餐饮业烟道油垢自燃发火机理及细水雾自动灭火系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展和城市规模的不断扩大,餐饮服务业得到了迅速的发展,酒店、宾馆、食堂厨房烟道火灾屡屡出现。由于大型餐饮业的烟道火灾不仅可能造成巨大的财产损失和人员伤亡,而且会产生极坏的社会影响,研究此类火灾机理并开发能够及时有效地控制此类火灾的发生和蔓延的装备具有非常重要意义。本文从餐饮业油烟道火灾原因出发,研究油烟道油垢燃烧特性作为切入点,采用现场分析验证及实验和数值模拟的研究方法,重点对油垢的燃烧特性、油烟道火灾蔓延规律、细水雾灭火特性分析、细水雾灭火系统研制等进行了比较深入的分析研究。论文主要研究工作和成果有:
     (1)在统计了部分油烟道火灾案例和实地调查的基础上,采用模糊事件树分析方法得到造成油烟道火灾的主要原因是油烟道内油垢没有及时清除;从油烟道可燃物——油垢物理特性出发,自行研制了满足油垢燃烧特性实验研究的较大物量(约15g)进样的热重分析装置,并通过引入自适应小波去噪分析方法,消除实验装置带来的误差,满足热重分析需要。
     (2)通过采用热重分析和傅立叶红外光谱分析相结合的方法,分析油烟道油垢燃烧特性。研究分析结果表明,油垢热重分析在空气气氛下的失重过程分五步进行,第一步失重发生在室温到105℃,由水分的蒸发引起;第二步失重发生在105~220℃之间,失重量大约占试样初始总重量的10%左右,这部分失重是由于低沸点化合物分解引起的;第三步失重过程自200℃左右开始发生,并在300~400℃之间很快地加速,最大失重速率温度在370℃附近,失重份额近40%,此过程主要是不饱和烃燃尽;第四步失重过程紧接着第三步失重,直到520℃左右结束,失重份额近15%左右,主要是羰基酯燃尽;第五步失重过程紧接着第四步失重,直到600℃左右结束,最大失重速率温度在560℃附近,此阶段饱和烃燃尽。试样的总体失重达到了90%左右。由于第一阶段失重由于水分蒸发引起,不属于热重分析范畴,根据积分动力学分析方法对后四阶段失重进行分析,提出了四阶段“一级+三维扩散模型”,油垢燃烧特性的总体表现失重过程可以是看作四种不同组分的物质在不同温度区间内发生的失重过程。
     (3)建立了一个实尺寸单管油烟道油垢燃烧物理模型。通过统计学正交设计方法建立工况组合,模拟计算得到各个时刻风管内气流温度、流速等变化及燃烧发展情况。为客观考查和比较各工况火灾发生的影响程度,准确描述火灾发生的概率,引入了“着火温度概率函数PFT”的综合考核指标,并进行了影响因素分析。结果表明,单管油烟道火灾的“因素主次”一致为:风速对火灾影响最大,其次为油垢厚度和油烟道壁面厚度,相比较油烟道断面尺寸的影响最小。模拟计算结果发现油烟道直角弯管的拐弯处火灾时温度最高,所以在油烟道设计时油烟道的连接应采用弯头连接形式,一方面可以有效的防止油垢在拐弯处过度沉积,另一方面可以降低火灾时直角弯头局部温度。
     (4)建立了一个实尺寸单管油烟道系统灭火实验物理模型。通过统计学正交设计方法建立工况组合,得到相应的温度场和灭火时间数据。为客观考查和比较细水雾灭火的影响因素,首次提出了“灭火温度概率函数PMT”的综合考核指标,并进行了影响因素分析。结果表明,单管油烟道细水雾灭火的“因素主次”为:风速对灭火影响最大,其次为喷头个数、喷射角和细水雾压力,相比较细水雾粒径的影响最小。
     (5)通过自行搭建的全尺寸单管油烟道火灾实验平台,进行了常压水喷淋和不同特性细水雾喷淋灭火实验。通过实验结果发现,常压水喷淋灭火由于水滴较大受气流影响较小灭火效果比较好;由于存在较强的气流,细水雾雾滴不能达到火源区域,从而因无法完全覆盖灭火效果降低;对于小流量的细水雾灭火系统,在一定范围内改变雾滴的大小几乎不改变其灭火效果;细水雾喷雾压力对灭火效果的影响并不明显;增加喷头个数能明显增强细水雾灭火效果;含有氯化钠为添加剂的细水雾比纯水细水雾灭火效果更好。另外,油烟道发生火灾时应该在第一时间关闭风机、打开防火风门。
     (6)在油垢燃烧特性实验、FDS火灾模拟、细水雾灭火实验模拟和单管烟道火灾灭火实验的基础上,通过采用热电偶树的温度监测形式,采用细水雾灭火方式设计了火灾自动探测、火灾报警及自动喷淋的油烟道细水雾灭火系统。当烟道温度超过危险温度临界值时,控制系统发出报警,如果报警时间持续10s后烟道温度没下降,控制系统自动关闭风机,开启防火风门,启动细水雾灭火系统自动扑灭火灾。
     (7)在自行研制的油烟道细水雾灭火系统上进行灭火实验,实验证明,该系统能很好的扑灭油烟道火灾。油烟道内火灾持续时间越长油烟道内温度越高,油垢燃烧处于第三阶段燃烧反应剧烈,火灾扑灭难度越大,应在火灾初期尽早扑灭。采用基于熵权的模糊综合评价方法建立了油烟道细水雾自动灭火系统可靠性评价模型,选取了平均故障率、平均无故障工作时间、有效度、平均修复时间、维修费用率、可靠度、故障密度作为评价指标,可靠性评价结果显示该油烟道自动细水雾灭火系统可靠性等级为可靠级。
With the development of the high energy equipment and high burning point cooking oil used in kitchen, the threatening of kitchen fire increasing greatly. The cooking fire not only brought huge economic losses and adverse social impact. It is very important to prevent fire taking place in the fog discharge pipe of cooking system. In order to reduce the cooking oil fire in fog discharge pipe substantially, it should research the combustion characteristic of cooking oil tar first and design the fitting fire alarm and extinguish system.
     On the basis of reviewing the previous papers in and aboard, the research methods combining the theoretical research, laboratory simulation, numerical analysis and field application were used to systematically and deeply analyze the fundamental theory, the spontaneous combustion characteristics of cooking oil tar, the fire spread in the pipe, the characteristics of the water mist, the research of water mist fire suppression system, The main work and achievements of the thesis are as follows:
     (1) On the basis of the fire cases in the fog discharge pipe and on-the-spot investigation, the fuzzy event tree is used to analysis the reasons of the fire. It is found out to be the cooking oil tar accumulated in pipe while it's clean out not quick enough. According to the characteristic physical properties of cooking oil tar, a laboratory-scale thermobalance (Macro-TG) with sample loading of 15g is designed. Adaptive wavelet analysis method is used to eliminate the noise bring from the experiment, which proved to be useful for the thermogravimetric analysis.
     (2) Thermogravimetric and infrared spectrum analysis are used to investigation the spontaneous combustion characteristic of the cooking oil tar. Research results proved that all cooking oil tar samples subjected to experiments in air with different heating rate are found to give the same general shape for the TG-DTG curves, and the curves can be divided into five stages. The evaporation of sorbed water occurring in the temperature range of 80-105℃constitutes an approximately 10%mass loss for all the cooking oil tar samples. Following the water evaporation, the fist mass loss due to low boiling volatile compounds in the temperature range of 105-220℃. The second mass loss due to the decomposition and combustion reaction begins slowly and accelerates rapidly in the temperature range of 300-400℃, reached an overall mass loss of more than 65%. The third mass loss follows the second one and in the temperature range of 400-520℃. The last mass loss reached an overall mass loss of more than 90%and the mass loss terminated around 600℃. A simple kinetic description, named'First Order Reaction and Three-dimensional Diffusion Separate-stage Model (O1+D3)'model, is developed based on the experimental results and integral analysis method. The spontaneous combustion characteristics of cooking oil tar can be explained as four pseudo components decompose respectively at four separate temperature regions.
     (3) A model of the single fog discharge pipe of cooking is established and several cases are finished according to the orthogonal design, and the variances of temperature, velocities of the air flow and fire spread process are calculated. A parameter of PFT (Probability of Fire-happened Temperature) is imported for fire safety evaluation, and the factor analysis is taken finally for fog discharge system design. It is found from the result of calculation that the velocities is the main influencing factors, the cooking oil tar and the thickness of the pipe is subordination factors, the section of discharge pipe is the last. The highest temperature appeared in the right-angle of the pipe. The results indicate that bend tube can be used in the fog discharge pipe of cooking in the design, the deposition of the cooking oil tar and the temperature will be centralize decreased.
     (4) A model for fire suppression of cooking oil tar in the pipe has been set up, and the comprehensive properties of the fire and the temperature field in the pipe are simulated by the orthogonal design cases and comparative cases in the full range analysis. A new parameter of PMT (Probability of Fire-suppression Temperature) is put forwarded for the first time, and the factor analysis is taken finally for fire suppression evaluation. It is found from the result of calculation that the velocities is the main influencing factors, the number of nozzles, the spraying angle and the spraying pressure are subordination factors, the diameter of mist is the last.
     (5) A new experimental platform of actual-dimension single fog discharge pipe has been built in the lab and the atmospheric pressure spray pattern and different characteristic of the water mist pattern are used to evaluate the suppression outcome. The experiment results show that the fire extinguishing effect of atmospheric pressure spray pattern is better than water mist. The effect of fire controlling is bad while the wind speed over high as the water mist not able to reach the fire area. The fire extinguishing effect can not be increased while the water mist size changed as the small water flow. The effect changed magnificent which the increasing number of nozzles and the additive of NaCl added, while the spraying pressure increasing not able to change the effect.
     (6) A laboratory scale cooking oil fire suppression system is designed according to the thermogravimetric analysis, the FDS simulation results, the fire extinguishing experiment in single fog discharge pipe. Thermocouple tree used for temperature detection, water mist used as fire suppression pattern, a two hearth system for fog discharge pipe of cooking has been built, fire automatic detecting, fire automatic alarming, automatic spraying are achieved. Principles of automatic control incarnate in the entire system, the loudspeakers sending out the warning according to thermocouple tree while arriving critical value, if the temperature lasting for 10 seconds turn off fan, air-door closed, water mist suppression system opening and fire can be extinguished in less than 12 seconds.
     (7) Fire extinguishing results on laboratory system indicates that the suppression system can protect the fog discharge system well. Experimental results demonstrated that the temperature grows to a high lever with time changing, while the cooking oil tar combustion reaction come to the third stage, it's hard to put out. In view of the existing fuzziness and randomness in reliability comprehensive evaluation for the suppression system, a two-stayed fuzzy assessment model for the evaluation of the petrochemical production unit is established by using the theory of fuzzy mathematics. Average fault ratios, mean time between failures, effectiveness, mean-time-to-repair, and maintenance cost rate, spatial variability and fault density are used as evaluation index system. It is found from the result of evaluation that the variability of the water mist suppression system is reliability step.
引文
[1]段琼蕾,陆金明.青年时报[N].2006年3月4日.
    [2]李敏.浙江在线[N].2006年3月25日.
    [3]田华.烟道油垢上月起火二十二起[N].北京日报2004年4月2日.
    [4]赵明.浅谈餐饮场所火灾及预防, http://www.cc 119.net/htm/xfxwx.asp? ID=311&yiid=60,2007-6-1/2009-2-10.
    [5]王晔.用细水雾灭火系统扑救食用油火[J].消防技术与产品信息,2006,1:56-60.
    [6]严晓龙,傅杉.商业用厨房火灾的防护[J].浙江消防.2002,(2):35.
    [7]U.S.Fire Administration, National Fire Data Center, restaurant fires, topical fire research series [J].2004,4(3):1-5.
    [8]傅尧信,薛跃华.厨房火灾及相关灭火技术[J].消防科学与技术,2006,25(s):43-44.
    [9]罗启才.一起抽油烟管道火灾的勘查认定[J].消防科学与技术.2003,22(6):544-545.
    [10]佟笑凯.商业用厨房油烟道火灾防护[J].北方消防,2003,4:32-33.
    [11]北京市防火安全委员会办公室.关于厨房油烟管道火灾频繁发生的通报[Z],2003,11,17.
    [12]安全文化网.2004年国外十大火灾[EB/OL] http://www.anquan.com.cn/Article/ Classl3/Class 18/200507/22380.html.2005-7-21/2009-6-1.
    [13]2005年因酒店厨房长期未清洗而发生火灾的案例,[EB/OL]http://www.clcn.org /article_detail.asp?id=215,2009-1-2/2009-2-10.
    [14]丁伟,孙岑.宁波世贸中心e咖啡店发生火灾[EB/OL]http://news.cnnb.com.cn/ system/2006/03/01/005082908.shtml.2006-3-1/2008-12-2.
    [15]李敏,王坚颖.杭州繁华商业中心地带发火灾-都是烟道惹的火[EB/OL] http://www.zjol.com.cn/05zjnews/system/2006/03/25/006534683.shtml.2006-3-25/2008-12-2.
    [16]关于加强餐饮服务业消防安全工作的通知,http://ajj.ningbo.gov.cn/site/art/art/
    2008-02-23/art 2776990.htm,2006-3-7/2009-2-10.
    [17]中国消防在线,中国网.湖北宜昌消防官兵扑救新王牌宴酒店火灾事故纪实[EB/OL] http://119.china.com.cn/mhqx/txt/2007-06/20/content_1648757.htm,2006-6-20/2009-2-10.
    [18]吴建平,张云飞,万国强,等.兰州黄海渔港“6·25”火灾事故原因分析,消防科学与技术2008,27(9):703-705.
    [19]新疆消防网,大酒店厨房火灾浙江湖州消防官兵成功扑救[EB/OL] http: //www.xjxf.com/Article_Show.asp?ArticleID=6335.2007-2-13/2009-6-13.
    [20]北京市清江源技术服务有限公司.2008年因酒店厨房长期未清洗而发生火灾的案例[EB/OL]http://www.bjqjy.com.cn/s18.html.2009-6-13.
    [21]高光大.辽源一五星级酒店五楼厨房昨发生火灾[N].城市晚报,2009,4,17.
    [22]严晓龙,傅杉.商业用厨房火灾的防护[J].浙江消防.2002,(2):35.
    [23]《北京市餐饮业安全管理规范(试行)》[S].京商办字[2005]4号.
    [24]施超峰.餐饮业油烟污染及抽排设计[J].中国环保产业.2004,(10):25-27.
    [25]许全瑞,沈美庆,王军.油烟污染及其排放控制技术[J].中国稀土学报,2003,21(12):22-25.
    [26]楼建勇,林江.油烟净化两相流流体力学特性实验研究探讨[J].杭州师范学院学报(自然科学版),2001,18(1):38-40.
    [27]李刚,冯国会,张宝刚等.公共厨房油烟气控制技术现状与展望[J].沈阳建筑工程学院学报(自然科学版),2002,18(3):210-213.
    [28]王瑞琪,丁社光,王红.饮食油烟的污染及治理现状[J].重庆工商大学学报(自然科学版),2006,23(1):44-47.
    [29]梁衍魁.餐饮业烹调油烟气的组成与危害及净化方法探讨[J].能源与环境.2004,(1):43-44.
    [30]Kroeter, David W. Flue fire controller [P]. United States Patent 451958,1985-05-28.
    [31]刘迅,吕维宁.焙烧炉烟道阻火装置[P].中国专利CN2718489,2005-08-17.
    [32]中华人民共和国公安部.GBJ50116-98.火灾自动报警系统设计规范.北京:中国计划出版社,1999-6-1.
    [33]中华人民共和国公安部.GB50166-2007.火灾自动报警系统施工及验收规范.北京:中国计划出版社,2008-3-1.
    [34]王震平,叶永飞.警惕厨房油烟脱排系统火灾[J].上海消防,2003,2:84-84.
    [35]朱玉振,李鹤同等,室内废气污染的计算与分析[J].环境工程.1998,16(6):32-33.
    [36]熊鸿斌等.餐饮业油烟净化技术及影响因素[J].环境工程.2003,21(4):38-41.
    [37]庄永茂,施惠邦编.燃烧与污染控制[M].上海:同济大学出版社,1998:1-32.
    [38]王俊林.餐饮业油烟排放及处理技术探讨[J].甘肃环境研究与监测.2001,14(03):197-198.
    [39]厉曙光,潘定华,汪国雄.某些餐饮业的实用油及其加热产物中多环芳烃的分析[J].环境与健康.1992,9(5):217-219.
    [40]厉曙光,潘定华,汪国雄.食油及其加热过程中的Bap、DBahA含量分析[J].上海环境科学.1991,(9):427-432.
    [41]厉曙光等.家庭厨房油烟冷凝物化学成分及对果蝇经口染毒遗传毒性的研究[J].卫生研究.1999,28(01):15-17
    [42]崔明珍等.饭店厨房空气中的化学成分分析[J].中国公共卫生.1994,10(01):21-22
    [43]段玉环,谢超颖,方恒.餐饮业油烟污染及治理技术浅议[J].环境污染治理技术与设备.2003,3(11):67-69
    [44]许全瑞等.油烟污染及其排放控制技术[J].中国稀土学报.2003,(S2): 22-25
    [45]王殊,窦征.火灾探测及其信号处理[M].武汉:华中理工大学出版社,1998.154-161.
    [46]张肇富.新颖的火灾传感器[J].消防技术与产品信息,2000,(7):23.
    [47]Daniel T.Gottuk, Michelle J.Peatross. Advanded Fire Detection Using Multi-signature Alarm Algorithms[J].Fire Safety Journal,2002,37(4):381-394.
    [48]郭键,王汝琳,李明.火灾探测技术的现状及发展方向[J].辽宁工程技术大学学报,2004,23(2):208-210.
    [49]Hagen B C. Evaluation of Gaseous Signature in Large Scale Test, Master of Science Thesis. Department of Fire Protection Engineering, the University of MaryLand. College Park, MD,1994.
    [50]Yan S, Wang S, Dou Z. energy model in fire detection and integrated analysis on false alarms. Grosshandler W L. International Conference on Automatic Fire Detection"AUBE '01",12th. Proceedings. Gaithersburg, MD:National Institute of Standards and Technology,2001:122-128.
    [51]Smithies J N, Burry P E, Spearpoint M J. Background signals from fire detectors. Measurement, analysis, application [J].Fire Safety Journal,1991,17 (6):0379-7112.
    [52]谢启源,袁宏永,郭慧亮.厨房油烟引起感烟火灾探测器误报实验研究[J].消防设备研究,2003,23(6):504-507.
    [53]杨宁,梁峰,王力伯.油类火灾灭火剂及其应用研究进展[J]消防技术与产品信息,2004,5:31-32.
    [54]肖进新,姚军,高展.碳氟表面活性剂与水成膜泡沫灭火剂.化学研究与应用,2002,(14):391-2393.
    [55]肖进新,暴艳霞,寿建友,等.碳氟-碳氢表面活性剂混合水溶液在油面上铺展.化学研究与应用,2002,(14):137-140.
    [56]吴颐伦.干粉灭火的新机理和配方设计优化[J].消防技术与产品信息,1997,(1):13-19.
    [57]宋占兵,张孝君,喻健良,等.灭火剂发展现状与未来.化学工业与工程技术,2001,(22):7-11.
    [58]曹勇,李强,张恒.几种清洁环保型灭火剂的性能及灭火原理.辽宁化工,2002,(31):254-256.
    [59]黄晓家,吴易平.厨房火灾危险性分析与专用灭火装置[J].消防科学与技术2007,26(4):406-408.
    [60]李静,赵琨.浅谈商业厨房烹饪设备火灾及设置自动灭火装置[J].消防技术与产品信息,2007,10:22-24.
    [61]美国厨房灭火系统简介(ANSUL)[J].消防技术与产品信息,2006,9:81-81.
    [62]王舒艳,董海斌,高云升,冯珂星.厨房设备灭火装置发展状况及灭食用油火技术[J]消防科学与技术,2006,25(S1):45-46.
    [63]傅尧信,薛跃华.厨房火灾及相关灭火技术[J].消防科学与技术,2006,25(S1):43-44.
    [64]中华人民共和国公安部.GA498-2004.厨房设备灭火装置,北京:中国标准出版社,2004-10-1.
    [65]四川省质量技术监督局.DB51/T592-2006.厨房设备细水雾灭火系统设计、施工及验收规范.2006-9-1.
    [66]National fire protection association. NFPA 10, standard for portable fire extinguishers, American,1984-10-1.
    [67]National fire protection association. NFPA 96, standard for ventilation control and fire protection of commercial cooking operations, American,2009-10-1.
    [68]National association of fire equipmen distributors. UL 300, standard for fire testing of fire extinguishing systems for protection of restaurant cooking areas American,1996-11-21.
    [69]Edwards N. A new class of fire. Fire Prevention,1998,310:8-9
    [70]Voelkert C. Out of the frying pan. Fire Prevention,1998,314:24-26
    [71]Liu Z G, Andrew K, Don C, et al. Extinguishment of cooking oil fires by water mist fire suppression systems. Fire Technology,2004,40:309-333
    [72]Voelkert C. The New Class K. NFPA Journal,1999,7.8.
    [73]沈晓阳.厨房油烟道火灾的预防[J].火警,2005,5:16-16
    [74]何涛,杨照广.浅谈厨房烟囱和抽油烟管道防火安全之对策[J].中国消防,2004.9:54-54
    [75]金朝光,林焰,纪卓尚.基于模糊集理论事件树分析方法在风险分析中应用[J].大连理工大学学报,2003,43(1):97-100.
    [76]Huang Qiao, Ren Yuan, Lin Yangzi. Application of uncertain type of AHP to condition assessment of cable-stayed bridges[J]Journal of Southeast University(English Edition), 2007,23(4):599-603.
    [77]袁昌明.事故树分析中最小割集、最小径集的计算机求解[J].中国计量学院学报,2002,13(4):308-310.
    [78]金朝光,林焰,纪卓尚.基于遗传算法的模糊优化研究[J]系统工程理论与实践,2003,4:106-110.
    [79]陈国平,蒋颂挥.地下车库汽车废气污染状况调查.上海环境科学.1999,18(8): 374-375.
    [81]李新华.通风空调系统风管中聚集物的燃烧特性及对建筑火灾的影响研究[D],湖南:湖南大学,2007.4.
    [82]Xie zhengwen, Yuan qiao. study on thermogravimetry data of cooking oil tar based on adaptive wavelet analysis[J], Journal of Safety and Environment,2009,9(6):128-131.
    [83]Cui Quan, Aimin Li, Ningbo Gao. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management,2009(29):2353-2360.
    [84]肖天来,冯小平,谢峻林,何峰.热天平的研制,武汉理工大学学报,2010,23(8):24-26.
    [85]Lark R M, Kaffka S R, Corwin D L. Multiresolution analysis of data on electrical conductivity of soil using wavelets [J]. Journal of Hydrology,2003,272:276-290
    [86]J. Opfermann. Kinetic analysis using multivariate non-linear regression [J].Journal of Thermal Analysis and Calorimetry,2000,60:641-658.
    [87]陈海翔.生物质热解的物理化学模型与分析方法研究[D].合肥:中国科学技术大学,2006.4.
    [88]CHEN Hai-xiang, LIU Nai-an, SHU Li-fu, et al. Smoothing and Differential of Thermogravimetric Data [J].fire safety science,2004,13(1):1-10.
    [89]J.E.J. Staggs. Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data [J].Fire Safety Journal,2005, (40):493-505.
    [90]DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage [R]. Journal of the American Statistical Association,1995,90:1200-1224.
    [91]DONOHO D L. De-noising by soft-thresholding [J].IEEE Transactions on Information Theory,1995,41(3):613627.
    [92]Santoso S, Powers E J, Hofmana P. Power quality assessment via wavelet transform analysis [J]. IEEE Trans on Power Delivery,1996,11 (2):924-930.
    [93]Vittoria Bruni, Domenico Vitulano. Wavelet-based signal de-noising via simple singularities approximation [J]. Signal Processing,2006,86:859-876.
    [94]Zhao Ting, Yu Yang. Threshold De-noising Analysis of Machinery Vibrating Signal Based on Wavelet Transform, Electronic Measurement and Instruments, ICEMI'07, 2007,2:1041-1044.
    [95]P.L. Dragotti, M. Vetterli, Wavelet footprints:theory, algorithms and applications, IEEE Trans. Signal Process,2003,51(5):1306-1323.
    [96]SORUM L, GRONLIM G, HUSTAD J E. Pyrolysis characteristics and kinetics of municipal solid wastes [J]. Fuel,2001,80(9):1217-1227.
    [97]Wei Liang, Pei-wen Que. Optimal scale wavelet transform for the identification of weak ultrasonic signals [J]. Measurement,2009,42(1):164-169.
    [98]Radhakrishnan Nair. M.N., George V. Thomas, Gopinathan Nair. M.R. Thermogravimetric analysis of PVC/ELNR blends [J]. Polymer Degradation and Stability.2007,92:189-196.
    [99]P. Luangkiattikhun, C. Tangsathitkulchai, M. Tangsathitkulchai. Non-isothermal thermogravimetric analysis of oil-palm solid wastes [J]. Bioresource Technology,2008, 99:986-997.
    [100]Liu, N.A, et al., Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical And Applied Pyrolysis,2002,63(2): 303-325.
    [101]袁兵.可燃物热解与着火特性研究[D],浙江大学硕士学位论文,2004.
    [102]刘乃安.生物质材料热解失重动力学及其分析方法研究[D],中国科学技术大学博士学位论文,2000.
    [103]高俊杰,余萍,刘志江.仪器分析[M].北京:国防工业出版社,2005:45-71.
    [104]张晓莉.汽油燃烧残留物的红外光谱分析[J].广西民族大学学报,2009,9:43-45.
    [105]K.Raveendran, Anuradda Ganesh, Kartic C.Khilart. Influence of mineral matter on biomass Pyrolysis characteristics[J].Fuel,1995,74(12):1812-1822.
    [106]胡荣祖等.热分析动力学[M].北京:科学出版社.2001.
    [107]周俊虎,匡建平,周志军,等.原煤和黑液水煤浆燃烧特性的热分析对比研究[J].燃料化学学报,2005,33(1):33-37.
    [108]谢正文,袁巧,曲方.消除油垢热分析实验噪音方法和热动力学研究,化学工程[J],2010,38(6):95-98.
    [109]A. Aboulkas, K. Elharfi, M. Nadifiyine, A. Elbouadili. Investigation on pyrolysis of Moroccan oil shale/ plastic mixtures by thermogravimetric analysis, fuel processing thechnology,89(2008)1000.
    [110]J.H. Zhou, J.P. Kuang, Z.J. Zhou, et al. Thermal analysis on combustibility of coal and coal black liquor slurry, Journal of Fuel Chemistry and Technology,33 (2005)33.
    [111]谢正文,袁巧,曲方.餐饮业烟道油垢燃烧特性及动力学模型,安全与环境学报[J],2009,9(6):128-131.
    [112]余春江.生物质热解机理和工程应用研究[D].浙江大学博士学位论文,2000.
    [113]Shen. D.K, Luo.Gu. S. K.H. Kinetic study on thermal decomposition of woods in oxidative environment [J].Fuel,2009,88:1024-1030.
    [114]朱瑞,黄定国,吴玉敏.新型黑液水煤浆的燃烧特性及动力学分析[J],煤炭转化,2007,30(3):49-52.
    [115]刘乃安,王海晖,夏敦煌,等.林木燃烧动力学模型研究[J],中国科学技术大学 学报,1998,28(1):40-48.
    [116]W endlandt W W. Thermal analysis,3Ed. New York:John Wiley & Sons, L td., 1986:80.
    [117]M. Otero, L.F. Calvo, M.V. Gil. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis[J]. Bioresource Technology,2008, 99:6311-6319.
    [118]Dawid Stawski. The effect of sample weight in thermogravimetric analysis of low viscosity polypropylene in air atmosphere [J], Polymer Testing,2009,28:223-225.
    [119]王凤君,赵长遂.煤和石油焦混合燃料在循环流化床中的燃烧特性[J].电站系统工程,2004,20(4):35-36.
    [120]王文选,王凤君,李鹏等.石油焦与煤混合燃料热重分析研究[J].燃料化学学报,2004,32(5):522-526.
    [121]朱群益,赵广播,阮根健等.煤燃烧特征点变化规律的研究[J].电站系统工程,1999,15(6):41-44.
    [122]Mc Grattan, Kevin B., Baum etc. Large Eddy Simulations of Smoke Movement [J] Fire Safety Journal,1998,30:161-178.
    [123]王福军.计算流体力学分析——CFD软件原理与应用。北京:清华大学出版社,2004.
    [124]H.K Versteeg, W. Malalasekere, An Introduction to Computational Fluid Dynamics: Thte Finite Volume Method. Wiley, New York,1995.
    [125]Kevin Mc Grattan, Jason Floyd, Glenn Forney. Development of combustion and radiation models for large scale fire simulation, Proceedings of the third Technical Symposium on Computer Applications in Fire Protection Engineering,2001,9:12-13.
    [126]W. K. Chow. Application of the Software Fire Dynamics Simulator in Simulating Retail Shop Fire, Fire Safety Science,2004,13 (1):18-29.
    [127]J.E.Floyd, H.R. Baum, K.B. Mc Grattan. A Mixture Fraction Combustion Model for Fire Simulation Using CFD, Proceedings of the International Conference on Engineered Fire Protection Design,2001,7:11-15.
    [128]Robert L. Vettori, Daniel Madrzykowski, William D.W. Walton. Simulation of the Dynamics of Fire in a one-Story Restaurant-Texas, NIST,2004-2-14.
    [129]C. Huggett. Estimation of Tate of Heat Release by Means of Oxygen Consumption Measurements. Fire and Materials.4(2):61-65,1980.
    [130]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1994.
    [131]刘军,刘敏,智会强,陆世昌.FDS火灾模拟基本理论探析与应用技巧.安全科学 技术,2006(1):6-13.
    [132]Bilger R. W. Computation field models in fire research and engineering [J].Fire Safety Science,1995,13:95-110
    [133]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建筑工业出版社,2004.
    [134]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001,23-44
    [135]关军.通风空调系统管网聚集物的燃烧特性及系统火灾预测研究[D],湖南大学博士学位论文,2008.
    [136]刘军,刘敏,智会强等.FDS火灾模拟基本理论探析与应用技巧[J].安全,2006,27(1):6-9
    [137]G. Heskestad. Rise of Plume front from starting fires. Fire Safety Journal,2000, 36(3):201-204.
    [138]Nelson, H.E., MaeLennan, H.A. Emergency Movement, in the SFPE hand book of Fire Proteetion Engineering.Quiney:National Fire Protection Assoeiation,1988,106-115
    [139]刘倩,李念平,龙娟等.通风空调管道中聚积物燃烧时温度场分布的实验研究.中国粉体技术,2007,13(6):5-8
    [140]龙娟.风管内聚集物燃烧的数值模拟研究[D].湖南大学硕士学位论文,长沙:湖南大学,2007,12-30
    [141]范维澄,孙金华,陆守香等.火灾风险评估方法学[M].北京:科学出版社,2004.
    [142]Ewing, C.T., Hughes, JT. And Carhart HW., The extinction of hydroearbon flames based on the heat absorption proeess which occurred in them [J], Fire and materials, 1984,148-156.
    [143]Ewing, C.T., Faith, F.R., Hughes, JT, And Carhart HW., Evidence for flame extinguishment by thermal mechanism [J], Fire technology,1989,195-212.
    [144]Beyler C, A unified model of fire suppression[J], Journal of fire Protection Eng., 1992,5-16.
    [145]S. Sardqvist and G. Holmstedt, Water for manual fire suppression [J], Journal of fire Protection Eng.,2001,11:209-213.
    [146]P. Andersson and Holmstedt, Limitation of water mist as a total flooding agent [J], Journal offire Protection Eng.,1999,9(4):31-50.
    [147]Bjame P.H., Goran, H., Tommy, h., The physics behind water mist systems[C], proe. IWMAconference,2004,10:6-8, Rome, Italy,1-15.
    [148]王信群.高压细水雾抑制特珠受限空间火灾有效性模拟实验研究[D],中国科学技术大学博士学位论文,2007.
    [149]Heskestad G, Bill R G. Quantification of thermal responsiveness of automatic sprinkers including conduction effects. Fire Safety Journal.1988,14:113-125.
    [150]Cooper LY. Simulation the opening of fusible-link-actuated fire vents. Fire Safety Journal.2000,34:219-255
    [151]Ruffino P, diMarzo M.The simulation of fire sprinklers thermal response in presence of water droplets. Fire Safety Journal.2004,39:721-736.
    [152]Nam S. Development of a computational model simulating the interaction between a fire Plume and a sprinkler spray. Fire Safety Journal.1996,26:1-33
    [153]Yu H Z. Investigation of spray patterns of selected sprinklers with the FMRC drop size measuring system. Fire Safety Science. Proceedings of the First International Symposium, Gaithersburg, MD,1985:1165-1176.
    [154]Cooper L Y. The interaction of an isolated sprinkler spray and a two-layer compartment fire environment.HeatMassTransfer.1995,38(4):679-690
    [155]Novozhilov V, Harvie D J E, Kent H, A computational fluid dynamics study of wood fire extinguishment by water sprinkler.Fire Safety Journal.1997,29:259-282
    [156]连之伟主编.热质交换原理与设备[M].北京:中国建筑工业出版社,2001:27-30
    [157]刘国杰,黑恩成.Clausius-Clapeyron方程的统计热力学修正.大学化学.2004,19(5):46-50.
    [158]蒋克伦.自动喷水灭火系统及其水力计算研究[D].西安建筑科技大学硕士论文.2004:16-22.
    [159]Ravigururajan T, Beltran M.A model for attenuation of fire radiation through water droplets. Fire Safety Journal.1989,15:171-181.
    [160]Tuntomo A, Tien C, Park S. Optical constants of liquid hydrocarbon fuels Combustion Science and Technology.1992,84:133-140.
    [161]阮立明,谈和平,等.空间辐射散热器含液滴介质的辐射特性和辐射传热[J].宇航学报.1999,20(4):32-38.
    [162]Yu H Z, Lee L, Kung H C. Suppression of rack-storage fires by water. Fire Safety Science-Proceedings of the First International Symposium, Gaithersburg, MD20899,1994: 901-912.
    [163]Hamins A, Mc Grattan K B. Reduced-scale experiments to characterize the suppression of rack storage commodity fires. NISTIR 6439, National Institute of Standards and Technology, Gaithersburg, MD20899,1999:1-34.
    [164]Hamins A, Mc Grattan K B. Reduced-scale experiments on the Water suppression of rack-storage commodity fire for calibration of a CFD fire model. Fire Safety Science-Proceedings of the Seventh International Symposium, Gaithersburg, MD20899, 2002:457-468.
    [165]黄晓家,姜文源编.自动喷水灭火系统设计手册[M].北京:中国建筑工业出版 社.2002:1-3,16-24,68-90,173-174.
    [166]丛北华,毛涛,等.含氯化钠添加剂细水雾与油池火的相互作用[J].高等学校工程热物理研究会第十届全国学术会议,2003,677-685.
    [167]Gregory Linteris, Marc Rumminger etc. Effective Non-ToxicMetallic Fire Suppressants, Final Report, NIST,2002.2.
    [168]Michelle D. King, Evaporation of a small water droplet containing an additive, Proceedings of the ASME National Heat Transfer Conference,1997,8.
    [169]刘江虹,廖光煊,等.细水雾灭火技术研究与发展[J].科学通报,2003,4,48(8).
    [170]Andrew K. Kim, Improvement of Water Mist Performance with Foam Additives. Fire Risk Management Program Institute in Construction NRCC,2001.
    [171]程远平,李增华.消防工程学[M].北京:中国矿业大学出版社,2001.
    [172]李晓丽,程远平,魏东.细水雾灭火添加剂的研究现状与性能分析[J], 消防技术与产品信息,2006,9:7-9.
    [173]Mawhinney, J.R. Water Mist Fire Suppression Systems for Marine Applications:A Case Study. Institute of Marine Engineers IMAS94, England,1994.
    [174]Takahashi, S. Extinguishment of Plastic Fires with Plain Water and Wet Water Fire Safety Journal,1994,22:169-179.
    [175]Finnerty, A.E. water-Based Fire-Extinguishing Agents. Proceedings of Halon Option Technical Working Conference, Albuquerque, NM,1995,461-471.
    [176]Moore, T.A., Weitz, C., McCormick, S. and Clauson, M. Laboratory Optimization and Medium Seale Screening of Iodide Salts and Water Mixtures. Proceedings of Halon Option Technical Working Conference, Albuquerque, NM,1996,477-498.
    [177]Shilling, H., Dlugogorski B.Z. and Kennedy, E. M. Extinction of Diffusion Flames by Ultrafine Water Mist Doped with Metal Chlorides. Heat and Mass Transfer Australasia, 1998,275-282.
    [178]Edwdars, M., Watkins, S., and Glockling, J. Low Pressure Water Mist, Fine Water Spray, Water Source and Additives:Evaluation for the Royal Navy. Proceedings of the 8th International Fire Science and Engineering Conference, Interflam'99, Edinburgh, Scotland, 1999, (1):639-650.
    [179]Kim, A. K. Fire suppression Performance of Water mist systems with Additives. Proceedings of Safety science and Technology international Symposium, Beijing, China, 2000,561-566.
    [180]Linteris, G.T., Ruminger, M. and Babushok, V. Final Report:Effective Non-Toxic Metallic Fire Suppressants, National Institute of Standards and Technology, NISTIR 6875,2002.
    [181]廖光煊,朱伟,周晓猛,丛北华,王喜世,刘江虹,秦俊.多组分细水雾与洁净混合气体灭火技术研究进展,International Conference of Total Fire Safety Concept, Hong Kong,2004.
    [182]Yu Shuijun, Yu Minggao, Duan Yulong, et al. Study on in fluence of compound chemical additives of water mist on fire extinguishment validity [C]//Progress in Mining Science and Safety Technology. Beijing:Science Press,2007:1662-1666.
    [183]Back G G, Beyler C L, Hansen R. The capabilities and limitations of total flooding water mist fire suppression systems in machinery space applications [J]. Fire Technology, 2000,36:8-23.
    [184]陈桢.含NaCl添加剂细水雾灭火的实验研究[D],西安科技大学硕士学位论文,2007.
    [185]国家环境保护总局.GB18483-2001.餐饮业油烟排放标准(试行),中国环境科学出版社,2001-6-1.
    [186]赵长秋,金吉彪.厨房排烟系统的设计[J], 中国环保产业2009.1.
    [187]房玉东,张永丰,林霖.细水雾与K类火的相互作用[J],科学通报,2006,51(15):1837-1841
    [188]Liu Z G, Andrew K, Don C, et al. Extinguishment of cooking oil fires by water mist fire suppression systems. Fire Technology,2004,40:309-333
    [189]中华人民共和国公安部.GB50219-95.水喷雾灭火系统设计规范.中国计划出版社,1995-8-1.
    [190]张晓晶;气泡雾化细水雾灭火系统的实验研究及数值模拟[D],河北工业大学,2007.
    [191]高志石编译.最新水消防技术—中压单流体水雾系统介绍[J].消防技术与信息,2002,12:13-21.
    [192]刘江虹,廖光煊,厉培德等.细水雾灭火技术研究与进展[J].科学通报,2003,48(8):761-767
    [193]聂俊岚,王景芹.基于层次分析法确立低压成套开关设备可靠性指标体系[J].低压电器,2005,7:10-13.
    [194]王宇.自动喷水灭火系统可靠性评价[J],安全,2010,1:7-9.
    [195]杨惠敏,付萍.基于熵权的多级模糊综合评价的应用[J].华北电力大学学报2005,32(5):104-107.
    [196]郑贤斌,陈国明.基于烟技术的石化企业安全模糊综台评价方法研究[J].中国安全科学学报2004,14(2):109-112.
    [197]胥朝阳.灰关联法在企业并购风险度量中的应用[J].中国计量学院学报,2004,15(3):223-226.
    [198]罗娟,陈守余.矿山环境质量评价指标体系及层次分析法评价[J].安全与环境工程,2005,12(1):9-12.
    [199]熊德国,鲜学福.模糊综合评价方法的改进[J].重庆大学学报,2003,26(6):93-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700