al..Cyclodextrin as Mucosal Absorption Promoters of Insuin. Ⅱ.Effects of β-Cyclodextrin Derivatives on α-Chymotryptic Degradation and Enteral Absroption of Insulin in Rats. Pharmacutical Research, 1994,11(8): 1174-1179
    [58] William J. Irwin, Anil K. Dwivedi, Paula A. Holbrook, et. al..The Effect of Cyclodextrin on the Stability of Peptide in Nasal Enzymic System. Pharmacutical Research, 1994,11(12):1689-1703
    [59] Frans W.H.M. Merkus, Nicolaas G.M. Schipper, J. Coos Verhoef. The Influence of absorption enhancers on intranasal insulin absorption in normal and diabetic subjects. Journal of Controlled Release, 1996,41:69-75
    [60] Barbara Haeberlin, Thomas Gengenbacher, Armin Meinzer, et. al.. Cyclodextrin-Useful excipients for oral peptide administration?.
    
    International Journal of Pharmaceutics, 1996, 137: 103-110
    [61] Dominique Duchene, Gilles Ponchel, Denis Wouessidjewe. Cyclodextrins in targeting Application to nanoparticles. Advanced Drug Delivery Reviews, 1999, 36:29-40
    [62] F.W.H.M. Merkus, J.C. Verhoef, E. Marttin, S.G. Romeijn, et. al.. Cyclodextrins in nasal drug delivery. Advanced Drug Delivery Reviews, 1999, 36:41-57
    [63] Tetsumi Irie, Kaneto Uekama. Cyclodextrins in peptide and protein delivery, 1999,36:102-123
    [64] Mahasen A. Radwan, Hassan Y. Aboul-Enein. rhe effect of absorption enhancers on the initial degradation kinetics of insulin by α-chymotrypsin. International Journal of Pharmaceutics, 2001, 217:111-120
    [65] Yannis Dotsikas, Yannis L. Loukas. Kinetic degradation study of insulin complexed with methyl-beta cyclodextrin. Confirmation of complexation with eledtrospray mass spectrometry and ~1H NMR. Journal of Pharmaceutical and Biomedical Analysis, 2002,29:487-497
    [66] 金瑞祥,何锡文.分析科学学报,1997,13(3):177-181
    [67] Cotner E S, Smith P J.J. Org. Chem.,1998,63:1737-1739
    [68] Rathore A S, Horvath Cs.J. Chromatogr.,A, 1998,796(2):367-373
    [69] Skanchy D J, Wison R, Poh W, Xie G H, Stobaugh J F. Electrophoresis, 1997, 18 (9): 1447-1449
    [70] Bjergegaard C, Pilegaard H L, Moller P, Sorensen H, Sorensen S.J. Chromatogr.,A.,1999,836(1):137-146
    [71] Verleysen K, Vanden B T, Sandra P. Electrophoresis.,1999,20(13): 2650-2655
    [72] Roberto C, Giuseppe B, Gianni G, Arnaido D, Rosangela M, Tetra. Lett., 1999,40(15):3025-3028
    [73] Takashi A, Yudai K, Shinji T, Minaru T.J. Chromatogr.,A.,1999,845
    
    (1+2):455-461
    [74] 冯钰锜,龚银汉,达世禄.高等学校化学学报,1999,20(4):552-554
    [75] Benesi H.A., Hildebrand J. H.. J. Am. Chem. Soc., 1949, 71 (8) :2703
    [76] Cramer F., Saenger W., Spatz H. CH.. J. Am. Chem. Soc., 1967, 89 (1) : 14
    [77] 谢文磊,徐卫河,冯光柱.紫外光谱法研究β~环糊精与卵磷脂的包结作用.光谱学与光谱分析,2001,21(5):707-709
    [78] 陈国珍,黄贤智,郑朱梓等.荧光分析法(第二版).北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700