白洋淀地区非均匀边界层结构的观测实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均匀下垫面通常主要指地表非均匀,包括热力非均匀和动力非均匀,由于实际地表总是呈现出一定程度的非均匀性和复杂性,所以对于非均匀边界层的研究已经成为当今大气边界层研究领域的热点问题。本文利用由LAPC承担的国家自然科学基金重点项目“地表通量参数化与大气边界层过程的基础研究”(编号40233030)的野外实验所获得的小球探空资料,对白洋淀地区水、陆非均匀下垫面的边界层结构进行分析,得到的主要结论如下:
     1、观测期间两地的边界层具有大气边界层的基本特点,即两地的风、温、湿廓线都具有白天对流混合层和夜间稳定边界层的典型廓线的分布特点。白天岛上的边界层高度比陆地上的高,岛上白天可达2000 m,陆地可达1800 m,而且两地的边界层顶经常可以看到覆盖逆温。夜间由于辐射冷却,两地都有逆温、逆湿出现,而且许多情况下伴随逆温有低空急流的出现,急流的发展与逆温的生、消演变关系密切。
     2、两地都是夜间风速比白天大,但是无论昼、夜,岛上的风速比陆地上的要大,而且夜间两地风速差别更大,越靠近地面这种差别也越明显。观测期间,陆上盛行风为偏西南风,1600 m以上转为偏北风,岛上盛行风向为西北偏北风,1400 m以上转为偏南风。两地存在弱的局地环流,而且以南北方向的环流为主。
     3、岛上地面及其上空的温度都比对应陆地上的温度要高,其地面温度平均比陆地要约高2.5℃,1000 m以下日平均温度比陆地约高3.14℃,而且夜间比白天两地的温度差别大,观测高度内随高度增加这种差别也变大。
     4、陆上的比湿比岛上的要大的多,其1000 m以下日平均比岛上大约2.35 g?kg-1,而且白天比夜间两地的比湿差别大,越靠近地面差别也越大,到高空超过2000 m就差别很小了。岛上比湿日变化比陆地上的要大,而且其夜间比湿比白天的大,而陆地上则是白天的比夜间的要大。
     5、由于下垫面的不同,两地的逆温表现出不同的特征。总的说来,陆地上接地逆温出现多,300 m以下的逆温平均强度大,逆温发展中的爆发性特征比较明显;而岛上则悬浮逆温出现多,300 m以下的逆温平均厚度大。不过两地的多层逆温都出现频繁,而且300 m以下的逆温强度和逆温顶高都有一定的负相关性,伴随着逆温也经常都有逆湿出现等。
Heterogeneous underlying surface, which generally means the inhomogeneities over the surfaces, includes mainly thermal and dynamic heterogeneities. Since real underlying surface is always heterogeneous and complex to some extent, the research about it has become the hot topic in the field of current Atmospheric Boundary Layer (ABL) research. The data, which obtained from the radiosondes carried by free balloon in the Baiyangdian Experiment, is used to analyse the structures of ABL over the land and the water surfaces. And some conclusions are drawn as follows:
     1. During the experiment, the ABL over the two surfaces both show the general characteristics of ABL. That is to say, profiles of wind, temperature and specific humidity all present the typical distribution formation as theirs both in Convective Boundary Layer (CBL) and in Nocturnal Boundary Layer (NBL). In daytime, the ABL over the water surface is deeper than that over the land. For the former, its height is about 2000 m, while for the latter, it is about 1800 m. At the same time, there are both capped inversions at the top of ABL over the two places. In nighttime, because of radiative cooling, inversions together with humidity inversions always appear. Besides, Low-Level Jet (LLJ), whose development is related close with the evolution process of inversion, also emerges sometimes in two places.
     2. Wind always gets stronger from day to night, while it blows faster over the water than over the land whenever, and the wind velocity difference between the two places is greater when it comes near to the surface or in night. During the experiment, the prevailing wind over the land is southwesterly, and it changes into northerly wind over 1600 m. While, over the water surface, it is northwest by north and changes into southerly wind over 1400 m. In addition, there exists a local circulation, but it is much weak and is mostly in north-south direction.
     3. Surface water temperature and the air temperature over the water surface are both higher than theirs of the land. The average surface water temperature is about 2.5℃ higher than that of the land surface, and the daily average temperature below 1000 m over the water surface is about 3.14℃higher than over the land. Furthermore, the temperature difference between the two places is greater in night than in day, and it also gets greater with the height within the observed height.
     4. Specific humidity over the land is larger than over the water, which daily average specific humidity below 1000 m of the former is about 2.35 g?kg-1 larger than the latter. Also the specific humidity difference between the two places is greater in day than in night or when it comes near to the surface, and it is very small when it gets the height about 2000 m. In addition, the diurnal variation of specific humidity over the water is greater than that over the land, and the specific humidity over the water is larger in night than in day, while for the land, on the contrary, it is larger in day than in night.
     5. Owing to different underlying surface, the inversions over the two places present different characteristics. In a word, over the land surface, surface inversions appear more frequently, and average intensity of inversions below 300 m is greater, and the characteristic of burst of inversions is more obvious. On the other hand, over the water surface, elevated inversions emerge more times, and average thickness of inversions below 300 m is larger. Meanwhile, for the two places, many-layer inversions both appear frequently, and there is both some a negative correlation between inversion intensity and its top height below 300 m, and humidity inversions also often happen together with the inversions.
引文
[1] Roland B. S. 边界层气象学导论. 北京: 气象出版社, 1991.
    [2] Sorbjan Z. Structure of the Atmospheric Boundary Layer. Prentice Hall Englewood Cliffs, NJ, 1989.
    [3] 刘罡, 蒋维楣, 罗云峰. 非均匀下垫面边界层研究现状与展望. 地球科学进展. 2005, 20(2): 223-230.
    [4] 蒋维楣, 徐玉貌, 于洪彬. 边界层气象学基础. 南京: 南京大学出版社, 1994.
    [5] 张强. 大气边界层气象学研究综述. 干旱气象. 2003, 21(3): 74-78.
    [6] 胡隐樵. 边界层气象学. 地球科学进展. 1991, 6(6): 57-59.
    [7] 胡非, 洪钟祥, 雷孝恩. 大气边界层和大气环境研究进展. 大气科学. 2003, 27(4): 712-728.
    [8] Ekman V. W. On the influence of the earth's rotation on ocean-currents. Almqvist & Wiksells, 1905.
    [9] Monin A. S., Obukhov A. M. Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geofiz. Inst. 1954, 24(15): 163–187.
    [10] Businger J. A., Wyngaard J. C., Izumi Y., Bradley E. F. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences. 1971, 28(2): 181-189.
    [11] Dyer A. J., Bradley E. F. An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Meteorology. 1982, 22(1): 3-19.
    [12] Deardorff J. W. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. Journal of the Atmospheric Sciences. 1970, 27(8): 1211-1213.
    [13] Sorbjan Z. On similarity in the atmospheric boundary layer. Boundary-Layer Meteorology. 1986, 34(4): 377-397.
    [14] Wyngaard J. C., Coté O. R., Izumi Y. Local free convection, similarity, and the budgets of shear stress and heat flux. Journal of the Atmospheric Sciences. 1971, 28(7): 1171-1182.
    [15] Wyngaard J. C. On surface-layer turbulence. Workshop on Micrometeorology. 1973: 101–149.
    [16] Nieuwstadt F. T. M. The turbulent structure of the stable, nocturnal boundary layer. Journal of the Atmospheric Sciences. 1984, 41(14): 2202-2216.
    [17] Sorbjan Z. An examination of local similarity theory in the stably stratified boundary layer. Boundary-Layer Meteorology. 1987, 38(1): 63-71.
    [18] Sorbjan Z. Local similarity in the convective boundary layer (CBL). Boundary-Layer Meteorology. 1988, 45(3): 237-250.
    [19] Tennekes H. Similarity laws and scale relations in planetary boundary layers. Workshop on Micrometeorology. 1973: 177–216.
    [20] Yamada T. On the Similarity Functions A, B and C of the Planetary Boundary Layer. Journal of the Atmospheric Sciences. 1976, 33(5): 781-793.
    [21] Shao Y., Hacker J. M. Local similarity relationships in a horizontally inhomogeneous boundary layer. Boundary-Layer Meteorology. 1990, 52(1): 17-40.
    [22] 胡隐樵, 张强. 论大气边界层的局地相似性. 大气科学. 1993, 17(1): 10-20.
    [23] 胡隐樵, 张强. 大气边界层相似性理论及其应用. 地球科学进展. 1996, 11(6): 550-554.
    [24] 张强, 胡隐樵. 河西地区非均匀下垫面的大气变性过程. 高原气象. 1996, 15(3): 282-292.
    [25] 胡非. 湍流, 间歇性与大气边界层. 科学出版社, 1995.
    [26] Taylor G. I. Eddy motion in the atmosphere. Monthly Weather Review. 1915, 43(7): 315-316.
    [27] 胡非. 大气边界层的一些空气动力学特征. 力学进展. 1990, 20(3): 328-340.
    [28] 张强, 胡隐樵. 大气边界层物理学的研究进展和面临的科学问题. 地球科学进展. 2001, 16(4): 526-532.
    [29] Lorenz E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963, 20(2): 130-141.
    [30] Ruelle D., Takens F. On the nature of turbulence. Communications in Mathematical Physics. 1971, 20(3): 167-192.
    [31] 周培源. 关于 Reynolds 求似应力方法的推广和湍流的性质. 中国物理学报. 1940, (4): 1-33.
    [32] 周秀骥. 湍流的分子动力学理论. 大气科学. 1977, (4): 300-305.
    [33] 周明煜. 大气边界层中湍流场的团块结构. 中国科学. 1981, (5): 614-622.
    [34] Songnian Z. Synchro-cascade pattern in the atmospheric turbulence. J. Geophys. Res. 2003, 108(D8): 4238-4246.
    [35] 李喜先. 21 世纪 100 个交叉科学难题. 科学出版社, 2005.
    [36] 陶诗言, 国家自然科学基金委员会. 现代大气科学前沿与展望. 北京, 1996.
    [37] Sutton O. G. Micrometeorology: A Study of Physical Processes in the Lowest Layers of the Earth's Atmosphere. New York, McGraw-Hill, 1953.
    [38] Haugen D. A. Workshop on Micrometeorology. Boston, American Meteorological Society, 1973.
    [39] Panofsky H., Dutton J. A. Atmospheric Turbulence. SCR-118, Sandia Corp., Albuquerque, N. Mex., 1959.
    [40] Roland B. S. An Introduction to Boundary Layer Meteorology. Kluwer: Academic Publishers, 1988.
    [41] 赵鸣, 苗曼倩, 王彦昌. 边界层气象学教程. 北京: 气象出版社, 1991.
    [42] 徐静琦. 边界层气象学导论. 山东, 1991.
    [43] 周明煜, 张锡福, 李兴生. 大气边界层物理的研究进展. 大气科学. 1979, 3(3): 210-218.
    [44] 洪钟祥, 张锡福, 雷孝恩. 大气边界层物理的研究的新进展. 大气科学. 1988, 特刊:217-235.
    [45] 王式功, 董光荣, 陈惠忠, 尚可政. 世界沙尘暴研究进展. 中国沙漠. 2000, 20(4): 349-356.
    [46] 王式功, 袁九毅. 兰州地区大气环境研究的回顾展望. 兰州大学学报: 自然科学版. 1999, 35(3): 189-201.
    [47] 周淑贞, 束炯. 城市气候学. 北京, 气象出版社, 1994.
    [48] 孙天风, 崔尔杰. 近年来我国风工程研究的进展. 空气动力学学报. 1991, 9(2): 147-159.
    [49] Lettau H. The O'Neill experiment of 1953. Boundary-Layer Meteorology. 1990, 50(1): 1-9.
    [50] Kaimal J. C., Wyngaard J. C. The Kansas and Minnesota experiments. Boundary-Layer Meteorology. 1990, 50(1): 31-47.
    [51] Haugen D. A., Kaimal J. C., Bradley E. F. An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society. 1971, 97(412): 168-180.
    [52] Wyngaard J. C., Coté O. R. The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. Journal of the Atmospheric Sciences. 1971, 28(2): 190-201.
    [53] Caughey S. J., Wyngaard J. C., Kaimal J. C. Turbulence in the evolving stable boundary layer. Journal of the Atmospheric Sciences. 1979, 36(6): 1041-1052.
    [54] Wyngaard J. C. Modeling the planetary boundary layer—Extension to the stable case. Boundary-Layer Meteorology. 1975, 9(4): 441-460.
    [55] Brost R. A., Wyngaard J. C. A model study of the stably stratified planetary boundary layer. Journal of the Atmospheric Sciences. 1978, 35(8): 1427-1440.
    [56] Garratt J. R., Hicks B. B. Micrometeorological and PBL experiments in Australia. Boundary-Layer Meteorology. 1990, 50(1): 11-29.
    [57] Hess G. D., Hicks B. B., Yamada T. The impact of the Wangara experiment. Boundary-Layer Meteorology. 1981, 20(2): 135-174.
    [58] Manins P. C. The daytime planetary boundary layer: A new interpretation of Wangara data. Quarterly Journal of the Royal Meteorological Society. 1982, 108(457): 689-705.
    [59] Wyngaard J. C., Coté O. R. The evolution of a convective planetary boundary layer—A higher-order-closure model study. Boundary-Layer Meteorology. 1974, 7(3): 289-308.
    [60] Yamada T. Prediction of the Nocturnal Surface Inversion Height. Journal of Applied Meteorology. 1978, 18(4): 526-531.
    [61] Garratt J. R. Observations in the nocturnal boundary layer. Boundary-Layer Meteorology. 1982, 22(1): 21-48.
    [62] André J. C., Mahrt L. The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling. Journal of the Atmospheric Sciences. 1982, 39(4): 864-878.
    [63] Hicks B. B. Wind profile relationships from the 'Wangara' experiment. Quarterly Journal of the Royal Meteorological Society. 1976, 102(433): 535-551.
    [64] Brock F. V., Crawford K. C., Elliott R. L., Cuperus G. W., Stadler S. J., Johnson H. L., Eilts M. D. The Oklahoma Mesonet: A Technical Overview. Journal of Atmospheric and Oceanic Technology. 1995, 12(1): 5-19.
    [65] André J. C., Goutorbe J. P., Perrier A. HAPEX—MOBLIHY: A Hydrologic Atmospheric Experiment for the Study of Water Budget and Evaporation Flux at the Climatic Scale. Bulletin of the American Meteorological Society. 1986, 67(2): 138-144.
    [66] Andre J. C., Goutorbe J. P., Schmugge T., Perrier A. HAPEX-MOBILHY: Results from a large-scale field experiment. Remote sensing and large-scale global processes. 1989: 13-20.
    [67] Changnon S. A. METROMEX: a review and summary. American Meteorological Society, 1981.
    [68] Sellers P. J., Hall F. G., Asrar G., Strebel D. E., Murphy R. E. The First ISLSCP Field Experiment (FIFE). Bulletin of the American Meteorological Society. 1988, 69(1): 22-27.
    [69] Sellers P. J., Hall F. G. FIFE in 1992: Results, scientific gains, and future research directions. J. Geophys. Res. 1992, 97(19): 091–19.
    [70] 张宏升, 刘艳华. 大气边界层探测的意义与作用. 气象水文海洋仪器. 2002, (3): 20-23.
    [71] 胡隐樵, 程麟生. 黑河实验的一些研究成果. 高原气象. 1994, 13(3): 225-236.
    [72] 胡隐樵, 高由禧. 黑河实验 (HEIFE)—对干旱地区陆面过程的一些新认识. 气象学报. 1994, 52(3): 285-296.
    [73] 胡隐樵, 左洪超. 黑河实验 (HEIFE) 研究获重大成果. 中国科学院院刊. 1996, 11(6): 447-451.
    [74] 左洪超, 胡隐樵. 黑河地区绿洲和戈壁小气候特征的季节变化及其对比分析. 高原气象. 1994, 13(3): 246-256.
    [75] 王俊勤, 陈家宜. HEIFE 区边界层某些结构特征. 高原气象. 1994, 13(3): 299-306.
    [76] 张强, 胡隐樵. 黑河地区绿洲内农田微气象特征. 高原气象. 1992, 11(4): 361-370.
    [77] 陈红岩, 胡非. HUBEX 试验区近地面层的湍流输送. 气候与环境研究. 2001, 6(2): 221-227.
    [78] 胡国权, 丁一汇. HUBEX 试验期间不同地面的能量收支研究. 气候与环境研究. 2001,6(2): 228-233.
    [79] 刘红年, 刘罡, 蒋维楣, 左洪超. 关于非均匀下垫面大气边界层研究的讨论. 高原气象. 2004, 23(3): 412-416.
    [80] 胡非. 非均匀边界层研究的若干问题. 高原气象. 2004, 23(3): 414.
    [81] Mahrt L. Surface Heterogeneity and Vertical Structure of the Boundary Layer. Boundary-Layer Meteorology. 2000, 96(1): 33-62.
    [82] Shuttleworth W. J. Macrohydrology: the new challenge for process hydrology. Journal of Hydrology 1988, 100(1-3): 31-56.
    [83] André J. C., Bougeault P., Goutorbe J. P. Regional estimates of heat and evaporation fluxes over non-homogeneous terrain. Examples from the HAPEX-MOBILHY programme. Boundary-Layer Meteorology. 1990, 50(1): 77-108.
    [84] Friedrich K., Molders N. On the influence of surface heterogeneity on latent heat fluxes and stratus properties. Atmos. Res. 2000, 54(1): 59–85.
    [85] Strunin M. A., Hiyama T., Asanuma J., Ohata T. Aircraft observations of the development of thermal Internal boundary layers and scaling of the convective boundary layer over non-homogeneous land surfaces. Boundary-Layer Meteorology. 2004, 111(3): 491-522.
    [86] Hipps L. E., Swiatek E., Kustas W. P. Interactions between regional surface fluxes and the atmospheric boundary layer over a heterogeneous watershed. Water Resources Research. 1994, 30(5): 1387-1392.
    [87] Ven?l?inen A., Heikinheimo M., Tourula T. Latent Heat Flux from Small Sheltered Lakes. Boundary-Layer Meteorology. 1998, 86(3): 355-377.
    [88] Heikinheimo M., Kanga M., Tourula T., Venalainen A., Tattari S. Momentum and Heat Fluxes over Lakes Tamnaren and Raksjon Based on Measurements by the Bulk Aerodynamic and Eddy-correlation Methods. Agric. For. Meteorol. 1999, 98-99(1): 521-534.
    [89] 苏从先, 胡隐樵. 绿洲和湖泊的冷岛效应. 科学通报. 1987, 32(10): 756-758.
    [90] 苏从先, 胡隐樵, 张永丰. 河西地区绿洲的小气候特征和" 冷岛效应". 大气科学. 1987, 11(4): 390-396.
    [91] 左洪超, 吕世华, 胡隐樵, 马耀明. 非均匀下垫面边界层的观测和数值模拟研究 (Ⅱ): 逆湿现象的数值模拟研究. 高原气象. 2004, 23(2): 163-170.
    [92] 左洪超, 吕世华, 胡隐樵, 马耀明. 非均匀下垫面边界层的观测和数值模拟研究 (Ⅰ): 冷岛效应和逆湿现象的完整物理图像. 高原气象. 2004, 23(2): 155-162.
    [93] 胡隐樵, 王俊勤, 左洪超. 临近绿洲的沙漠上空近地面层内水汽输送特征. 高原气象. 1993, 12(2): 125-132.
    [94] 奥银焕, 吕世华, 陈世强, 张宇. 夏季金塔绿洲及邻近戈壁的冷湿舌及边界层特征分析. 高原气象. 2005, 24(4): 503-508.
    [95] 吕世华. 绿洲沙漠非均匀下垫面大气边界层观测和研究. 高原气象. 2004, 23(3): 416.
    [96] Wieringa J. Roughness-dependent geographical interpolation of surface wind speed averages. Quarterly Journal of the Royal Meteorological Society. 1986, 112(473): 867-889.
    [97] Mason P. J. The formation of areally-averaged roughness lengths. 1988.
    [98] 刘熙明. 非均匀边界层结构和湍流通量特征的研究. 北京, 中科院研究生院博士论文, 2006.
    [99] Mahrt L. The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-Layer Meteorology. 1996, 78(1): 87-119.
    [100] Garratt J. R. The internal boundary layer—A review. Boundary-Layer Meteorology. 1990, 50(1): 171-203.
    [101] Elliott W. P. The growth of the atmospheric internal boundary layer. Trans. Amer. Geophys. Union. 1958, 39(1048-1054.
    [102] Echols W. T., Wagner N. K. Surface roughness and internal boundary layer near a coastline. Journal of Applied Meteorology. 1972, 11(4): 658-662.
    [103] Shir C. C. A numerical computation of air flow over a sudden change of surface roughness. Journal of the Atmospheric Sciences. 1972, 29(2): 304-310.
    [104] Rao K. S., Wyngaard J. C., Coté O. R. The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness. Journal of the Atmospheric Sciences. 1974, 31(3): 738-746.
    [105] 胡非. 地面粗糙度分布跃变对边界层影响的数值研究. 南京气象学院学报. 1989, 12(4): 354-360.
    [106] 蔡旭晖. 非均匀地表通量与“印痕”分析. 高原气象. 2004, 23(3): 414.
    [107] Horst T. W. The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques. Boundary-Layer Meteorology. 1999, 90(2): 171-188.
    [108] Schmid H. P. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology. 2002, 113(1-4): 159-183.
    [109] Chen F., Yates D. N., Nagai H., LeMone M. A., Ikeda K., Grossman R. L. Land Surface Heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part I: Comparing Modeled Surface Flux Maps with Surface-Flux Tower and Aircraft Measurements. Journal of Hydrometeorology. 2003, 4(2): 196-218.
    [110] Yates D. N., Chen F., Nagai H. Land Surface Heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part II: Analysis of Spatial Heterogeneity and Its Scaling. Journal of Hydrometeorology. 2003, 4(2): 219-234.
    [111] Poulos G. S., Blumen W., Fritts D. C., Lundquist J. K., Sun J., Burns S. P., Nappo C., Banta R., Newsom R., Cuxart J. CASES-99: A comprehensive investigation of the stable nocturnalboundary layer. Bulletin of the American Meteorological Society. 2002, 83(4): 555-581.
    [112] Banta R. M., Newsom R. K., Lundquist J. K., Pichugina Y. L., Coulter R. L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorology. 2002, 105(2): 221-252.
    [113] Poulos G. S., Fritts D. C., Blumen W., Bach W. D. CASES-99 field experiment: An overview. Preprints, 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc. 2000: 618–621.
    [114] Sellers P., Hall F., Ranson K. J., Margolis H., Kelly B., Baldocchi D., den Hartog G., Cihlar J., Ryan M. G., Goodison B. The Boreal Ecosystem–Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year. Bulletin of the American Meteorological Society. 1995, 76(9): 1549-1577.
    [115] Desbraux G., Weill A. Mean turbulent properties of the stable boundary layer observed during COAST experiment. Proc. 3rd Symp. ISARS, Issy-les-Moulineaux. 1985: 195–222.
    [116] Andre J. C., D E L. A. U., Goutorbe J. P. Evaporation over land surfaces- First results from HAPEX-MOBILHY Special Observing Period. Annales Geophysicae. 1988, 6(5): 477-492.
    [117] Zhang R. 用微气象方法估算淮河流域能量平衡 (HUBEX/IOP 1998/99) 的统计分析和比较研究. 大气科学进展 (英文版). 2003, 20(2): 285-291.
    [118] 陈世强, 吕世华, 奥银焕, 张宇, 胡泽勇, 韦志刚. 夏季金塔绿洲与沙漠次级环流近地层风场的初步分析. 高原气象. 2005, 24(4): 534-539.
    [119] 胡泽勇, 吕世华, 高洪春, 周秀云. 夏季金塔绿洲及邻近沙漠地面风场, 气温和湿度场特性的对比分析. 高原气象. 2005, 24(4): 522-526.
    [120] 胡非, 洪钟祥, 陈家宜, 刘熙明. 白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析. 大气科学. 2006, 30(5): 883-893.
    [121] Fiedler F., Panofsky H. A. The geostrophic drag coefficient and the 'effective' roughness length. Quarterly Journal of the Royal Meteorological Society. 1972, 98(415): 213-220.
    [122] Arola A. Parameterization of Turbulent and Mesoscale Fluxes for Heterogeneous Surfaces. Journal of the Atmospheric Sciences. 1999, 56(4): 584-598.
    [123] Baldauf M., Fiedler F. A Parameterisation of the Effective Roughness Length over Inhomogeneous, Flat Terrain. Boundary-Layer Meteorology. 2003, 106(2): 189-216.
    [124] 胡非. 地形对边界层影响的有限元数值模式. 气象学报. 1990, 12(2): 129-138.
    [125] 苗曼倩, 季劲钧. 荒漠绿洲边界层结构的数值模拟. 大气科学. 1993, 17(1): 77-86.
    [126] 刘树华. 戈壁夜间大气边界层的数值模拟研究. 北京大学学报: 自然科学版. 1995, 31(1): 63-70.
    [127] 牛国跃, 洪钟祥. 沙漠绿洲非均匀分布引起的中尺度通量的数值模拟. 大气科学. 1997, 21(4): 385-395.
    [128] 张强. 绿洲与荒漠相互影响下大气边界层特征的模拟. 南京气象学院学报. 1998, 21(1): 104-113.
    [129] 安兴琴, 吕世华. 金塔绿洲大气边界层特征的数值模拟研究. 高原气象. 2004, 23(2): 200-207.
    [130] 吕世华, 罗斯琼. 沙漠-绿洲大气边界层结构的数值模拟. 高原气象. 2005, 24(4): 465-470.
    [131] 文莉娟, 吕世华, 张宇, 李锁锁. 夏季金塔绿洲风环流的数值模拟及结构分析. 高原气象. 2005, 24(4): 478-486.
    [132] 刘树华, 李洁. 城市及乡村大气边界层结构的数值模拟. 北京大学学报: 自然科学版. 2002, 38(1): 90-97.
    [133] 高丽, 张镭. 兰州东部地区冬季风场温度场模拟. 兰州大学学报: 自然科学版. 2002, 38(3): 120-126.
    [134] 姜金华, 彭新东. 复杂地形城市冬季大气污染的数值模拟研究. 高原气象. 2002, 21(1): 1-7.
    [135] 刘红年, 孙鉴泞, 魏鸣, 刘罡, 蒋维楣. 城市边界层研究若干问题. 高原气象. 2004, 23(3): 415.
    [136] 周明煜, 曲绍厚, 李玉英. 北京地区热岛和热岛环流特征. 环境科学. 1980, 1(5): 12-18.
    [137] 曲绍厚, 宋锡铭, 李玉英. 北京城区的气象效应. 地球物理学报. 1981, 24(2): 229-237.
    [138] 李倩, 刘辉志, 胡非, 洪钟祥. 大风天气下北京城市边界层阵风结构特征. 中国科学院研究生院学报. 2004, 21(1): 40-44.
    [139] 刘小红, 洪钟祥. 北京地区一次特大强风过程边界层结构的研究. 大气科学. 1996, 20(2): 223-228.
    [140] 卞林根, 程彦杰. 北京大气边界层中风和温度廓线的观测研究. 应用气象学报. 2002, 13(U01): 13-25.
    [141] 陆龙骅, 卞林根. 冬季北京城市近地层的气象特征. 应用气象学报. 2002, 13(U01): 34-42.
    [142] 桑建国, 刘万军. 冬季城市边界层风场和温度场结构分析. 气象学报. 1990, 48(4): 459-468.
    [143] 李玉英, 曲绍厚, 周明煜. 北京地区的流场分析. 环境科学学报. 1982, 2(4): 351-356.
    [144] 周淑贞. 上海城市气候中的" 五岛" 效应. 中国科学 (B 辑). 1988, (11): 1226-1234.
    [145] 周淑贞, 王行恒. 上海大气环境中的城市干岛和湿岛效应. 华东师范大学学报: 自然科学版. 1996, (4): 68-80.
    [1] 胡非, 洪钟祥, 陈家宜, 刘熙明. 白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析. 大气科学. 2006, 30(5): 883-893.
    [2] 刘熙明. 非均匀边界层结构和湍流通量特征的研究. 北京, 中科院研究生院博士论文, 2006.
    [3] 江东. 地球人的飞行梦 (上). 航空模型. 2003, (4): 21-25.
    [4] 江东. 地球人的飞行梦 (中). 航空模型. 2003, (5): 19-22.
    [5] 江东. 地球人的飞行梦 (下). 航空模型. 2003, (6): 12-16.
    [6] 林晔. 大气探测学教程. 北京, 气象出版社, 1993.
    [7] 张霭琛. 现代气象观测. 北京大学出版社, 2000.
    [8] 陈奕隆. 前苏联高空探测系统的历史发展和最新进展. 气象科技. 1994, (4): 58-61.
    [9] 马舒庆, 赵志强, 邢毅. VAISALA 探空技术及中国探空技术的发展. 气象科技. 2005, 33(5): 390-393.
    [10] 陶大文. 我国探空仪发展历程的回顾与前景展望. 气象水文海洋仪器. 1996, (3): 38-41.
    [11] 陶大文. 我国探空仪发展历程的回顾与前景展望. 气象水文海洋仪器. 1997, (2): 42-46.
    [12] 翟盘茂. 中国历史探空资料中的一些过失误差及偏差问题. 气象学报. 1997, 55(5): 563-572.
    [13] 陶大文. 我国探空仪发展历程的回顾与前景展望. 气象水文海洋仪器. 1996, (4): 28-31.
    [14] 陶大文. 我国探空仪发展历程的回顾与前景展望. 气象水文海洋仪器 1997, (1): 40-43.
    [15] 陶大文. 我国探空仪发展历程的回顾与前景展望 (续前). 气象水文海洋仪器. 1997, (3): 40-42.
    [16] 陶大文. 我国探空仪发展历程的回顾与前景展望 (续完). 气象水文海洋仪器. 1997, (4): 40-42.
    [17] 王启万, 卜晓钟. 浅谈气象仪器行业的 “十五” 发展. 气象水文海洋仪器. 2001, (4): 1-9.
    [18] Roland B. S. 边界层气象学导论. 北京: 气象出版社, 1991.
    [19] 王强, 杨志勇. 黑河实验中系留探空系统探测精度的分析. 高原气象. 1995, 14(3): 264-269.
    [20] Murrow H. N., Henry R. M. Self-induced balloon motions. Journal of Applied Meteorology. 1963, 4(1): 131-138.
    [21] Scoggins J. R. Aerodynamics of spherical balloon wind sensors. Journal of Geophysical Research. 1964, 69(4): 591-598.
    [22] Scoggins J. R. Spherical balloon wind sensor behavior. Journal of Applied Meteorology. 1965, 4(1): 139-145.
    [23] MacCready Jr P. B. Comparison of some balloon techniques. Journal of Applied Meteorology.1965, 4(4): 504-508.
    [24] McVehil G. E., Pilié R. J., Zigrossi G. A. Some measurements of balloon motions with Doppler Radar. Journal of Applied Meteorology. 1965, 4(1): 146-148.
    [25] Rogers R. R., Camnitz H. G. An additional note on erratic balloon motions. Journal of Applied Meteorology. 1966, 5(3): 370-373.
    [26] Wright J. B. Reynolds number effects on ascending spherical balloons. Journal of spacecraft and rockets. 1967, 4(3): 407-408.
    [27] Haugen D. A., Kaimal J. C., Readings C. J., Rayment R. A comparison of balloon-borne and tower-mounted instrumentation for probing the atmospheric boundary layer. Journal of Applied Meteorology. 1975, 14(4): 540-545.
    [28] 赵柏林,张爱琛 主编,大气探测原理,气象出版社,1987
    [29] 刘新建, 张宏升, 宋星灼, 康凌, 陈家宜, 李爱国, 胡非. 白洋淀湿地夏末大气边界层温湿廓线特征对比分析. 北京大学学报 (自然科学版). 2007, 43(1): 36-41.
    [1] 李兴生, 付秀华, 贡辉军. 大气边界层廓线的相似律预告. 应用气象学报. 1992, 3(S1): 43-53.
    [2] Monin A. S., Obukhov A. M. Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geofiz. Inst. 1954, 24(15): 163–187.
    [3] Panofsky H. A., Blackadar A. K., McVehil G. E. The diabatic wind profile. Quart. J. Roy. Meteorol. Soc. 1960, 86, 390–398.
    [4] Blackadar A. K. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. Journal of Geophysical Research. 1962, 67, 3095-3102.
    [5] Businger J. A., Wyngaard J. C., Izumi Y., Bradley E. F. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences. 1971, 28(2): 181-189.
    [6] Hicks B. B. Wind profile relationships from the 'Wangara' experiment. Quarterly Journal of the Royal Meteorological Society. 1976, 102(433): 535-551.
    [7] Lettau H. H. Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Boundary-Layer Meteorology. 1979, 17(4): 443-464.
    [8] Garratt J. R., Wyngaard J. C., Francey R. J. Winds in the atmospheric boundary layer-prediction and observation. Journal of the Atmospheric Sciences. 1982, 39(6): 1307-1316.
    [9] Thuillier R. H., Lappe U. O. Wind and temperature profile characteristics from observations on a 1400 ft tower. Journal of Applied Meteorology. 1964, 3(3): 299-306.
    [10] Paulson C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology. 1970, 9(6): 857-861.
    [11] Panofsky H. A., Petersen E. L. Wind profiles and change of terrain roughness at Riso. Quarterly Journal of the Royal Meteorological Society. 1972, 98(418): 845-854.
    [12] Carl D. M., Tarbell T. C., Panofsky H. A. Profiles of wind and temperature from towers over homogeneous terrain. Journal of the Atmospheric Sciences. 1973, 30(5): 788-794.
    [13] 赵德山. 非均匀地面近地层风速廓线的实验研究. 大气科学. 1980, 4(2): 176-185.
    [14] 蒋维楣, 徐玉貌, 于洪彬. 边界层气象学基础. 南京: 南京大学出版社, 1994.
    [15] Roland B. S. 边界层气象学导论. 北京: 气象出版社, 1991.
    [16] 李兴生, 叶卓佳, 刘林勤. 夜间低空急流的分析研究. 大气科学. 1981, 5(3): 310-317.
    [17] 张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究. 高原气象. 2004, 23(5): 587-597.
    [18] 奥银焕, 吕世华, 陈玉春. 河西地区不同下垫面边界层特征分析. 高原气象. 2004, 23(2): 215-219.
    [19] 朱平, 蒋瑞宾. 绿洲, 沙漠及戈壁边界层特征对比分析. 气象. 1996, 22(3): 48-50.
    [20] 王强, 朱平. 黑河地区夜间低空急流和冷世流特征分析. 高原气象. 1995, 14(3): 257-263.
    [21] Whiteman C. D., Bian X., Sutherland J. L. Wintertime surface wind patterns in the Colorado river valley. Journal of Applied Meteorology. 1999, 38(8): 1118-1130.
    [22] Segal M., Leuthold M., Arritt R. W., Anderson C., Shen J. Small lake daytime breezes: some observational and conceptual evaluations. Bull. Amer. Meteor. Soc. 1997, 78(6): 1135–1147.
    [23] 吕世华, 陈玉春, 陈世强, 朱伯承, 吕世华, 陈玉春, 陈世强, 朱伯承. 夏季河西地区绿洲—沙漠环境相互作用热力过程的初步分析. 高原气象. 2004, 23(2): 127-131.
    [24] 陈世强, 吕世华, 奥银焕, 张宇, 胡泽勇, 韦志刚. 夏季金塔绿洲与沙漠次级环流近地层风场的初步分析. 高原气象. 2005, 24(4): 534-539.
    [25] 左洪超, 胡隐樵. 黑河地区绿洲和戈壁小气候特征的季节变化及其对比分析. 高原气象. 1994, 13(3): 246-256.
    [26] 赵鸣, 苗曼倩, 王彦昌. 边界层气象学教程. 北京: 气象出版社, 1991.
    [27] Mitchell M. J., Arritt R. W., Labas K. A climatology of the warm season Great Plains low-level jet using wind profiler observations. Weather and Forecasting. 1968, 10(3): 576-591.
    [28] Bonner W. D. Climatology of the low level jet. Monthly Weather Review. 1968, 96(12):833-850.
    [29] 钱永甫, 王谦谦, 董一平. 索马里低空气流的数值模拟. 大气科学. 1987, 11(2): 176-184.
    [30] Jun Z., Henry W. The interface effect and the formation of a low-level jet along the east side of the Rocky Mountains. Advances in Atmospheric Sciences. 1987, 4(2): 175-184.
    [31] Blackadar A. K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc. 1957, 38(283–290.
    [32] Kraus H., Malcher J., Schaller E. A nocturnal low level jet during PUKK. Boundary-Layer Meteorology. 1985, 31(2): 187-195.
    [33] Brook R. R. The Koorin nocturnal low-level jet. Boundary-Layer Meteorology. 1985, 32(2): 133-154.
    [34] Mahrt L., Heald R. C., Lenschow D. H., Stankov B. B., Troen I. B. An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology. 1979, 17(2): 247-264.
    [35] 金维明, 王学永, 洪钟祥, 赵德山. 夜间逆温条件下超低空急流的间歇性特征. 大气科学. 1983, 7(3): 296-302.
    [1] 李兴生, 付秀华, 贡辉军. 大气边界层廓线的相似律预告. 应用气象学报. 1992, 3(S1): 43-53.
    [2] Monin A. S., Obukhov A. M. Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geofiz. Inst. 1954, 24(15): 163–187.
    [3] Carl D. M., Tarbell T. C., Panofsky H. A. Profiles of wind and temperature from towers over homogeneous terrain. Journal of the Atmospheric Sciences. 1973, 30(5): 788-794.
    [4] Thuillier R. H., Lappe U. O. Wind and temperature profile characteristics from observations on a 1400 ft tower. Journal of Applied Meteorology. 1964, 3(3): 299-306.
    [5] Elliott W. P. Daytime temperature profiles. Journal of the Atmospheric Sciences. 1966, 23(6): 678-681.
    [6] Businger J. A., Wyngaard J. C., Izumi Y., Bradley E. F. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences. 1971, 28(2): 181-189.
    [7] Lettau H. H. Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Boundary-Layer Meteorology. 1979, 17(4): 443-464.
    [8] Paulson C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology. 1970, 9(6): 857-861.
    [9] Poulos G. S., Blumen W., Fritts D. C., Lundquist J. K., Sun J., Burns S. P., Nappo C., Banta R., Newsom R., Cuxart J. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of the American Meteorological Society. 2002, 83(4): 555-581.
    [10] Mahrt L., Heald R. C., Lenschow D. H., Stankov B. B., Troen I. B. An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology. 1979, 17(2): 247-264.
    [11] Mahrt L. Nocturnal boundary-layer regimes. Boundary-Layer Meteorology. 1998, 88(2): 255-278.
    [12] Garratt J. R. Observations in the nocturnal boundary layer. Boundary-Layer Meteorology. 1982, 22(1): 21-48.
    [13] Nieuwstadt F. T. M. The turbulent structure of the stable, nocturnal boundary layer. Journal of the Atmospheric Sciences. 1984, 41(14): 2202-2216.
    [14] Mahrt L., Andre J. C., Heald R. C. On the Depth of the Nocturnal Boundary Layer. Journal of Applied Meteorology. 1982, 21(1): 90-92.
    [15] Banta R. M., Newsom R. K., Lundquist J. K., Pichugina Y. L., Coulter R. L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorology. 2002, 105(2): 221-252.
    [16] Mahrt L., Vickers D. Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorology. 2002, 105(2): 351-363.
    [17] Mahrt L. The early evening boundary layer transition. Quarterly Journal of the Royal Meteorological Society. 1981, 107(452): 329-343.
    [18] Acevedo O. C., Fitzjarrald D. R. The early evening surface-layer transition: temporal and spatial variability. Journal of the Atmospheric Sciences. 2001, 58(17): 2650-2667.
    [19] Segal M., Leuthold M., Arritt R. W., Anderson C., Shen J. Small lake daytime breezes: some observational and conceptual evaluations. Bull. Amer. Meteor. Soc. 1997, 78(6): 1135–1147.
    [20] Strunin M. A., Hiyama T., Asanuma J., Ohata T. Aircraft observations of the development of thermal Internal boundary layers and scaling of the convective boundary layer over non-homogeneous land surfaces. Boundary-Layer Meteorology. 2004, 111(3): 491-522.
    [21] Elliott W. P. The growth of the atmospheric internal boundary layer. Trans. Amer. Geophys. Union. 1958, 39, 1048-1054.
    [22] Echols W. T., Wagner N. K. Surface roughness and internal boundary layer near a coastline. Journal of Applied Meteorology. 1972, 11(4): 658-662.
    [23] Rao K. S., Wyngaard J. C., Coté O. R. The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness. Journal of the Atmospheric Sciences. 1974, 31(3): 738-746.
    [24] Shir C. C. A numerical computation of air flow over a sudden change of surface roughness. Journal of the Atmospheric Sciences. 1972, 29(2): 304-310.
    [25] Garratt J. R. The internal boundary layer—A review. Boundary-Layer Meteorology. 1990, 50(1): 171-203.
    [26] 苏从先, 胡隐樵. 绿洲和湖泊的冷岛效应. 科学通报. 1987, 32(10): 756-758.
    [27] 苏从先, 胡隐樵, 张永丰. 河西地区绿洲的小气候特征和" 冷岛效应". 大气科学. 1987, 11(4): 390-396.
    [28] 王俊勤, 陈家宜. HEIFE 区边界层某些结构特征. 高原气象. 1994, 13(3): 299-306.
    [29] 胡隐樵, 程麟生. 黑河实验的一些研究成果. 高原气象. 1994, 13(3): 225-236.
    [30] 奥银焕, 吕世华, 陈世强, 张宇. 夏季金塔绿洲及邻近戈壁的冷湿舌及边界层特征分析. 高原气象. 2005, 24(4): 503-508.
    [31] 胡泽勇, 吕世华, 高洪春, 周秀云. 夏季金塔绿洲及邻近沙漠地面风场, 气温和湿度场特性的对比分析. 高原气象. 2005, 24(4): 522-526.
    [32] 胡隐樵, 奇跃进. 河西戈壁 (化音) 小气候和热量平衡特征的初步分析. 高原气象. 1990, 9(2): 113-119.
    [33] 胡隐樵, 王俊勤, 左洪超. 临近绿洲的沙漠上空近地面层内水汽输送特征. 高原气象. 1993, 12(2): 125-132.
    [34] 左洪超, 吕世华, 胡隐樵, 马耀明. 非均匀下垫面边界层的观测和数值模拟研究 (Ⅰ): 冷岛效应和逆湿现象的完整物理图像. 高原气象. 2004, 23(2): 155-162.
    [35] 张强, 赵鸣. 绿洲附近荒漠大气逆湿的外观观测和数值模拟. 气象学报. 1999, 57(6): 729-740.
    [36] 左洪超, 吕世华, 胡隐樵, 马耀明. 非均匀下垫面边界层的观测和数值模拟研究 (Ⅱ): 逆湿现象的数值模拟研究. 高原气象. 2004, 23(2): 163-170.
    [37] 安兴琴, 吕世华. 金塔绿洲大气边界层特征的数值模拟研究. 高原气象. 2004, 23(2): 200-207.
    [38] 刘新建, 张宏升, 宋星灼, 康凌, 陈家宜, 李爱国, 胡非. 白洋淀湿地夏末大气边界层温湿廓线特征对比分析. 北京大学学报 (自然科学版). 2007, 43(1): 36-41.
    [39] 徐玉貌, 刘红年, 徐桂玉. 大气科学概论. 南京, 南京大学出版社, 2000.
    [40] Roland B. S. 边界层气象学导论. 北京: 气象出版社, 1991.
    [41] Sorbjan Z. Structure of the Atmospheric Boundary Layer. Prentice Hall Englewood Cliffs, NJ, 1989.
    [42] 蒋维楣, 徐玉貌, 于洪彬. 边界层气象学基础. 南京: 南京大学出版社, 1994.
    [43] Hosler C. R. Low-level inversion frequency in the contiguous United States. Monthly Weather Review. 1961, 89(9): 319-339.
    [44] Yamada T. Prediction of the nocturnal surface inversion height. Journal of Applied Meteorology. 1978, 18(4): 526-531.
    [45] Nieuwstadt F. T. M. A rate equation for the inversion height in a nocturnal boundary layer. Journal of Applied Meteorology. 1980, 19(12): 1445-1447.
    [46] 赵鸣, 王彦昌, 金皓. 一种预报逆温层高度的方法. 气象科学. 1987, (4): 24-30.
    [47] 蒋瑞宾, 张江印. 夜间逆温层高度的预报. 大气科学. 1988, 12(3): 329-332.
    [48] 肖同玉, 任红玉. 哈尔滨冬季逆温规律分析及预报. 东北农业大学学报. 2001, 32(2): 139-145.
    [49] Sharan M., McNider R. T., Gopalakrishnan S. G., Singh M. P. Bhopal gas leak: A numerical simulation of episodic dispersion. Atmospheric Environment. 1995, 29(16): 2061-2074.
    [50] 蒋瑞宾, 李郁竹. 逆温与空气污染. 气象. 1982, (1): 35-37.
    [51] 李郁竹, 刘畅, 蒋瑞宾. 北京冬季辐射逆温规律的初步研究. 气象. 1984, (2): 16-20.
    [52] 陈臻妹, 黄玉宝. 兰州的逆温特征,大气湍流扩散及污染气象论文集. 北京, 气象出版社, 1982.
    [53] 周立波, 刘宇, 邹捍. 北极地区楚克奇海域一次强逆温过程的分析. 气候与环境研究. 2003, 8(2): 188-195.
    [54] Liu Y., Key J. R., Schweiger A., Francis J. Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the Arctic, 1980–96. Journal of Climate. 2006, 19(19): 4902-4913.
    [55] 翟国庆. 边界层急流及与迹温层的关系. 杭州大学学报: 自然科学版. 1990, 17(2):229-236.
    [56] Zhong Z. A study of relationship between low-level jet and in-version over an agroforest system in East China Plain. Adv Atmos Sci. 2000, 17(2): 299.
    [57] 张艳, 闵锦忠, 王体健. 南京城区夏季低层逆温对人体舒适状况影响初探. 南京气象学院学报. 2002, 25(3): 413-419.
    [58] 李英华, 崔保山, 杨志峰. 白洋淀水文特征变化对湿地生态环境的影响. 自然资源学报. 2004, 19(1): 62-68.
    [59] 赵德山, 洪钟祥. 典型辐射逆温生消过程中的爆发性特征. 大气科学. 1981, 5(4): 409-415.
    [60] 吕乃平, 苏立荣, 谢葆良, 周明煜. 北京地区逆温层变化规律的初步研究. 环境科学. 1980, (2): 44-50.
    [61] 胡非, 洪钟祥, 陈家宜, 刘熙明. 白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析. 大气科学. 2006, 30(5): 883-893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700