江西中—南部加里东期花岗岩地质地球化学特征及其成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江西省中-南部是华南加里东期花岗岩的重要出露地段,历来为众多学者所关注。然而,长期以来,由于缺乏高质量的定年数据和高精度的地球化学分析数据,导致在花岗岩的分类、物质来源、形成时代及构造背景等方面存在明显分歧。针对上述问题,本研究选取了赣中-南地区付坊、乐安、龙回、上犹、宁冈等五个岩体进行研究。在野外系统地质调查的基础上,采用先进的测试技术和方法,对这些岩体的岩相学、同位素地质学、地球化学、地质年代学等进行了深入的研究,探讨了花岗岩及混合岩的成因、花岗岩与构造的关系,并结合前人研究成果,探讨了华南加里东期花岗岩的地质背景。
     定年数据表明,付坊岩体为一复式岩体,由付坊岩体与三峰山岩体组成。付坊岩体花岗闪长岩的结晶年龄443.9±3.5Ma,二长花岗岩结晶年龄443.1±4.6Ma;三峰山岩体二长花岗岩结晶年龄433.6±3.9Ma,晚于付坊岩体,与它侵入付坊岩体的地质特征是一致的。乐安岩体二长花岗岩三组锆石结晶年龄分别为401±3.8Ma、405.1±3.3Ma、403.9±2.9Ma,龙回岩体二组锆石结晶年龄分别为440.1±3.7Ma、441.3±3.3Ma,宁冈岩体锆石结晶年龄为433.8±2.2Ma。上犹复式岩体获得4组年龄,分别为440.0±4.7Ma、443.9±3.2Ma、419.2±3.3 Ma和408.2±4.7Ma。其中,细粒似斑状黑云母花岗岩(440.0±4.7 Ma)和中细粒似斑状黑云母二长花岗岩的年龄(443.9±3.2 Ma)属于复式岩体早阶段岩浆活动产物,中粒似斑状黑云母二长花岗岩(419.2±3.3 Ma)系同源不同岩相岩浆结晶的结果,而陡水岩体(408.2±4.7Ma)则是上犹复式岩体中晚期岩浆活动的产物。研究区加里东期花岗岩形成于400-444Ma之间,均位于加里东晚期时间段内。结合野外侵入关系,加里东期花岗岩具有多阶段成因特点。
     岩相学特征表明加里东期岗岩体中含富铝矿物白云母,角闪石仅少量出现于花岗闪长岩中;没有发现标志岩浆混合的斜长石环带及钾长石的环斑结构。野外也没有观察到岩浆混合作用标志的暗色包体,表明加里东期花岗岩没有发生岩浆混合作用。
     研究区内加里东期花岗岩体具有相似的地球化学组成,均具有较高的SiO2 (平均为71.31%)、K2O+Na2O(平均为7.37%)、Al2O3(平均为14.05%)及A/CNK比值(平均为1.11),较低的CaO(平均为1.65%)、P2O5(平均为0.13%)及铁镁质组分。微量元素以相对富集大离子元素Cs、Rb、Zi、Th、U和稀土元素La、Ce、Nd,相对亏损Ba、Sr、Nb、P、Ti为特征,具有较高的Rb/Sr[平均为1.54)和Rb/Nb(平均为13.76)比值。岩体轻稀土富集明显,具有较平坦的重稀土配分模式,表现为中等程度的Eu亏损(δEu平均为0.49)。花岗岩的(87Sr/86Sr)i值(0.70353~0.71937)与S型花岗岩的(87Sr/86Sr)i值范围相一致。但根据Nd同位素特征,本区花岗岩可划分为明显不同的两种类型:即具有较低的ENd(t)值(为-8.64~-13.32),较高的Nd模式年龄(1838~2252Ma)和具有较高的εNd(t)值(为-4.06~-7.00),较低的Nd模式年龄(1491~1735Ma)。其同位素地球化学特征反映了不同地区基底组成存在差异,乐安、龙回、上犹岩体具有较低(87Sr/86Sr)i及较低Nd模式年龄的花岗岩可能与其岩浆含有晚中元古代-新元古代含基性火山物质的地壳有关。
     岩相学、岩石地球化学、同位素地球化学均表明,研究区加里东期花岗岩均属S型花岗岩类,属于壳源型花岗岩范畴,来源于元古代地壳中砂质或泥砂质或泥质源区的部分熔融。其中陡水岩体可能是早期形成上犹岩浆残留的富石榴子石变质岩在后期上升减压条件下再次熔融,石榴子石不稳定而释放出更多的HREE所致。岩浆形成后还可能发生过斜长石、锆石、磷灰石、独居石、褐帘石等副矿物的结晶分离。
     研究区内武夷山一带混合岩化发育,分布于高角闪岩相变质地区。野外地质特征表明,混合岩起源于部分熔融,代表地壳重熔的初始阶段,其变形属熔融过程中的产生的同构造变形;可能是由于加里东期褶皱叠加使地壳加厚,其地壳厚度提供的热源足以产生高角闪岩相变质作用及深融作用而形成混合岩。但由于地壳厚度的不均一性或在地壳加厚时不均一,部分地段地壳厚度产生的温压条件不足以发生高角闪岩相变质作用,而没有形成混合岩化,使混合岩断续分布。
     加里东期花岗岩具有后造山花岗岩的岩石地球化学特征。地质特征上,岩体多沿大断裂分布,其展布方向与断裂延伸方向基本一致,岩体侵位多受断裂控制;褶皱造山与相关花岗岩在时间上常表现为褶皱造山在先,花岗岩浆形成在后的特点,形成于后造山背景下。
     研究表明,早古生代发育有卷入基底的叠加褶皱和强烈的基底变形及广泛的区域绿片岩相变质作用。但未发生明显的火山作用,没有相应的蛇绿岩套或蛇绿混杂岩;也没有超岩石圈断裂;早古生代沉积环境为浅海-半深海环境;加里东期花岗岩总体上属S型花岗岩类或壳源型花岗岩,呈面状分布,其岩相学、同位素组成、地球化学及年代学均没有陆缘造山带那种极性特点。研究结果表明,研究区加里东花岗岩可能形成于陆内造山环境,其形成很可能和发生在早古生代后期的构造-岩浆作用有关,和华夏地块与扬子地块之间以及华夏地块内部各裂解残块之间的拼贴作用有关。
Caledonian (Early Paleozoic) granitoids outcropped in the South central of Jiangxi province are one of important parts of granites in South China, which has attracted many geological workers'attentions. Due to the lack of accurate geochronological and geochemical data, the classification, petrogenesis and tectonic settings of granitic rocks are still controversy. In order to answer these questions, this study selected five representative plutons, including Fufang, Le'an, Longhui, Shangyou and Ninggang. Based on the investigation of the field geology and the advanced measurment methods, the thesis studied the petrology, isotopic geology, geochemistry and geochronology of five granitic plutons and discussed the genesis of the granites and migmatites, the relationship between the granites and the tectonics. Finally, combining with the previous works, the thesis suggested the new geological settings of the Caledonian granites in South China.
     The geochronological data showed that Fufang pluton is a complex pluton, composed of Fufang pluton and Sangfengshan pluton. The crystallization age of the Fufang granodiorite and Fufang monzogranite were 443.9±3.5Ma and 443.1±4.6Ma respectively, belong to the first-stage intrusions. The second-stage intrusion is Sanfengshan monzogranite with the age of 433±3.9Ma. These ages are consistent with field geological characteristics. Three zircon U-Pb ages obtained from Le'an monogranite were 401.1±3.8Ma,405.1±3.3Ma and 403.9±2.9Ma respectively. The ages of Longhui pluton were 401.1±3.7Ma and 441.3±3.3 Ma. Four zircon U-Pb ages of Shangyiu complex pluton were 440.1±4.7Ma,443.9±3.2Ma and 408.2±4.7Ma respectively. The fine-grained porphyritic biotite-granite (440.0±4.7 Ma) and the fine-medium grained porphyritic biotite-monzogranite (443.9±3.2 Ma) from the complex pluton were the products of early-stage magmatism. The medium-grained porphyritic biotite-monzogranite possibly crystallized from the different facies of the homologous source. Doushui pluton (408.2±4.7 Ma) formed by the later stage magmatic activity. The zircon U-Pb age of Ninggang pluton was 433.8±2.2Ma. Above mentioned data showed that all studied granites formed from 444 Ma to 400 Ma, belong to the late Caledonian period. Combining with the field investigation, we considered that Caledonian granites have the characteristics of multi-stage intrusions.
     The petrology of the Caledonian granites showed that they contained abundant muscovite and a few hornblende only occurred in granodiorites. The zoned plagioclase and rapakivi K-feldspar phenocryst typically in magma mixing phenomena is absent.The micrograined enclaves are not found in Caledonian granites. It is suggested that the magma mixing did not occur in Caledonian granites.
     Caledonian granites studied here have similar geochemical compositions, high contents of SiO2, K2O+Na2O, Al2O3, A/CNK value with the average of 71.31%,7.37%,14.05% and 1.11, respectively, and low content of CaO, P2O5 as well as mafic components. They enriched in large ion trace elements such as Cs, Rb, Th, Zr, U and rare earth elements in La, Ce, Nd, depleted relatively in Ba, Sr, Nb, P, Ti and had higher Rb/Sr ratio (the average of 1.54) and Rb/Nb ratio (the average of 13.76). These granites have significant LREE enrichment with relatively flat HREE patterns and moderate depletion in Eu (the average 8Eu of 0.49).The values of (87Sr/86Sr) i of granites changed from 0.70353 to 0.71937, in agreement with that of S-type granites. According to Nd isotopes, these granites were divided into two types, one type with the lowerεNd(t) value(-13.32~-8.64) and higher Nd model ages(2252~1838Ma) and the other with higherεNd(t) value(-7.00~-4.06) and lower Nd model ages(1735~1491 Ma). Their isotopic geochemistry reflected the different composition of the distinctive basements. Granites from Le'an, Longhui and Shangyiu pluton with the characteristics of higherεNd(t) value and lower Nd model ages possibly indicated that their source was related to the Mid-to Neo-proterozoic basement containing the basic volcanic rocks.
     The petrology, geochemistry isotopic geology of the Caledonian granites showed that they could be classified into S-type granite or crust-derived granites. They were originated from partial melting of meta-greywacke, meta-greywacke-pelite or meta-pelite in low mature Proterozoic crust. Doushui pluton was possibly originated from remelting of garnet-rich metamorphic rocks residue after the formation of Shangyou pluton at the early stage, because unstable garnet released more HREEs in the condition of decompression. Moreover, the fractionation of plagioclase and accessory minerals such as zircon, apatite, monazite and allanite occured. Fufang pluton was originated from partial melting of the meta-greywacke.
     Migmatites well developed in Wuyi Mountain and distributed in HP amphibolite facies region. The field geological characteristics suggested that migmatites formed by partial melting and represented the initial stage of crustal remelting with the syn-tectonic deformations during partial melting. The superimposed fold leaded the crust to be thicken, so the heat supplied by the thick crust is hot enough to form HP amphibolite facies metamorphism, deeply re-melting and finally form the migmatites. However because of dissimilar thickness of the crust or crust thickening in different degrees, HP amphibolite facies in some areas have not been happened to produce the migmatites. Also this is the reason that leaded the discontinuous distribution of the migmatites.
     Caledonian granites have similar geochemical characteristics of post-orogenic granite. Tectonically, the rocks distributed along large fault belt, which suggested that the intrusions were controlled by the fault. Temporally, Caledonian granitic magmatism formed after the fold-orogenesis and in the post-orogenic tectonic settings.
     It is showed that during Early Paleozoic the superimposed fold developed with the basement involved, the strong deformation of the basement and broad regional greenschist phase metamorphism also happened. There were absent of obvious volcanism, ophiolite suites and immingling ophiolite rocks or super lithosphere fault in studied area have not been found. The sedimentary environments of Early Paleozoic stratum are shallow to half-deep sea. As a whole, the Caledonian granites in this area were classified into S-type granite or crust-derived granite, dispersively distributing. The petrology, isotopic geology, geochemistry and geochronology are not same with that in the granites of the epicontinental orogenic belt. The Caledonian granites formed in the intracontinental orogenic setting, possibly related to the amalgamation and collision between Cathaysian block and the Yantze block, and the amalgamation amongst many Cathaysian remnant blocks.
引文
①江西省地质调查局区域地质调查大队.1:20万广昌幅区域地质调查报告.1977
    ②江西省地质矿产局岩石室.《南岭加里东期花岗岩研究报告》,手写稿. 1985.
    Alana M, Hinchey, Sharon D.2006. The S-Type Ladybird leucogranite suite of southeastern British Columbia: Geochemical and isotopic evidence for a genetic link with migmatite formation in the North American Basement gneisses of the Monashee complex. Carr. Lithos.90:223-248.
    Altherr R, Holl A. Hegner E et al.2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges(France) and northern Schwarzwald(Germany). Lithos,50:51-73.
    Andersen T.2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol.,192: 59-79Ashworth J R.1985. Migmatites. Blackie and Sons Limited,302pp.
    Ashworth J R.1985.Migmatites.Blackie and Sons Limited.302pp.
    Ballard J R, Palin J M, Williams I S, et al.2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology,29:383-386.
    Barbarin B.1996. Genesis of the two main type of peraluminous granitoid. Geology,24:295-521.
    Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments.Lithos.46,605-626.
    Barbey P, Brouand M, E-Fort P, et al.1996. Granite-migmatite genetic link:the example of the manaslu granite and Tibetan slab migmatites in central Nepol. Lithos.8:63-79.
    Bea F, Pereira M D, Stroh A.1994. Mineral/leucosome trace element partitioning in a peraluminous migmatitea laser ablation ICP-MS study. Chem. Geol.117:291-312.
    Black L P and Gulson B L.1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J. Aust. Geol. Geophys.3,227-232.
    Black P L, Kamo S L, Allen C M, et al.2003. TEMORA 1:a new zircon standard for Phanerozioc U-Pb geochronology. Chem Geol,200:155-170.
    Brown. G C, Thorpe R S, Webb P C.1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. Lond.141,413-426.
    Brown M. Averkin Y A, McLellan E L et al.1995. Melt segregation in miamatites. Journal of geophysical Research, B, Solid Earth and Plenets 100,15655-15679.
    Borodina N S, Fershtater G R.1988. Composition and nature of muscovite in granites. Interm Geol Rev, 30:375-381.
    Boynton W V.1984. Geochemistry of the rare earth elements. In:Henderson Red. Rare earth element geochemistry, Amsterdami Elservier,63-114.
    Chappell, B W, White, A J R, Wyborn, D.1987.The importance of residual source material (restites) in granite petrogenesis.Journal of Petrology 28:1111-1138.
    Chappell B W, White A J R.1992.Ⅰ- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh Earth Sci.,83:1-26.
    Chappell B W and White J R.2001. Two contrasting granite types:25 years later. Aust. J. Earth Sci.,48:489-499.
    Charvet J, Shu L S, Faure M, Choulet F, Wang B, Lu H F, Le Breton N.2010. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen. Journal of Asian Earth Sciences, 39:309-33
    Chen J F, Foland K A, Xing F, et al,.1991. Magmatism along the southeast margin of the Yangtze block:Precambrian collision of the Yangtze and Cathaysia blocks of china. Geology,19:815-818.
    Chen J F, Jahn B M.1998. Crustal evolution of southeastern China:evidence from Sr, Nd and Pb isotopic composition of granitoids and sedimentary rocks. Tectonophysics,284:101-133.
    Clarke D B.1981. Peraluminous granites. Can mineral,19:1-2.
    Collins W J.1996. Lachlan Fold Belt graniteids:products of three complonent mixing. Trans. Royal Soc. Edinburgh:Earth Sci.,87:171-181.
    Compston W, Williams I S, Kirschvink J L, Zhang Z, Ma G.1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society,149 (2):171-184.
    Condie K C.1982.Plate tectonics and crustal evolution.New York:Pergamon,1-310.
    Condie K C.1997. Plate Tectonics and Crustal Evolution. Oxford Pergamon Press,1-476.
    Connelly J N.2000. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chemical Geology,172:25-39.
    D'Lemos R S, Brown M, Strachan.1992. Granite magma generateon, ascent and emplacement within a transpiresional orogen,J. Geol. Soc. London,149:487-470.
    Dodson M H.1973. Closure temperature in colling geochronogical and petrological system. Contrib Mineral Petrol,40:259-274.
    Dostal J and Chatterjee AK.2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol.,63:207-216.
    England P C, Tomposon A B.1986. Some thermal and tectonic models for crustal melting in continental collision zones. In:Coward M P, Rice A C. (Eds.) Collision Tectonics. Geological Society, London, Special Publication,19:83-94.
    Falker K K, Klinkhammer G P Ungerer C A.1995. Inductively coupled plasma mass spectrometry. Ann R Earth Planet Sci,23:409-449.
    Farahat E S, Mohamed H A, Ahmed A F, Mahallawi M M El.2007.Origin of Ⅰ- and A-type granitoids from the Eastern Desert of Egypt:implications for crudtal growth in the northern Arabian-Nubian Shied Journal of African Sciences,49:43-58.
    Gilder S A, Gill J, Coer S, et al,.1996. Isoropic and paleonmagnetic constraints on the Mesozoic tectonic evolution of south China[J].J Geophys Res.,101:16137-16157.
    Glanzer AF, Bartley JM, Coleman DS, et al.2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today,14(4/5):4-11.
    Gobbing E J, Pitcher W S.1972.The coastal batholith of central Peru, J. Geol. Soc. Lond., Vol.128 pp421-460.
    Green T H.1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol.,120:347-359.
    Greentree M R, Li Z X, Li X H, et al,.2006. Late Mesoproterozonic to Earliest Neoproterozonic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodina. Precambrian Res, 151:79-130.
    Griffin W L, Wang X, Jackon S E, et al,.2002. Zircon chem.istry and magma genesis, SE, China:in-situ analysis of Hf isotopic, Pingtan and Tonglu igneous complexes. Lithos,61:237-269.
    Griffin W L, Belousova E A, Shee S R.2004. Crustal evolution in the northern Yilarn Craton:U-Pb and Hf-ispotope evidence from detrital zircons. Precam Res,131:231-282.
    Harrison T M, Armstrong R E, Naeser C W, et al.1979. Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, Bristish Columbia. Can JEarth Sci,16:400-410.
    Harrison T M, Duncan I, Mcdougall I.1985. Diffusion of 40Ar in biotite:temperature, pressure and compositional effects. Geochim Cosmoshim Acta,50:2461-2468.
    Harris N B W and Inger S.1992. Trace element modeling of pelite-derived granites. Contrib. Mineral. Petrol. 110:46-56.
    Healy B, collins W J, Richards S W.2004. A hybrid origin for Lanchlan S-type granites:the Murrumbidgee Batholith example. Lithos,78:197-216.
    Hong D W, Xie X L, Zhang J S.1998. Isotope geochemistry of granitoids in South China and their metallogeny. Resource Geology,48:251-263.
    Hutton D H W and Reavy R J.1992. Strike-slip tectonic and granite petrogenesis. Tectonics,11:969-967.
    Irber W.1999.The lantannide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf evolveing peralumious granites. Geochim. Cosmochim. Acta.,63:489-508.
    Irvine T N, Baragar W R A.1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci.,8:523-548.
    Jahn B M, Wu F Y, Capdevila R et al.2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountain in NE China. Lithos,59:171-198.
    Jackson SE, Pearson NJ, Griffin WL et al.2004. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ U-Pb zircon geochronology. Chem. Geol.,211:47-69-
    Johannes W.1988. What controls partial melting in migmatites? J. Metamorphic Geol.,6:451-465.
    Jung S, Hoernes S, Mezger K.2000. Geochronolgy and Petrogensis of Pan-African, syn-Tectonic, S-type and post-tectonic A-type granite (Namibia):products of melting of crustal sources, fractional crystallization and wall rock entraintment. Lithos.,50:259-287.
    Kampunzu A B, Tombale A R, Zhai M, Bagai Z, Majaule T, Modisi M P.2003. Major and trace element geochemistry of plutonic rocks from Trancistown, NE Bostwana: evidence for a Neoarchaean continental active margin in the Zimbwe craton. Lithos.11,431-460.
    Kemp A I S, Wormald R J, Whitehouse M J, et al,.2005.Hf isotopic in zircon reveal contrasting sources and crystallization historyies for alkaline to peralkaline granites of Temora, southeastern Australia. Geology, 33:207-220.
    King P L, White A J R, Chappell B W.1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia. J. Petrol,38:371-391.
    Kriegsman L M.2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos,56:75-96.
    Lapierre H, Jahn B. M, Charvet J, et al.1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with tectonic activity and in SE China. Tectonophysics,274:321-338.
    Leonid I, Solomovich.2007. Postcollisional magmatism in the South Tien Shan Variscan Orogenic Belt, Kyrgyzstan:Evidence for high-temperature and high-pressure collision. Journal of Asian Earth Sciences 30:142-153.
    Liegeois J P, Navez J, Hertogen, et al,.1998. Contrasting origin of post-collisional high-alkaline and Shoshonitic versus alkaline and peralkaline graniteids,the use of sliding mornalization. Lithos,A5:1-28.
    Li W X, Li X H, Li Z X.2005. Neoproteronic granitoids bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precam. Res,136:51-66.
    Li X H.1997. Timing of the Cathysia Block for mation:constraints from SHRIMP U-Pb zircon geochronology. Episodes,20(3):188-192.
    Li X H.1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Bolck:timing of the Neoproterozonic Jinning orogeny in SE China and implications for Rodinia. Precabrian Res,97:43-57.
    Li X H, Li Z X, Ge W et al.2003. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ac.825Ma? Precam. Res.,122:45-83.
    Li Z X, Zhang L H, Powell C M.1996. Postions of the East Asian cratons in the Noeproterozonic supercontinent Rodinia. Aust. J. Earth Sci.43:593-604.
    Li Z X, Li X H, Kinny P D et al.1999. The breakup of Rodinia:did it start with a mantle plume beneath South China? Earth Planet, Sci. Lett.,171-18.
    Li Z X, Li X H, Zhou H et al.2002. Grenvillian continental collision in South China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,30:163-166.
    Li Z X, Li X H, Kinny P D et al.2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precamb. Res.,122:85-109.
    Lopez de LUchi M G, Siegfried, Siegesmund et al.,2007. Geochemistry constraints on the petrogenesis of the Paleozoic granitoids of the Sierra de San Luis, Sierras Pampeanas, Argentina. Journal of South American Earth Sciences,24:138-166.
    Ludwing K R.1991. ISOPPOT:A ploting and regression program for radiogenic-isotope data. US Geological Survey open-file Report,39.
    Mao Jianren, Zeng Qingtao, Li Zilong et al.2008. Precise dating and geological significance of the Caledonian Shangyou pluton in South Jiangxi Province. Acta Geologica Sinica,82(2):399-408.
    Marcelo E, Almeida, Moacir J B et al,.2007. Geochemistry and zircon geochronology of the Ⅰ-type high -K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil:Orosirian collisional magmatism evidence (1.97-1.96Ga) in central central portion of Guyana Shield. Precambrian research 155,69-97.
    Marmo V.1971. Granit Petrology and the Granite Problem. Elsevier Publishing Company,1-244.
    Martin H, Bonin B, Capdevila R, et al.1994. The Kuiqi peralkaline granitic complex (SE China) petrology and geochemistry. J. Petrol.,35 (4):983-1015.
    Mezger K and Krogstad E J.1997. Interpretation of discordant U-Pb zircon ages:An evaluation. J. Metamorphic Geol,15:127-140.
    Middlemost E A K.1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev.,37:215-224.
    Miller C F, Stoddard E F, Bradfish L T et al,.1981. Composition of plutonic muxcovite:genetic implications. Can Mineral,19:25-34.
    Paul A M Nex, Judith A Kinnaird, Grahame J H Oliver.2001.Petrology, Geochemistry and Uranium mineralization of post-collisional magmatism around Goanikontes, southern Central Zone, Dammarn Orogen, Nambibia, African Earth Sciences,33:481-502.
    Patino Dounce A E, Johnston A D, Rice J M.1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, Western North America. Earth and Planet Science Letters,97:290-315.
    Patino Douce A E, Johnston A D.1991. Phase equilibria and melt productivity in the petlitic system:implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol.,107: 202-218.
    Patino Douce A E and Beard J S.1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar.J. Petrol.,36:707-738.
    Pearce J A.1996. Sources and setting of granitic rocks. Episodes,19(4):120-125.
    Peccerillo A. Taylor S R.1976. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib. Mineral. Petrol.,58:63-81.
    Pei R F, Hong D W.1995. The granites of south China and their metalogeny [J]. Episodes,18:77-82.
    Perford N, Cruden A R, McCaffrey K J W, et al.2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature,408:669-673.
    Pitcher W S.1997. The nature and origin of granite (2nd edition). Chapman & Hall, London.
    Robert M P, Clemens J D.1993.The origin of high-k, calcalkaline, Ⅰ-type granitiod magmas.Geology 21.825-828.
    Roddick J C, Bevier M L.1995. U-Pb dating of granites with inherpted zircon:Conventional and ion microprobe results from two Paleozoic Plutons, Canadian Appalachians. Chem Geol,119:307-329.
    Qi L, Gregoire D C.2000a. Determination of trace elements in twenty six Chinese geochimstry reference materials by inductively coupled plasma-mass spectrometry. Geostand Newsl,24:51-63.
    Qi L, Gregoire D C.2000b. Determination of trace elements in granites by inductively coupled plasma-mass spectrometry. Talana,51:507-513.
    Sandiford M.2003. Melting the crust-where is the heat[M]//Geoscience Australia:the Ishihara symposium-granites and associated metallogenesis:111-114.
    Sawyer E W.1987. The role of partial melting and fractional crystallization determining discordant migmatite leucosome compositions. Journal of Petrology,28:445-473.
    Shu LS, Faure M, Jiang S Y et al.2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China— Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision. Episodes,29(4):244-252.
    Shu LS, Faure M, Wang B et al.2008. Late Paleozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Event in Southeast Asia, Comptes rendus Geoscience (C R Geosci),340: 151-165.
    Shu Liangshu, Faure Michel, Yu Jinhai, Jahn Borming.2011. Geochronological and geochemical features of the Cathaysia block (South China):new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research,187:263-276.
    Shui T.1988.Tectonic framework of the continental basement of southeastern china.Secentia inica(B),31:24-34.
    Spry A.1969. Metamorphic textures. Pergamon Press,1-350.
    Sun S S, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunder A D, Norry M J (eds.). Magmatism in the Ocean Basins. Geol.Soc.Spe.Publ.42:313-345.
    Sylvester P J.1998. Post-collisional peraluminous granites.J.geol.97:261-280.
    Taylor S R and McLennan S M.1985. The continental crust:its composition and evolution. Oxford:Blackwell. 1-312.
    Thompson and Connolly.1995.Thompson, A.B., Connolly, J.D.,1995.Metling of the continental crust:some thermal and petrologic constraints on anatexis in conyinental collision zones and other tectonic settings.J.Geophys.Res.100,15565-15579.
    Tomaschek F, Kennedy A K, Villa I M, et al.2003. Zircons from Syros, Cyclades, Greece-recrystallization and mobilization of zircon during high-pressure metamorphism. Jour of Petrology,44(11):1977-2002.
    Treloar P J, Coward M P, Harris N B W.1992.Himalayan-Tibetan analogies for the evolution of the Zimbabwe craton and Limpopo belt.Precambrian Res.55,571-587.
    Turner S, Sandiford M and Foden J.1992. Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology,20:931-934.
    Vavre G, Schmid R, ebauer D.1996. Internal morphology, habit and U-Th-Pb microanalysis of mphibolite-to-granulite facies zircon:Geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol,134:380-404.
    Vernon R H, Collins W J, Richards S W.2003. Contrasting leucosomes in Metapelitic and metapsammitic migmatites in the Cooma Complex Austria. Vis. Geosci.,8:45-54.
    Vervoort J D, Blichert-Toft J.1999. Evolution of the depleted mantal:Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta.,63:533-556.
    Visona D and Lombardo B.2002. Two—mica and tourmaline leucogranites from the Everest M akalu region (Nepal- Tibet). Himalayan leucogranite genesis by isobaric heating?Lithos,62:125-150.
    Wan Y S Liu D Y, Xu M H et al,.2007. SHRIMP U-Pb zircon geochronogy and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathysia Block, China:Tectonic implicateond and the need to redefine lithostratigraphic units. Gondwana Res,12:166-183.
    Wang J Li Z X.2003.History of Neoproterozoic rift basin in South China:implications for Rodiniabreakup. Precabrian Res,122:141-158.
    Wang X L, Zhou J C, Qiu J S et al,.2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi province,South China:implications for the tectonic evolution. Precambrian Res,145:111-130.
    Wang X L, Zhou J C, Griffin W L, et al.2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yangtze and Cathaysia blocks. Precamb Res,159 (1-2): 117-131.
    Waston E B, Harrison T M.1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett,64:295-304.
    Xiang L and Shu L S.2010. Predevonian tectonic evolution of the eastern South China block:Geochrological evidence from detrital zircons. Science in China(Earth Sciencs):53(10):1427-1444.
    Williams I S, Chappell B W, Chen Y D, et al.1992. Inherited and detrial zircons-vital clues to the granite protoliths and early igneous history of southeast Australia. Trans. R. Soc. Edinburgh Earth Sci.,1992.83: 503.
    Williams, I S.1998.U-Pb Geochronology by ion microprobe. In:Mckibben, M. A., Shanks Ⅲ, W.C., Ridley, N. I., (Eds.), Applications of microannalytical techniques to understanding mineralizing processes, Reviews in Economic Geology, vol.7, Society of Economic Geology, PP.1-35.
    Wu F Y, Sun D Y, Li H M et al.2002. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis. Chem. Geol.187,143-173.
    WuFY, Jahn B M, Wilde S A et al,.2003. Highly fractinated Ⅰ-type granites in NE China(Ⅰ):geochronology and petrogenesis. Lithos,66:241-273.
    Xu K Q, Sun N, Wang D Z et al.1984. Petrogenesis of the grantoid and their metallogenetic relations in South China. In:Xu KQ and Tu GC (eds.). Geology of granites and their metallogenetic relations. Beijing:Science Press,1-33 (in Chinese).
    Wu R X, Zheng Y F, Wu Y B et al.2006. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China. Precamb. Res.,146:179-212.
    Xu X B, Zhang Y Q, Shu L S, Jia D.2011. La-ICP-MS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan:Constraints on the timing of Early Paleozoic and Early Mesozoic tectono-thermal events in SE China. Tectonophysics, doi:10.1016/j.tecto.2011.01.014.
    Yao J L, Shu L S, Santosh M.2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, doi:10.1016/j.gr.2011.01.005
    Yu J H, O'Reilly, Zhao L, et al,.2007a.Origin and evolution of topazbearing granites from the Nanling Range, South China:A geochemicall and Sr Nd Hf isotopic study.Mineral. Petrol.,DOI:10.1007/s0-006-0180-2.
    Yu J H, Wang L J, Wang X L et al,.2007b. Geochemistry and geochronology of the Fuchen Complex in the southeastern Jiangxi province,China. Acta Petrological Sinica,23(6):1470-1484.
    Yu J H, Wang L J, Griffin W.L., O'Reilly S.Y., Zhang M, Li C Z and Shu LS.2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research,174:347-363.
    Yu J H, O'Reilly, Suzanne Y et al,.2010. Components and episodeic growth of Precambrian crust in the Cathaysia Block, South China:Evidences from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research,181(1-4),97-114.
    Zhou X M, Li W X.2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,326:269-287.
    柏道远,黄建中,马铁球等.2006.湘东南志留纪彭公庙花岗岩体的地质地球化学特征及其构造环境.现代地质,20(1):130-140.
    柏道远,周亮,王先辉等.2007.湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-加里东期晚期构造背景的制约.地质学报,81(6):755-771.
    陈斌,庄育新.1994.粤西云炉紫苏花岗及麻粒岩包体的主要特点和成因讨论.岩石学报,10(2):139-150.
    陈道公,李彬贤,夏群科等.2001.变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年.岩石学报,17(1):129-138.
    程海.1991.淅西北晚元古代早期碰撞造山带的初步研究.地质评论,37(3):203-213.
    程海,胡世玲,唐朝辉.1991.赣东北铁砂街群同位素年代.中国区域地质,(2):151-153.
    陈江峰,郭新生,汤家富等.1999.中国东部地壳增长与Nd同位素模式年龄.35(6):650-659.
    陈江峰,江博明.1999Nd, Sr, Pb同位素示踪和中国东南大陆地壳演化.见郑永飞主编.化学地球动力学.北京:科学出版社,262-287.
    陈卫峰,陈培荣,周新民等.2006.湖南阳明山岩体的LA-ICP-MS锆石定年及成因研究.地质学报,80(7):1065-1077.
    陈正宏,李寄嵎,谢佩珊等.2008.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄.高校地质学报,14(1):1-15.
    陈毓川,裴荣富,张宏良.1989.南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质.北京:地质出版社,20-60.
    程裕淇.1994.中国区域地质概论.北京:地质出版社.
    邓国辉.1997.东乡瑶圩余江马荃地区斜长角闪岩特征及其地质意义.江西地质科技,24(1):21.
    邓晋福,罗照华,苏尚国等编著.2004.岩石成因、构造环境与成矿作用.北京:地质出版社.
    邓平,舒良树,杨明桂等.2003.赣江断裂带地质特征及其动力学演化.地质论评,49(2):113-122.
    郑永飞,张少兵.2007.华南前寒武纪大陆地壳的形成和演化.科学通报.48(16):1705-1720.
    杜杨松,Collerson K D,赵建新等.1999.两广交界地区S型花岗岩中麻粒岩相包体的特征和成因.岩石学报,15(2):309-314.
    地矿部南岭项目花岗岩专题组.1989.南岭花岗岩地质及其成因和成矿作用.北京:地质出版社.
    丁兴,周新民,孙涛.2005.华南陆壳基底的幕式生长—来自广东古寨花岗闪长岩中锆石LA-IC-PMS定年信息.地质评论,15(04).
    顾晟彦,华仁民,戚华文.2006.广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及全岩Sr-Nd同位素研究.地质学报,80(4):543-553.
    甘晓春,李忠信,孙大中等.1993.闽北前寒武纪基底的地质年代学研究.福建地质,12(1):18-24.
    甘晓春,李惠明,孙大中等.1995.浙西南古元古代花岗质岩石的时代.岩石矿物学杂志,14(1):1-8.
    甘晓春,赵凤清,金文山等.1996.华南火成岩中捕获锆石的早元古代、太古代U-Pb年龄信息,地球化学,25(2):113-121.
    郭令智,俞剑华,施央申.1965.华南加里东地槽褶皱区大地构造发展的基本特征.中国大地构造问题.北京科学出版社.165-183.
    郭令智,施央申,马瑞士.1980.华南大地构造格架和地壳演化.国际交流地质学术论文集(1),北京:地质出版社,109-116.
    高山,骆庭川,张本仁等.1999.中国东部地壳的结构和组成.中国科学(D辑),29(3):204-213.
    付建民,马昌前,谢才富等.2004.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义.[J].大地构造与成矿学,28(4):262-378.
    韩宝福.2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘(中国地质大学(北京),北京大学),14(3):64-72.
    韩仲仁,彭作荣,谢代强.1998.江西中部新元古代潭头群的建立.中国区域地质,17(2):113-117.
    洪大卫等.1999.从花岗岩的Sm-Nd同位素探讨华南中下地壳的组成性质和演化.高校地质学报,5(4):361-371.
    洪大卫,谢锡林,张季生.2002.试析杭州-诸广山-花山高εNd值花岗岩带的地质意义.地质通报,21(6):348-354.
    黄标,徐克勤,孙明治.1993.武夷山中段加里东中期交代改造型花岗岩类的特征及形成的碰撞造山环境.岩石学报,9(4):388-400.
    黄春鹏,张家元,詹玉亭等.1991.福龙溪梅仙龙北溪组变质火山岩的Sm-Nd同位素年龄研究.福建地质,10(2):150-157.
    胡恭仁,章邦桐.1998.赣中变质基底的Nd同位素组成和物质来源.岩石矿物学杂志,17(1):35-39.
    胡恭仁,章邦桐.1999.赣中变质基底Nd模式年龄初步研究及基底地壳的形成时代.铀矿地质,15(3):147-140.
    侯增谦,卢记仁,林盛中等.2005.峨眉地幔柱轴部的榴辉岩——地幔岩源区主元素、痕量元素及Sr、Nd、Pb同位素证据.地质学报,79(2):200-219.
    黄汲清.1945.中国主要地质构造单位.中央地质调查所地质专版,20:1-165.
    黄辉,李荣安,杨传夏.1989.福建东南沿海变质带的年代学研究及其大地构造意义.科学通报,(16):1249-1251.
    黄萱,孙世华,DePaolo D J等.1986.福建省白垩纪岩浆岩Nd、Sr同位素研究.岩石学报,2(2):50.
    黄萱,DePaolo D J.1989华南古生代花岗岩类Nd-Sr同位素研究及华南基底.岩石学报,5(1):28-36.
    胡宗良,陈兴高,冯宗帜.2001.福建明溪寒塘组地质特征及时代归属.福建地质,20(2):70-77.
    胡雄健,许金山,童朝旭等.1991.淅西南前寒武纪地质.前寒武地质,第5号,北京:地质出版社,1-227.
    胡雄健.1994.淅西南下元古界八都群的地质年代学,地球化学,23(增刊):18-24.
    贾承造,施央申,郭令智.1988.东秦岭板块构造.南京:南京大学出版社,1-130.
    金文山,李东正,冯长根等.1995.淅江省陈蔡地区前寒武纪的地质.北京:地质出版社,1-136.
    金文山,孙大中.1997.华南大陆深部地壳结构及其演化.北京:地质出版社,1-173.
    江西省地质矿产局.1984.江西省区域地质志.北京:地质出版社.
    江西省地质矿产局,1987.中国南岭及其邻区地质构造.
    孔祥生,李正东,冯长根等.1995.淅江省陈蔡地区前寒武纪地质.北京:地质出版社,1-36.
    兰玉琦.1990.中国东南部大陆边缘若干问题的认识.
    劳秋元.1994.东海的构造地层地体.见:施央申,卢华复,马瑞士,孙岩主编现代地质学研究文集(下).
    李曙光,陈移之,葛宁洁等.1996.浙西南八都群变火山岩系及变晶糜棱岩的同位素年龄及其构造意义岩石学报,12(1):79-87.
    李根坤.1988.福建省同位素年龄及其区域地质构造意义.福建地质,7(2):80-87.
    李献华,Matsumoto M,桂训塘.1989.华南汤湖花岗岩中25亿年太古代残留锆石的发现及其意义初探.科学通报,(3):206-209.
    李献华.1990.万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动.中国科学,B辑,(7):747-755.
    李献华,赵振华,桂训唐.1991a.华南前寒武纪地壳形成时代的Sm-Nd和U-Pb同位素制约.地球化学,3:251-260.
    李献华,桂训唐.1991b.万洋山-诸广山加里东期花岗岩的物质来源—Ⅰ. Sr-Nd-Pb-O多元同位素体系示踪.中国科学,B辑,(5):533-540.
    李献华,朱炳泉,桂训唐.1992.万洋山-诸广山加里东期花岗岩的物质来源—Ⅱ.同位素多维空间的拓杯分析.中国科学,B辑,22(8):855-859.
    李献华,刘颖,涂湘林等.1996.S型花岗岩中锆石U-Pb同位素体系的多阶段演化及其年代学意义—以桂北三防岩体为例.矿物学报,16(2):170-177.
    李献华,王一多,赵振华等.1998.闽浙古元代斜长角闪岩的离子探针锆石U—-Pb年代学.地球化学,27(4):229-334.
    李献华,李正祥,葛文春等.2001.华南新元古代花岗岩的锆石U-Pb年龄学及期构造意义[J].矿物岩石地球化学通报,20(4):271-273.
    李献华,李正祥,周汉文等.2002.皖南新元古代花岗岩的SHRIMP锆石U-Pb年代学、元素地球化学和Nd同位素研究.地质论评,48(增刊):8-16.
    罗春林,刘春根,谢明明.2003.赣南古元古代中深变质岩地层时代.资源调查与环境,24(4):244-279.
    楼法生,沈渭洲,王德滋等.2005.江西武功山穹窿复式花岗岩的锆石U—-Pb年代学研究.地质学报,79(5):636-644.
    凌洪飞,沈渭洲,章邦桐.1996.淅闽前寒武纪基底地壳的形成和增长时代.地质评论,42(3):272-278.
    凌洪飞,沈渭洲,黄小龙.1999.福建省花岗岩类Nd-Sr同位素特征及其意义.岩石学报,15(2):0225-0262.
    凌洪飞,沈渭洲,邓平等.2004.粤北笋洞花岗岩的形成时代、地球化学特征与成因.岩石学报.20(3):413-424.
    陆志刚,陶奎元,谢家莹等.1997.中国东南部大陆火山地质及矿产.北京:地质出版社,1-431.
    李继亮(主编).1993.中国东南海陆岩石圈地构与演化.北京.中国科学技术出版社,1-264.
    刘邦秀,廖瑞君.1999.江西省“八五”以来1:5万区调工作主要进展,江西地质,13(2):133-140.
    刘邦秀,刘春根,邱永泉.2001.江西南部鹤子片麻状花岗岩类Pb-Pb同位素年龄及地质意义,火山地质与矿产,22(4):264-268.
    刘伯根,郑光财,陈时森等.1995.淅西松木坞群的解体-同位素定年证据.地质论评,(5):457-462.
    刘亚光(主编).1997.江西省岩石地层.武汉:中国地质大学出版社.
    莫柱孙,叶伯丹.1980.南岭花岗岩地质学.北京:地质出版社.
    南京大学地质系.1981.华南不同时代花岗岩类及其与成矿关系.北京:科学出版社.1-395.
    南京大学地球科学系南岭花岗岩项目组.2005.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.国家自然科学基金重点项目No.40132010,主持人:周新民,陈培荣.1-580.
    彭松柏、金振民、刘云松等.2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景.地球科学—中国地质大学学报,31(1):110-120.
    裴荣富,邱小平,尹冰川等.1999.成矿作用大爆发及异常与巨量金属堆积.矿床地质,18(4):333-340.
    丘元禧,马文璞,范小林等.1996.“雪峰古陆”加里东期的构造性质与构造演化.中国区域地质,(2):150-160
    丘元禧,张渝昌,马文璞.1998.雪峰山陆内造山带的构造特征与演化.高校地质学报,4(4):432-443.
    任纪舜.1964.中国东南部泥盆纪前几个大地构造问题的初步探讨.地质学报,44(4):418-430.
    任纪舜.1990.论中国南部的大地构造,地质学报,64(4):275-288.
    任纪舜,王作勋,陈炳蔚,等.1999.从全球看中国地质构造——中国及邻区大地构造图间要说明.北京:地质出版社,1-50.
    饶家荣,王纪恒,曹一中.1993.湖南深部构造.湖南地质,7(增刊):1-101.
    沈渭洲,朱金初,刘昌实等.1989.从Nd模式年龄谈华南陆壳的形成时间.南京大学学报(地球科学).(3):82-91.
    沈渭洲,凌洪飞,李武显等.1993a.中国东南部花岗岩类Nd—Sr同位素研究.高校地质学报,5(1):22-32.
    沈渭洲,朱金初,刘昌实等.1993b.华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约.岩石学报,9(2):115-124.
    沈渭洲,凌洪飞,李武显等.1999.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,5(1):22-32.
    沈渭洲,凌洪飞,李武显等.2000.中国东南部花岗岩类Nd模式年龄与地壳演化.中国科学(D辑)30(5):471-478.
    沈渭洲,于津海,赵蕾等.2003.南岭东段后太古宙地层的Sm-Nd同位素特征与地壳演化.科学通报,48(16):1740-1745.
    沈渭洲,凌洪飞,孙涛.2007.华南晚中生代花岗岩、火山岩Sr-Nd同位素地球化学.见:周新民主编“南岭地 区晚中生代花岗岩成因与岩石圈动力学演化”北京:科学出版社,123-160
    沈渭洲,舒良树,向磊等.2009a.江西井冈山地区加里东期晚期沉积岩的地球化学特征及其对沉积环境的制约.岩石学报,25(10):2442-2458.
    沈渭洲,张芳荣,舒良树.2009b.江西宁冈岩体的形成时代、地球化学特征及其构造意义.岩石学报,24(10):2244-2254.
    孙存礼,龚由勋.1996.赣西南加里东造山带磨拉石相沉积的发现.中国区域地质,2:108-113.
    孙大中,赵清风.1999闽北地区前加里东期变质地层层序划分和构造演化.前寒武纪研究及可持续发展探索-孙大中文集.北京:地质出版社,p48-55.
    孙明志,徐克勤.1990.华南加里东花岗岩及其形成地质环境浅析.[J].南京大学学报(地球科学),2(4):10-22.
    宋彪,张玉海,万渝生等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,5(增刊):26-30.
    孙涛,周新民,陈培荣等.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),33(12):1209-1218.
    孙涛.2005.华南中生代岩浆岩组合及其成因.南京:南京大学博士后出站报告,1-41.
    孙涛.2006.新编华南花岗岩分布图及其说明.地质通报,25(3):332-335.
    舒良树,施央申,郭令智等.1995.江南中段板块-地体构造与碰撞造山运动学,南京:南京大学出版社.
    舒良树,孙岩,王德滋等1998.华南武功山中生代伸展构造.中国科学D辑:地球科学,1998,28(5):431-438.
    舒良树,卢华复,贾东等.1999.华南武夷山加里东期构造事件的40Ar/39Ar同位素年龄研究.南京大学学报(自然科学版).35(6):668-674.
    舒良树、王德滋、沈渭洲,2000.江西武功山中生代变质核杂岩的花岗岩类Nd-Sr同位素研究.南京大学学报(自然科学版),36(3):306-311.
    舒良树,徐鸣洁.2002.中国东南部地质背景.见:王德滋主编:中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化.北京:科学出版社,1-21.
    舒良树,周新民,邓平等.2004.中国东南部中、新生代盆地特征与构造演化.地质通报.23(9-10):877-884.
    舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报,12(4):418-431.
    舒良树,周新民,于津海等.2008a.华南东段加里东期造山带研究.地质通报,27(10):1581-1593.
    舒良树,邓平,于津海等.2008b.武夷山西缘流纹岩的形成时代及地球化学特征.中国科学D辑:地球科学,2008,51:1053-1063.
    水涛.1987.中国东南大陆基底构造格局.中国科学(B辑),(4):414-422.
    水涛,徐步台,梁如华等.1988.中国闽浙变质基底地质[M].北京:科学出版社.
    唐晓珊.2004.湖南早前寒武纪变质结晶基底的Sm-Nd同位素年龄.资源调查与环境,25(1):55-63.
    王德滋,林承毅,周新民.1978.江西慈竹英云闪长岩体及其周围区域变质岩的成因.南京大学学报(自然科学版),(1):81-99.
    王德滋,刘昌实.1986.中国东南沿海海西—印支旋回花岗岩类的分布规律及成因系列.岩石学报,2(4):1-13.
    王德滋,周新民.主编2002.中国东南部晚中生代花岗岩质火山—侵入杂岩成因与地壳演化.北京:科学出版社,1-295.
    王德滋,周金城.2002.中国东南部晚中生代花岗岩质火山—侵入岩特征与成因.高校地质学报,6(4):487-498.
    王德滋,沈渭洲.2003.中国东南部花岗岩成因与地壳演化.地学前缘(中国地质大学,北京).10(3):209-220.
    王德滋.2004.华南花岗岩的回顾与展望.高校地质学报,10(3):305-314.
    王丽娟,于津海,O'Reilly Y S等.2008.华自南部可能存在Grenville期造山作用;来自基底变质岩中锆石U-Pb定年及Hf-Hf同位素信息.科学通报,53:1680-1692.
    王孝磊,周金城,邱检生等.2006.桂北新元古代强过铝质花岗岩的成因:锆石年代学和Hf同位素制约.岩石学报,22(2):327-342.
    王一先,赵振华,包志伟等.1997.浙江花岗岩类地球化学与地壳演化——Ⅰ显生宙花岗岩类.地球化学,26(5):1-15.
    王新光.1991.华南加里东花岗岩研究及其形成的构造背景分析.[D]南京:南京大学地球科学系.
    吴富江,张芳荣.2003.华南板块北缘东段武功山加里东期花岗岩的特征及成因探讨.中国地质,30(2):166-172.
    吴新华,于承涛.2000.赣中南地区晚元古代变质地层中的同位素年龄及其地质意义.江西地质,14(1):16-20.
    吴荣新,郑永飞,吴元保.2005.皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究.岩石学报,21(3):587-606.
    徐克勤,刘英俊.1960.江西南部加里东花岗岩的发现.地质评论,20(3):112-114.
    徐克勤,孙鼐,王德滋等.1963.华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及成矿专属性的
    探讨.地质学报,43(1-2):1-26.
    许德如,陈广浩,夏斌等.2006.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义.高校地质学报,12(4):507-521.
    谢振东,杨永革.2000.江西信丰安西岩体同位素年龄及其地质意义.江西地质14(3):172-175.
    谢窦克,马荣生,张禹慎等.1996.华南大陆地壳生长过程与地幔柱构造.北京:地质出版社.1-257.
    谢家荣.1961.中国大地构造问题,地质学报,41(2):218-239)
    谢明明,冯国胜,刘益辉.2000.广昌付坊花岗岩地质特征及侵位机制.江西地质,14(1):21-27.
    徐鸣洁,舒良树.2001.华东南晚中生代岩浆作用的深部条件制约,高校地质学报,7(1):21-33.
    徐夕生,耿红燕,赵明.2007.诗洞-广平岩体.见:周新民主编“南岭地区晚中生代花岗岩成因与岩石圈动力学演化.”北京:科学出版社,199-219.
    徐先兵,张岳桥,舒良树等.2009.闽西南玮埔岩体和赣南菖蒲混合岩锆石La—ICP-MS U-Pb年代学:对武夷山加里东运动时代的制约地质论评55(2):277-285.
    徐备,乔广生.1989.赣东北晚元古代蛇绿岩的Sm-Nd同位素年龄及原始地质构造环境.南京大学学报(地球科学),(3):108-114.
    杨树峰,陈汉林,武光海等.1995.闽北加里东期岛弧火山岩的发现及其大地构造意义.地质科学,30(2)105-116.
    袁宗信,吴良士,张宗清等.1989.闽北麻源群Sm-Nd、Rb-Sr同位素年龄及其地质意义.科学通报, 34(16):1243-1245.
    袁宗信,张宗清.1992.南岭花岗岩岩石Sm-Nd同位素特征及岩石成因探讨.地质论评,38(1):1-15.
    袁奎荣,杨心宜.1982.华南花岗岩类中I-S型与磁铁矿系列-钛铁矿系列的不固定关系.桂林冶金地质学院学报学通报,34(16):1243-1245.
    于津海,徐夕生,周新民.2003.华南沿海基性麻粒岩相变质岩捕虏体的地球化学研究和下地壳组成.中国科学,35(5):384-393.
    于津海,周新民,O'Reilly Y S等.2005a.南岭中段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U—-Pb--Hf同位素研究.科学通报,50(16):1578-1587.
    于津海,周新民,赵蕾等.2005b.壳幔作用导致武平花岗岩形成—Sr-Nd-Hf-U-Pb同位素证据.岩石学报,21(3):651-664.
    于津海,O'Rcilly Y S,王丽娟.2007a.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,52(1)11-18.
    于津海,王丽娟,魏震洋等.2007b.华夏地块显生宙的变质作用期次和特征.高校地质学报,13(3):474-483.
    于津海,王丽娟,王孝磊等.2007c.赣东南富城杂岩体的地球化学和年代学研究.岩石学报,23(06):1441-1456.
    于津海,王丽娟,O'Rcilly Y S等.2009.赣南存在古元古代基底:来自上犹陡水煌斑岩中捕虏晶锆石的U-Pb-Hf同位素的证据.科学通报,54(7):898-905.
    于津生,桂唐训,黄琳.1991.广东罗定泗沦混合岩田同位素的组成特征.广东地质,6(3):73-82.
    余达淦,艾桂根,黄国夫等.1999.江西周潭群同位素年龄特征及其地质意义.地球化学,20(2):195-200.
    殷鸿福,吴顺宝,杜远生等.1999.华南是特提斯多岛洋体系的一部分.地球科学—中国地质大学学报,24(1):1-12.
    章邦桐,胡恭仁.1996.赣中存在元古代华夏(古陆)变质基底的地球化学证据.矿物岩石地球化学通报,15(4):239-242.
    张长厚.1999.初论陆内造山.地学前缘(中国地质大学,北京),6:295-308.
    张菲菲,王岳军,范蔚茗等.2010.湘东-赣西加里东期花岗岩体激光锆石U-Pb定年及成因研究.地球化学,05-002.
    张芳荣,刘前进.2007.九岭南缘安义珠珞山辉绿岩形成时代及地质意义.华东理工大学学报,30(4):328-331.
    张芳荣,黄新曙.2008.江西九岭南缘九仙汤侵入体U-Pb定年.资源调查与环境,20(4):271-273.
    张芳荣,舒良树,王德滋等.2009.华南加里东期花岗岩类形成构造背景探讨.地学前缘,16(1):247-259.
    张永忠,吕少伟,邓必荣.2005.湘赣边境志留纪花岗岩岩石谱系单位特征及侵位机制探讨.资源调查与环境,26(1):12-17.
    曾勇,杨明桂.1999.赣中碰撞混合带.中国区域地质,18(1):17-22.
    钟玉芳,马昌前,林广春等.2005.江西九岭山花岗岩类复式岩基锆石SHRIMP U-Pb年代学.地球科学,30(6):685-691.
    朱炳泉等.1998.地球科学中同位素体系理论与应用.北京:科学出版社.
    朱金初,黄革非,张佩华等.2003.菜岭超单元花岗岩侵位年龄和物质来源研究.地质论评,49(3):245-252.
    周新民,王德滋.1988.皖南低87Sr/86Sr初始比的过铝花岗闪长岩及其成因.岩石学报,4(3):37-45.
    周新民,邹海波,杨杰东等.1989.安微歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义.科学通报,34(16):1243-1245.
    周新民,朱云鹤.1992.江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质。中国科学,22(3):298-303.
    周新民,朱云鹤.1993.中国东南部新元古代碰撞造山带与地缝合带的岩石学证据.李继亮主编:东南大陆岩石圈结构与地质演化.北京:冶金工业出版社.
    周新民,李武显.2000.中国东南部晚中生代火成岩成因:岩石围消减和玄武岩底侵相结合的模式.自然科学进展,10(3):240-247.
    周新民.2003.对华南花岗岩研究的若干思考.高校地质学报,9(4):556-565.
    周新民主编.2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社:1-691.
    周新华,胡世玲,任胜利等.1993.东南陆壳超多阶段构造演化同位素年代学制约.李继亮主编.东南古陆岩石圈结构与地质演化.北京:冶金工业出版煽动.69-77.
    周宇章,邢光福,杨祝良等.2006.淅江诸暨新元古代后造山铝质A型花岗岩的厘定.地球学报,27(2):107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700