铝致神经母细胞瘤细胞死亡方式及其干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的铝是公认的神经毒素,长期慢性的铝接触与多种神经退行性变的发生有密切关系。进行性细胞死亡是神经退行性变的重要特征之一,大量的体内、体外实验表明,铝能导致神经细胞死亡。为了探讨铝致神经细胞死亡方式的类型及其干预效果,本课题对铝诱导的混合神经细胞研究模型细胞—神经母细胞瘤细胞(SH-SY5Y)的死亡方式及其干预措施的效果进行了研究。本课题的第一个目的是研究铝诱导的SH-SY5Y细胞的死亡方式和类型;在此基础上,第二个目的是用RNA干扰的方法阻抑凋亡相关基因bak,caspase-3的表达,研究RNA干扰的效果及其对铝诱导的神经细胞凋亡的阻抑作用。除凋亡和坏死之外,程序性坏死是2005年提出的一种存在于脑缺血损伤中的新型细胞死亡通路,研究程序性坏死是否也存在于铝诱导的SH-SY5Y细胞的死亡途径中,及其特异性的阻断剂Nec-1对铝诱导的SH-SY5Y细胞死亡的阻抑效果是本研究的第三个目的。第四个目的是研究不同死亡方式的阻抑剂对细胞死亡方式的影响及其联合作用的效果。另外,我们还单独探讨了神经胶质细胞在铝致神经细胞凋亡中的作用及其干预效果。方法①为了检测铝诱导的SH-SY5Y细胞的死亡方式和类型,我们在体外培养了SH-SY5Y细胞并用0-8mMAlCl_3·6H_2O染毒,作用24h后检测其细胞死亡方式。相差显微镜观察细胞的生长状态,AO-EB和Hoechst染色法观察铝染毒细胞的凋亡和坏死,流式细胞仪Annexin V-PI双染法定量测定细胞的凋亡率和坏死率,免疫组织化学染色定量测定凋亡相关蛋白NF-κB和Cty-c的表达量,透射电镜进一步观察染铝细胞的超微结构变化。②根据程序性坏死具有坏死的形态学特点和程序性的特征性变化,对培养的SH-SY5Y细胞用不同浓度铝染毒,和/或加入不同浓度的Nec-1,观察SH-SY5Y细胞的形态学特点,Hoechst-PI染色法观察细胞的凋亡和坏死变化,检测细胞活力、线粒体膜电位、活性氧含量、细胞的凋亡率和坏死率以及其对细胞自吞噬小体的影响等。③为了特异性降低细胞的凋亡率,采用RNA干扰的方法特异性阻断凋亡相关基因bak,caspase-3基因的表达。设计针对bak,caspase-3基因干扰的siRNA序列,用不同浓度铝染毒细胞制做铝致神经细胞死亡模型,分别测定不同的siRNA序列、不同的转染浓度及不同的转染时间对细胞活力的影响。用荧光染色法计数转染效率,用荧光定量PCR法检测干扰效率,用免疫组织化学染色法测定阻抑蛋白表达效果并检测其对细胞的凋亡率及坏死率的影响。④采用小干扰RNA和Nec-1联合作用同时对细胞的凋亡和程序性坏死途径进行阻抑。对不同浓度铝染毒SH-SY5Y细胞制作的铝致神经细胞死亡模型,用caspase-3RNAi抑制caspase-3基因的表达,同时用Nec-1抑制程序性坏死的产生,并检测了其对细胞的凋亡率、坏死率和自吞噬标志蛋白LC3表达的影响,以探索铝诱导的神经母细胞瘤细胞不同死亡方式间的相互影响和相互作用。⑤为了研究神经胶质细胞在铝致神经细胞凋亡中的作用,以神经胶质瘤细胞为研究对象,用不同浓度铝作用于该细胞系,用RNA干扰的方法对凋亡相关基因bax的表达进行了阻抑,分别测定不同的siRNA序列、不同的转染浓度及不同的转染时间对细胞活力的影响。用荧光染色法计数转染效率,用荧光定量PCR法检测干扰效率,用免疫组织化学染色法测定阻抑蛋白表达效果并检测其对细胞的凋亡率及坏死率的影响。结果①AO-EB和Hoechst染色法显示了铝染毒细胞的凋亡和坏死的形态学变化,免疫组织化学染色显示凋亡蛋白Cty-c的表达量随染铝剂量增加而显著上升(P<0.05),抗凋亡蛋白NF-κB的表达量随染铝剂量增加而显著下降(P<0.05,P<0.01)。流式细胞仪AnnexinV-PI双染法定量测定结果表明染铝细胞的凋亡率和坏死率显著上升(P<0.05,P<0.01),细胞的超微结构变化进一步证实了凋亡、坏死和自噬性死亡的共存现象。②加入Nec-1可以显著改善染铝后细胞的坏死样形态学改变,不同浓度Nec-1可以显著提高细胞活力(P<0.05,P<0.01)、提高线粒体膜电位、保护线粒体膜完整性(P<0.05,P<0.01),但对染铝后细胞活性氧含量的影响未见有显著的统计学意义(P>0.05)。流式细胞仪测定结果显示,Nec-1可以显著降低SH-SY5Y细胞的坏死率(P<0.05,P<0.01),但对凋亡率的影响未见有显著的统计学意义(P>0.05)。③测定bak,caspase-3基因不同的siRNA序列在4mM铝染毒作用下,不同的转染浓度及不同的转染时间下细胞活力。对bak基因RNAi结果表明,siRNA1序列为最有效的序列,最适转染浓度为10nmol/L,最适作用时间为转染后48h。荧光染色并观察计数表明siRNA的转染效率>90%,最大干扰效率为57.76%,并表现了对Bak蛋白表达的显著的阻抑效应(P<0.05)。bak siRNA1作用于染铝后的神经瘤细胞,可以显著降低细胞的凋亡率(P<0.05),但对细胞坏死率的影响未见有显著的统计学意义(P>0.05)。通过细胞活力在不同siRNA序列、不同转染剂量、不同作用时间点的变化,筛选出caspase-3基因RNAi的最有效序列为siRNA1序列,并找到其最适转染浓度为10nmol/L,最适作用时间为转染后48h。荧光染色并观察计数表明siRNA的转染效率为93%,其干扰效率为63.02%,并表现了对caspase-3蛋白表达的显著阻抑效应(P<0.05)。④用bak RNAi和caspase-3 RNAi阻断细胞的凋亡和/或Nec-1阻断细胞的程序性坏死,并对处理后的细胞检测自噬小体的标志蛋白LC3的表达结果显示,染铝细胞的凋亡、坏死和自噬性死亡间具有相互作用。bak RNAi和caspase-3 RNAi虽然可以降低细胞的凋亡率但却同时增加了细胞的自噬性死亡(P<0.05);但Nec-1不仅可以显著降低细胞的坏死率(P<0.05,P<0.01),也可以避免细胞自噬性死亡的增多(P>0.05),并通过神经细胞间的相互作用阻抑了细胞凋亡的发生。Nec-1和bak RNAi、caspase-3 RNAi共同作用的结果表明,共同作用后细胞的自噬性死亡低于bak RNAi、caspase-3 RNAi单独作用组,但仍高于Nec-1单独作用组(P<0.05,P<0.01)。Caspase-3 siRNA单独作用于染铝SH-SY5Y细胞可以显著提高细胞活力(P<0.05),降低其凋亡率(P<0.05);Nec-1单独作用于染铝SH-SY5Y细胞可以显著提高其细胞活力(P<0.05,P<0.01),降低细胞坏死率(P<0.05,P<0.01);共同作用在染铝SH-SY5Y细胞时两者有增强作用,可以显著提高细胞活力(P<0.05,P<0.01),并同时降低SH-SY5Y细胞的凋亡率及坏死率(P<0.05,P<0.01)。⑤对染铝后神经胶质细胞瘤细胞的bax siRNA转染结果表明,最有效的针对bax基因的siRNA序列为siRNA1,该序列的转染效率>90%,对bax基因表达的干扰效率为62.3%,最佳转染后检测点为转染后72小时,最适转染剂量为20nmol/L。bax siRNA1作用于染铝后的神经瘤细胞,可以显著降低细胞的凋亡率(P<0.05),但对细胞坏死率的影响并不显著(P>0.05)。
     结论铝诱导的SH-SY5Y细胞死亡方式除了凋亡、坏死和自噬性死亡之外,还有程序性坏死的存在。凋亡是铝致SH-SY5Y细胞死亡的重要途径,针对bak,caspase-3基因,用化学法合成siRNA并将其导入神经细胞,可以有效降低bak,caspase-3基因和其蛋白的表达,提高细胞活力,降低细胞的凋亡率,但同时却增加了细胞的自噬性死亡的发生。Nec-1作为程序性坏死的特异阻断剂可以有效降低铝致神经细胞死亡的坏死率,而且不会增加铝诱导的自噬性死亡的发生。caspase-3 siRNA与Nec-1的协同作用可以显著改善细胞的生存状态,同时降低染铝细胞的凋亡率和坏死率。对染铝神经胶质细胞的凋亡阻断结果提示,铝致神经细胞的损伤主要是铝对神经元的损伤作用,神经胶质细胞因其较大的数量和对铝神经毒作用的较强的耐受力,可能是铝中毒机制研究和神经元保护的另一个重要靶点。
Objective Aluminum is known as a kind of neurological toxin,it is related to kinds of degenerative diseases if being chronically exposed in a long-term lifespan.Processing cell death is one of the most important features of neural cells degeneration,a lot of studies have shown that aluminum might induce neural cells death.To investigate the mode of cell death induced by aluminum and effect of inhibition,the present study focus on the types of cell death in SH-SY5Y cells,a kind of common used model of mixed neural cells,and the effects of inhibitions. Therefore,the first aim of the present study is to investigate the cell death types in SH-SY5Y cells induced by aluminum.Based on this,the next aim is to inhibit apoptosis by RNA interference to apoptotic related genes:bak and caspase-3.Besides,Necroptosis is a type of novel cell death pathway apart from apoptosis and necrosis,which was found in ischemic brain injury by Prof.Jun Yingyuan's group in 2005.To probe whether necroptosis exists in neural cell death induced by aluminum and effect of its specific inhibitor,Nec-1,are the third aim of the study.Concerning interaction of the cell death types and combined effect of the inhibitors,there comes the forth aim of the present work.Finally,to investigate the role of neuroglias on aluminum induced neural cells apoptosis and RNA interference effect on specific bax gene are the fifth aim of the research.Methods①To find out the mode of cell death induced by aluminum,SH-SY5Y cells were cultured in vitro and treated with 0-8mM AlCl_3·6H_2O,types of cell death were detected 24h after treatment.The cell status was observed under a phase contrast microscope,apoptosis and necrosis were shown by AO-EB fluorescent double staining and Hoechst sigle staining respectively.Furthermore,flow cytometry by Annexin V-PI double staining was used to quantify the apoptotic and necrotic rates,expressions of apoptotic related proteins NF-κB and Cty-c were detected by immunohistochemistry.Finally,ultrastructure images of transmission electronic microscope were used to confirme the cell death types of aluminum treated SH-SY5Y cells.②According to the necrotic like morphous and programmed cell death characteristics,neuroptosis was recognized in SH-SY5Y cells,which were incubated with various concentrations of aluminum and/or Nec-1.Morphous of aluminum treated SH-SY5Y cells was observed under a phase contrast microscope,apoptosis and necrosis were shown by Hoechst-PI double staining,cytometry was used to quantify cell viability, mitochondria membrane potential(MMP),content of reactive oxygen species(ROS),and apoptotic rate/necrotic rate.Autophogosomes were imagined in electronic microscope photographs.③To specific decrease apoptotic rate,3 siRNA sequences were designed for inhibition of bak and caspase-3 genes respectively,which were transfected into SH-SY5Y cells. Cell viabilities on siRNAs,concentrations of transfected reagent,time courses of transfection were assayed by CCK-8 method.Interference rates of genes were detected by QRT-PCR, inhibition on proteins was measured by immunohistochemistry,apoptotic rate and necrostic rate were quantified by flow cytometer.④To inhibite apoptosis and necrosis simultaneously,bak RNAi and caspase-3 RNAi were performed to reduce the apoptotic rate and Nec-1 was used to decline the necrosis rate,LC3 expression was detected by western blot after performation of bak RNAi,caspase-3 RNAi and/or Nec-1 treatment.⑤To investigate the role of neuroglias on aluminum induced apoptosis,bax RNA interference was performed on gliocytoma cells,cell viability was detected by CCK-8 kit on different siRNA sequences,various transfection concentrations,and diverse transfection courses.Transfection efficiency was determined by percentage of CY3 fluorescent staining cells in DAPI numbered cells,and interference efficiency was measured by QRT-PCR,immunohistochemistry was used to quantify protein content. Besides,flow cytometry was used to measure apoptotic rate and necrotic rate in aluminum treated SH-SY5Y cells transfected by the selected bax siRNA.Results①The co-exist status of apoptosis and necrosis was present by AO-EB fluorescent staining and Hoechst staining, expression of apoptotic related protein Cty-c was significantly upregulated with aluminum concentration increasing(P<0.05),while which of apoptotic preventive protein NF-κB downregulated(P<0.05,P<0.01).Apoptotic rate and necrotic rate detected by flow cytometer quantified their significant upregulation(P<0.05,P<0.01).Finally,ultrastracture in aluminum treated SH-SY5Y cells confirmed the apoptosis and autophagy features.②Nec-1 ameliorated the necrotic-like cell morphology,enhanced cell viability(P<0.05,P<0.01),increased cell MMP (P<0.05,P<0.01),and retained ROS content in aluminum treated SH-SY5Y cells(P>0.05). Besides,Nec-1 could significantly decrease the necrotic rate(P<0.05,P<0.01),while it has no significant effect on apoptotic rate(P>0.05).③Based on the viabilities and gene inhibitive rates of bak siRNA sequences,siRNA1 was selected as the optimal siRNA sequence,the optimal transfection concentration was 10nmol/L,and the optimal time course was 24 h after transfection. The transfection efficiency was above 90%,the interference efficiency was 57.76%,significant inhibitive effect on Bak protein was found as well(P<0.05).Furthermore,the apoptotic rate in aluminum treated SH-SY5Y cells were significantly decreased by bak siRNA1 transfection (P<0.05),while there was no significant effect on necrotic rate(P>0.05).Similarly,based on the viabilities and gene inhibitive rates of caspase-3 siRNA sequences,siRNA1 was selected as the effective sequence,the optimal transfect concentration was 10nmol/L,the optimal transfection time was 48h after transfection.Furthermore,the transfection efficiency was 93%,the interference efficiency was 63.02%,and there was also a significant difference in the expression of Caspase-3 protein among the various siRNA transfection concentrations(P<0.05).④Results of LC3 expression in bak RNAi,caspase-3 RNAi and/or Nec-1 treatment shown that there was interaction among apoptosis,necroptosis and autophagy,bak RNAi and caspase-3 RNAi could inhibite cell apoptosis while LC3 marked autophagy upregulated(P<0.05).However,Nec-1 could reduce not only necrosis(P<0.05,P<0.01) but also LC3 expression of autophagy(P>0.05), thereafter,it could decrease sequenced apoptotic rate through cell signal transfer.The coeffect of Nec-1 and bak siRNA or caspase-3 siRNA shown that LC3 expression in coeffect cells was lower than that in Nec-1 treated alone cells,but higher than those in bak siRNA or caspase-3 siRNA treatment alone cells(P<0.05,P<0.01).There was significant increase in cell viability of aluminum treated cells(P<0.05,P<0.01),and significant decrease in apoptotic rate and necrotic rate(P<0.05,P<0.01).⑤The optimal bax siRNA sequence was selected based on the cell viability and the gene inhibitive rate.The transfection efficiency was above 90%,the interference efficiency of bax gene was 62.3%,and the optimal transfection time was 72h after transfection, the optimal transfection concentration was 20nmol/L,there was a significant decrease in Bax protein content after transfection(P<0.05).Besides,apoptotic rate was significantly decreased (P<0.05),while necrotic rate showed no significant difference after transfection(P>0.05). Conclusion Apart from apoptosis,necrosis and autophagy,there is necroptosis in aluminum induced cell death.Apoptosis is one of the major cell death pathways in SH-SY5Y cells induced by aluminum,it can be specitifically reduced by transfection of bak and caspase-3 siRNAs. When chemically synthesized siRNAs are inducted to neural cells,it can significantly reduce bak and caspase-3 gene level,decrease Bak and Caspase-3 protein expression.Nec-1,as a specific inhibitor of necroptosis,can effectively block the necroptosis induced by aluminum,it indicates that necroptosis plays an important role in aluminum induced cell death.The cell viability could be enhanced significantly by caspase-3 siRNA combined Nec-1,besides apoptotic rate and necrotic rate decrease simultaneously.The present study also hints that neuroglia cells play a major role in aluminum induced neuron injury.Being mass number in nervous system and extraordinary resistence to aluminum toxicity,the neuroglia cells may be another target in performing neuron protection.
引文
[1]Fire A,Xu S,Montgomery MK,Kostas SA,Driver SE,Mello CC.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature.1998;391(6669):806-811.
    [2]Caplen NJ.Gene Therapy Progress and Prospects.Down regulating gene expression:the impact of RNA interference.Gene Ther.2004;11(16):1241-1248.
    [3]Map P,Xue SP,Han DS.Principles and applications of RNA interfering technology.Chin J Histochem Cytochem.2003;12(2):201-207.
    [4]Yuan J,Lipinski M,Degterev A.Diversity in the mechanisms of neuronal cell death.Neuron.2003;40:401-413.
    [5]Degterev A,Huang Z,Boyce M.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.Nat Chem Biol.2005;1(2):112-119.
    [6]赵月莹,程肖蕊,周文霞,张永祥.RNAi在神经退行性疾病发病机制及防治研究中的应用.国外医学(药学分册),2007,(2):81-86.
    [7]张亚辉,李佳,周忠良.Caspase-3:治疗神经退行性疾病的新靶点.生物化学与生物物理进展,2003,(2):175-179.
    [8]Jagannath A,Wood M.RNA interference based gene therapy for neurological disease.Brief Funct Genomic Proteomic.2007;6:40-49.
    [9]Kawahara M.Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases.J Alzheimers Dis.2005;8:171-182;discussion 209-215.
    [10]Zilkova M,Koson P,Zilka N.The hunt for dying neurons:insight into the neuronal loss in Alzheimer's disease.Bratisl Lek Listy.2006;107:366-373.
    [11]Yuan J,Lipinski M,Degterev A.Diversity in the mechanisms of neuronal cell death.Neuron.2003;40:401-413.
    [12]Teng X,Degterev A,Jagtap P,Xing X,Choi S,Denu R,Yuan J,Cuny GD.Structure-activity relationship study of novel necroptosis inhibitors.Bioorg Med Chem Lett.2005;15(22):5039-5044.
    [13]Jagtap PG,Degterev A,Choi S,Keys H,Yuan J,Cuny GD.Structure-activity relationship study of tricyclic necroptosis inhibitors.J Med Chem.2007;50(8):1886-1895.
    [14]Wang K,Li J,Degterev A,Hsu E,Yuan J,Yuan C.Structure-activity relationship analysis of a novel necroptosis inhibitor,Necrostatin-5.Bioorg Med Chem Lett.2007;17(5):1455-1465.
    [15]Smith CC,Davidson SM,Lim SY,Simpkin JC,Hothersall JS,Yellon DM.Necrostatin:a potentially novel cardioprotective agent? Cardiovasc Drugs Ther,2007,21(4):227-233.
    [16]Xu X,Chua CC,Kong J,Kostrzewa RM,Kumaraguru U,Hamdy RC,Chua BH.Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells.J Neurochem.2007;30(8):1021-1034.
    [17]Han W,Li L,Qiu S,Lu Q,Pan Q,Gu Y,Luo J,Hu X.Shikonin circumvents cancer drug resistance by induction of a necroptotic death.Mol Cancer Ther.2007;6(5):1641-1649.
    [18]Gupta VB,Anitha S,Hegde ML,Zecca L,Garruto RM,Ravid R,Shankar SK,Stein R,Shanmugavelu P,Jagannatha Rao KS.Aluminium in Alzheimer's disease:are we still at a crossroad? Cell Mol Life Sci.2005;62(2):143-158.
    [19]Perl DP,Moalem S.Aluminum and Alzheimer's disease,a personal perspective after 25 years.J Alzheimers Dis.2006;9(3 Suppl):291-300.
    [20]Goncalves PP,Silva VS.Does neurotransmission impairment accompany aluminium neurotoxicity? J Inorg Biochem.2007;101(9):1291-1338.
    [21]Repici M,Mariani J,Borsello T.Neuronal death and neuroprotection:a review.Methods Mol Biol.2007;399:1-14.
    [22]Zhang QL,Boscolo P,Niu PY,Wang F,Shi YT,Zhang L,Wang LP,Wang J,Di Gioacchino M,Conti P,Li QY,Niu Q.How do rat cortical cells cultured with aluminum die:necrosis or apoptosis? Int J Immunopathol Pharmacol.2008;21(1):107-115.
    [23]Ventruti A,Cuervo AM.Autophagy and neurodegeneration.Curr Neurol Neurosci Rep.2007;7(5):443-451.
    [24]Nixon RA.Autophagy in neurodegenerative disease:friend,foe or turncoat? Trends Neurosci.2006;29(9):528-535.
    [25]牛侨,张勤丽,刘承芸,王亮.程序性坏死在铝致SH-SY5Y细胞死亡中的作用.中国科技论文在线http://www.paper.edu.cn,2007年11月27日发表.
    [1]Olanow CW.The pathogenesis of cell death in Parkinson's disease - 2007.Mov Disord.2007;22(S17):S335-S342.
    [2]Galluzzi L,Miguel J,Kepp VO,Tasdemir E,Maiuri MC,Kroemer G.To Die or Not to Die:That is the Autophagic Question.Curr Mol Med.2008;8(2):78-91.
    [3]Benz EJ Jr,Nathan DG,Amaravadi RK,Danial NN.Targeting the cell death-survival equation.Clin Cancer Res.2007;13(24):7250-7253.
    [4]Assuncao Guimaraes C,Linden R.Programmed cell deaths:Apoptosis and alternative deathstyles.Eur J Biochem.2004;271(9):1638-1650.
    [5]Degterev A,Huang Z,Boyce M.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.Nat Chem Biol.2005;1(2):112-119.
    [6]Gupta VB,Anitha S,Hegde ML,Zecca L,Garruto RM,Ravid R,Shankar SK,Stein R,Shanmugavelu P,Jagannatha Rao KS.Aluminium in Alzheimer's disease:are we still at a crossroad? Cell Mol Life Sci.2005;62(2):143-158.
    [7]Perl DP,Moalem S.Aluminum and Alzheimer's disease,a personal perspective after 25 years.J Alzheimers Dis.2006;9(3 Suppl):291-300.
    [8]Goncalves PP,Silva VS.Does neurotransmission impairment accompany aluminium neurotoxicity? J lnorg Biochem.2007;101(9):1291-1338.
    [9]Repici M,Mariani J,Borsello T.Neuronal death and neuroprotection:a review.Methods Mol Biol.2007;399:1-14.
    [10] Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, Wang LP, Wang J, Di Gioacchino M, Conti P, Li QY, Niu Q. How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol. 2008; 21(1): 107-115.
    [11] Ventruti A, Cuervo AM. Autophagy and neurodegeneration. Curr Neurol Neurosci Rep. 2007; 7(5): 443-451.
    [12] Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci. 2006; 29(9):528-535.
    [13] Clarke PG, Clarke S. Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol (Berl). 1996; 193: 81-99.
    [14] Broker LE, Kruyt FA and Giaccone G. Cell Death Independent of Caspases: A Review. Clin Cancer Res. 2005; 11: 3155-3162.
    [15] Nicotera P, Leist M and Manzo L. Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci. 1999; 20: 46-51.
    [16] Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001; 2:589-598.
    [17]Degterev A, Yuan JY. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem Biol. 2005; 1: 112-119.
    [18] Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004; 16:663-669.
    [19] Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990; 181: 195-213.
    [20] Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973; 7: 253-266.
    [21] 汪静, 汪芳. 关于细胞死亡方式的研究进展. 实用医药杂志, 2006; (23)10:1250-1252.
    [1]Abraham MC,Shaham S.Death without caspases,caspases without death.Trends Cell Biol.2004;14(4):184-193.
    [2]Castejon O,Arismendi G.Nerve cell death types in the edematous human cerebral cortex.J Submicrosc Cyto Pathol.2006;38(1):21-36.
    [3]Wei L,Ying DJ,Cui L,Langsdorf J,Yu SP.Necrosis,apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats.Brain Res.2004;1022(1-2):54-61.
    [4]Degterev A,Huang Z,Boyce M.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.Nat Chem Biol,2005,1(2):112-119.
    [5]Teng X,Degterev A,Jagtap P,Xing X,Choi S,Denu R,Yuan J,Cuny GD.Structure-activity relationship study of novel necroptosis inhibitors.Bioorg Med Chem Lett.2005;15(22):5039-5044.
    [6]Zilkova M,Koson P,Zilka N.The hunt for dying neurons:insight into the neuronal loss in Alzheimer's disease.Bratisl Lek Listy.2006;107(9-10):366-373.
    [7]Jagtap PG,Degterev A,Choi S,Keys H,Yuan J,Cuny GD.Structure-activity relationship study of tricyclic necroptosis inhibitors.J Med Chem.2007;50(8):1886-1895.
    [8]Wang K,Li J,Degterev A,Hsu E,Yuan J,Yuan C.Structure-activity relationship analysis of a novel necroptosis inhibitor,Necrostatin-5.Bioorg Med Chem Lett.2007;17(5):1455-1465.
    [9]Smith CC,Davidson SM,Lim SY,Simpkin JC,Hothersall JS,Yellon DM.Necrostatin:a potentially novel cardioprotective agent? Cardiovasc Drugs Ther,2007,21(4):227-233.
    [10]Xu X,Chua CC,Kong J,Kostrzewa RM,Kumaraguru U,Hamdy RC,Chua BH.Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem. 2007; 30(8): 1021-1034.
    [11] Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther. 2007; 6(5): 1641-1649.
    [12] Gangadhar NM, Stockwell BR. Chemical genetic approaches to probing cell death. Curr Opin Chem Biol, 2007, 11(1): 83-87.
    [1] Caplen NJ. RNAi as a gene therapy approach. Expert Opin Biol Ther. 2003; 3(4) :575 - 586.
    [2] Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10(11) :3667-3677.
    [3] Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ. A resource for large scale RNA interference based screens in mammals. Nature. 2004; 428 (6981): 427- 431.
    [4] Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis. 2005; 8 (2):171-182.
    [5] Ghribi O, Herman MM, Savon J. The endoplasmic reticulum is the main site for caspase-3 activation following aluminum-induced neurotoxicity in rabbit hippocampus. Neurosci Lett. 2002; 324(3):217-221.
    [6] Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J. Co-involvement of mitochondria and endoplasmic reticulum in regulatoon of apoptosis changes in cytochrome C, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res. 2001; 903(1-2):66-73.
    
    [7] Becaria A, Campbell A, Bondy SC. Aluminum as a toxicant. Toxicol Ind Health. 2002; 18(7):309-320.
    [8] Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelu P, Jagannatha Rao KS. Aluminium in Alzheimer's disease: are we still at a crossroad? Cell Mol Life Sci. 2005;62(2):143-158.
    [9] Griffioen KJ, Ghribi O, Fox N, Savory J, DeWitt DA. Aluminum maltolate-induced toxicity in NT2 cells occurs through apoptosis and includes cytochrome C release. Neurotoxicology. 2004; 25(5):859-867.
    [10]Daniel PT. Disecting the pathways to death. Leukemia. 2000; 14 (12): 2035-2044.
    [1 l]Liu S, Pereira NA, Teo JJ, Miller P, Shah P, Song Z. Mitochondrially targeted Bcl-2 and Bcl-X(L) chimeras elicit different apoptotic responses. Mol Cells. 2007; 24(3):378-387.
    [12]Tomkova H, Fujimoto W, Arata J. Expression of bcl-2 antagonist bak in inflammatory and neoplastic skin diseases. Br JDermatol. 1997; 131 (5) :703-708.
    [13]Krajewska M, Moss SF, Krajewski S, Song K, Holt PR, Reed JC. Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res. 1996; 56 (10) :2422-2427.
    [14] Yin JQ, Wan Y. RNA-mediated gene regulation system: now and the future. Int J Mol Med. 2002; 10 (4): 355-365.
    [15] Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005; 107(2):222-239.
    
    [16]Barik S. Development of gene specific double-stranded RNA drugs. Ann Med. 2004; 36 (7): 540-551.
    [17] Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ. A resource for large-scale RNA-interference-based screens in mammals. Nature. 2004; 428 (6981): 427-431.
    [18] Ryther RC, Flynt AS, Phillips JA 3rd, Patton JG. siRNA therapeutics: big potential from small RNAs. Gene Ther. 2005; 12(1): 5-11.
    [19] Montgomery MK. RNA interference: historical overview and significance. Methods Mol Biol. 2004; 265: 3-21.
    [20] Campbell TN, Choy FY. RNA interference: past, present and future. Curr Issues Mol Biol. 2005; 7(1):1-6.
    [1]张亚辉,李佳,,周忠良.Caspase-3:治疗神经退行性疾病的新靶点.生物化学与生物物理进展,2003,(2):175-179.
    [2]赵月莹,程肖蕊,周文霞,张永祥.RNAi在神经退行性疾病发病机制及防治研究中的应用.国外医学(药学分册),2007,(2):81-86.
    [3]Huesken D,Lange J,Mickanin C,Weiler J,Asselbergs F,Warner J,Meloon B,Engel S,Rosenberg A,Cohen D,Labow M,Reinhardt M,Natt F,Hall J.Design of a genome-wide siRNA library using an artificial neural network.Nat Biotechnol.2005;23:995-1001.
    [4]Paddison PJ,Silva JM,Conklin DS,Schlabach M,Li M,Aruleba S,Balija V,O'Shaughnessy A,Gnoj L,Scobie K,Chang K,Westbrook T,Cleary M,Sachidanandam R,McCombie WR,Elledge SJ,Hannon GJ.A resource for large-scale RNA-interference-based screens in mammals.Nature.2004;28:427-431.
    [5]Bridge AJ,Pebemard S,Ducraux A,Nicoulaz AL,Iggo R.Induction of an interferon response by RNAi vectors in mammalian cells.Nat Genet.2003;34(3):263-264.
    [6]Geng YJ,Libby P.Progression of atheroma:a struggle between death and procreation.Arterioscler Thromb Vasc Biol.2002;22(9):1370-1380.
    [7]Mourelatos Z,Dostie J,Paushkin S,Sharma A,Charroux B,Abel L,Rappsilber J,Mann M,Dreyfuss G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002; 16(6):720-728.
    [8] Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003; 9(2): 180- 186.
    [9] Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001; 24:299-325.
    [10] Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci. 2002; 25(8):400-404.
    [11] Wood MJ, Charlton HM, Wood KJ, Kajiwara K, Byrnes AP. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci. 1996; 19(11):497-501.
    
    [12]Maniotis D, Wood MJ, Phylactou LA. Hammerhead ribozymes reduce central nervous system derived neuronal nitric oxide synthase messenger RNA in a human cell line. Neurosci. Lett. 2002; 329:81-85.
    [13]Korneev SA, Kemenes I, Straub V, Staras K, Korneeva El, Kemenes G, Benjamin PR, O'Shea M. Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene. J Neurosci. 2002; 22(11):RC227.
    
    [14]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411(6836):494-498.
    [1]冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用.中国临床康复,2006;6(70):121-123.
    [2]Kim R,Emi M,Tanabe K.Caspase-dependent and -independent cell death pathways after DNA damage.Oncol Rep.2005;14(3):595-599.
    [3]Olanow CW.The pathogenesis of cell death in Parkinson's disease - 2007.Mov Disord.2007;22(S 17):S335-S342.
    [4]Nixon RA.Autophagy,amyloidogenesis and Alzheimer disease.J Cell Sci.2007;120(Pt 23):4081-4091.
    [5]Estrada Sanchez AM,Mejia-Toiber J,Massieu L.Excitotoxic neuronal death and the pathogenesis of Huntington's disease.Arch Med Res. 2008; 39(3):265-276.
    [6] Degterev A, Huang Z, Boyce M. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005; 1(2):112-119.
    [7] Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer's disease. J Alzheimers Dis. 2006; 10(2-3): 135-144.
    [8] Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003; 40(2): 401-413.
    [9] Yousefi S, Simon HU. Apoptosis regulation by autophagy gene 5. Crit Rev Oncol Hematol. 2007; 63(3):241-244.
    [10]Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007; 14(7):1247-1250.
    [11] Ferraro E, Cecconi F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys. 2007; 462(2):210-219.
    [1]Bianca VD,Dusi S,Bianchini E,Dal Pra I,Rossi F.beta-amyloid activates the O-2 forming NADPH oxidase in microglia,monocytes,and neutrophils.A possible inflammatory mechanism of neuronal damage in Alzheimer's disease.J Biol Chem.1999;274(22):15493-154999.
    [2]Carmignoto G.Astrocyte-neurone crosstalk:variants of the same language? Trends Pharmacol Sci.2000;21(10):373-375.
    [3]Zhang Q,Haydon PG.Roles for gliotransmission in the nervous system.J Neural Transm.2005;112(1):121-125.
    [4]Stevens BH,Levine RA.Forced eruption:a multidisciplinary approach for form,function,and biologic predictability.Compend Contin Educ Dent.1998;19(10):994-998,1000,1002-1004
    [5]Chin SS,Goldman JE.Glial inclusions in CNS degenerative diseases.J Neuropathol Exp Neurol.1996;55(5):499-508
    [6]Mrak RE,Griffin ST,Graham DI.Aging-associated changes in human brain.J Neuropathol Exp Neurol.1997;56(12):1269-1275
    [7]Kawahara M.Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases.J Alzheimers Dis.2005;8(2):171-182;discussion 209-215
    [8]Fletcher JI,Huang DC.Controlling the cell death mediators Bax and Bak:puzzles and conundrums.Cell Cycle.2008;7(1):39-44.
    [1] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-811.
    [2] Caplen NJ. Gene Therapy Progress and Prospects. Down regulating gene expression: the impact of RNA interference. Gene Ther. 2004; 11(16):1241-1248
    [3] Map P, Xue SP, Han DS. Principles and applications of RNA interfering technology. Chin J Histochem Cytochem. 2003; 12(2):201-207.
    [4] Koizumi H, Tanaka T, Gleeson JG. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron. 2006; 49 (1): 55-66 .
    [5] Sharma SK, Nirenberg M. Silencing of genes in cultured Drosophila neurons by RNA interference. Proc Natl Acad Sci U S A. 2007; 104 (31): 12925-129 30 .
    [6] Kurai T, Hisayasu S, Kitagawa R, Migita M, Suzuki H, Hirai Y, Shimada T. AAV1 mediated co-expression of formylglycine-generating enzyme and arylsulfatase a efficiently corrects sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol Ther. 2007; 15(1):38-43.
    [7] Krichevsky AM, Kosik KS. RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci U S A. 2002; 99(18):11926-11929.
    
    [8] Lingor P, Bahr M. Targeting neurological disease with RNAi. Mol Biosyst. 2007; 3(11):773-780.
    [9] Davidson BL, Boudreau RL. RNA interference: a tool for querying nervous system function and an emerging therapy. Neuron. 2007; 53(6):781-788.
    [10] Caplen NJ. RNAi as a gene therapy approach. Expert Opin Biol Ther. 2003;3(4):575-586.
    [11] Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL. Efficient and specific down-regulation of prion protein expression by RNAi. Biochem Biophys Res Commun. 2003;305(3):548-551
    
    [12] Hemmings-Mieszczak M, Dorn G, Natt FJ, Hall J, Wishart WL. Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res. 2003;31(8):2117-2126.
    [13] Chi JT, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A. 2003; 100(11):6343-6346
    [14] Farah MH. RNAi silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv. 2007; 4(2):161-167.
    [15] Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34(3):263-264.
    [16] Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol. 2002; 22(9):1370-1380.
    [17] Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G.miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16(6):720-728.
    [18] Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003; 9(2):180- 186.
    [19] Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001; 24:299-325.
    [20] Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci. 2002; 25(8):400-404.
    [21] Wood MJ, Charlton HM, Wood KJ, Kajiwara K, Byrnes AP. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci. 1996; 19 (11):497-501.
    [22] Lowenstein PR.Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol. 2002; 23(1):23-30.
    [23] Akaneya Y, Jiang B, Tsumoto T. RNAi-induced gene silencing by local electroporation in targeting brain region. J Neurophysiol. 2005; 93(1):594-602.
    [24] Trulzsch B, Garnett C, Davies K, Wood M. Knockdown of SMN by RNA interference induces apoptosis in differentiated P19 neural stem cells. Brain Res. 2007; 1:1183 -1189.
    [25] Boudreau RL, Davidson BL. RNAi therapy for neurodegenerative diseases. Curr Top Dev Biol. 2006; 75:73-92.
    [26] Xia XG, Zhou H, Xu Z. Promises and challenges in developing RNAi as a research tool and therapy for neurodegenerative diseases. Neurodegener Dis. 2005; 2(3-4): 220- 231.
    [27] Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. Delivery of RNA interference. Cell Cycle. 2006; 5(18):2103- 2109.
    [28] Omi K, Tokunaga K, Hohjoh H. Long-lasting RNAi activity in mammalian neurons. FEBS Lett. 2004;558 (1-3):89-95.
    [29] Vrbova G. Understanding motoneurone development explains spinal muscular atrophy. Arch Ital Biol. 2007; 145(3-4):325- 335.
    [30] Higuchi H, Yamashita T, Yoshikawa H, Tohyama M. Functional inhibition of the p75 receptor using a small interfering RNA. Biochem Biophys Res Commun. 2003; 301(3):804-809.
    [31] Mogi M, Kondo T, Mizuno Y, Nagatsu T. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett. 2007; 414(1):94-97.
    [32] Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M, Abrams J, Kumar S, Richardson H. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem. 2000; 275(51):40416-40424.
    [33] Paulson H. RNA interference as potential therapy for neurodegenerative disease: applications to inclusion-body myositis? Neurology. 2006; 66 (2 Suppl 1):S114-117.
    [34] Thomas P, Fenech M. A review of genome mutation and Alzheimer's disease. Mutagenesis. 2007; 22(1):15-33.
    [35] Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Med. 2003; 3(3):159-172.
    [36] Duan W, Rangnekar VM, Mattson MP. Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem. 1999; 72(6):2312-2322.
    [37] Paulson H. RNA interference as potential therapy for neurodegenerative disease: applications to inclusion-body myositis? Neurology. 2006; 66 (2 Suppl 1):S114-117.
    [38] Kobayashi H, Ujike H, Hasegawa J, Yamamoto M, Kanzaki A, Sora I. Correlation of tau gene polymorphism with age at onset of Parkinson's disease. Neurosci Lett. 2006; 405 (3): 202- 206 .
    [39] Muraro NI, Moffat KG. Down-regulation of torp4a, encoding the Drosophila homologue of torsinA, results in increased neuronal degeneration. J Neurobiol. 2006; 66 (12 ): 1338-1353 .
    [40] Zhou S, Zhou H, Walian PJ, Jap BK. CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer's disease amyloid beta-peptide production. Proc Natl Acad Sci U S A. 2005;102 (21): 7499-7504.
    [41] Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 2003;3 (2):65-94.
    [42] Caplen NJ, Taylor JP , Statham VS , Tanaka F , Fire A , Morgan RA . Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet. 2002; 11 (2): 175-184.
    [43] Shimazawa M, Inokuchi Y, Ito Y, Murata H, Aihara M, Miura M, Araie M, Hara H. Involvement of ER stress in retinal cell death. Mol Vis. 2007; 13 : 578- 5 87 .
    [44] Ghribi O. The role of the endoplasmic reticulum in the accumulation of beta-amyloid peptide in Alzheimer's disease. Curr Mol Med. 2006; 6 (1): 119- 133.
    [45] Oida Y, Shimazawa M, Imaizumi K, Hara H. Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil. Neuroscience. 2008; 151 ( 1 ): 111- 119.
    [46] Li X, Peng C, Li L, Ming M, Yang D, Le W. Glial cell-derived neurotrophic factor protects against proteasome inhibition-induced dopamine neuron degeneration by suppression of endoplasmic reticulum stress and caspase-3 activation. J Gerontol A Biol Sci Med Sci. 2007; 62 (9): 943- 950.
    [47] Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet. 2007; 16 (21): 2600-2615.
    [48] Paschen W, Frandsen A. Endoplasmic reticulum dysrunction--a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem. 2001;79(4):719-725.
    [49] Casoli T, Di Stefano G, Giorgetti B, Balietti M, Recchioni R, Moroni F, Marcheselli F, Bernardini G, Fattoretti P, Bertoni-Freddari C. Platelet as a physiological model to investigate apoptotic mechanisms in Alzheimer beta-amyloid peptide production. Mech Ageing Dev. 2008; 129 (3): 154- 162.
    [50] Zatti G, Burgo A, Giacomello M, Barbiero L, Ghidoni R, Sinigaglia G, Florean C, Bagnoli S, Binetti G, Sorbi S, Pizzo P, Fasolato C. Presenilin mutations linked to familial Alzheimer's disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium. 2006; 39 (6): 539-550.
    [51] Schapansky J, Olson K, Van Der Ploeg R, Glazner G. NF-kappaB activated by ER calcium release inhibits Abeta-mediated expression of CHOP protein: enhancement by AD-linked mutant presenilin 1. Exp Neurol. 2007; 208 (2): 169-176.
    [52] Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet. 2002;11 (13):1505-1515.
    [53] Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997; 77(4): 1081-132.
    [54] Ohkumo T, Masutani C, Eki T, Hanaoka F. Use of RNAi in C. elegans. Methods Mol Biol. 2008; 442: 129-137.
    [55] Boisvert ME, Simard MJ. RNAi pathway in C. elegans: the argonautes and collaborators. Curr Top Microbiol Immunol. 2008; 320: 21-36.
    [56] Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol. 2000;149(4):793-798.
    [57] Kokame K, Agarwala KL, Kato H. Herp, a new ubiquitin like membrane protein induced by endoplasmic reticulum stress. J Biol Chem, 2000; 275:32846-32853.
    [58] Boado RJ. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res. 2007; 24(9): 1772- 1787.
    [59] Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000; 408(6810): 325-330.
    [60] Wang B, Doench JG, Novina CD. Analysis of microRNA effector functions in vitro. Methods. 2007; 43 (2): 91-104.
    [61] Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003; 9(3):347- 351.
    [62] Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003; 327(4):761-766.
    [63] Makimura H, Mizuno TM, Mastaitis JW, Agami R, Mobbs CV. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 2002; 3:18.
    [64] Martin P. A new access to 2'-O-alkylated ribonucleosides and properties of 2'-O-alkylated oligoribonucleotides. Helv Chim Acta, 1995, 78: 486-504.
    [65] Hemmings-Mieszczak M, Dorn G, Natt FJ, Hall J, Wishart WL. Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res. 2003; 31(8):2117-2126.
    [66] Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000; 407(6807): 1011-1015.
    [67] Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenuis-Oosthuizen D, Smith AJ, Kidd EJ, Wood JN. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature. 2000; 407(6807):1015-1017.
    [68] Matsuda T, Cepko CL. Analysis of gene function in the retina. Methods Mol Biol. 2008; 423: 259- 278.
    [69] Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K. Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain. 2002; 99(1-2):11-19.
    [70] Paskowitz DM, Greenberg KP, Yasumura D, Grimm D, Yang H, Duncan JL, Kay MA, Lavail MM, Flannery JG, Vollrath D. Rapid and stable knockdown of an endogenous gene in retinal pigment epithelium. Hum Gene Ther. 2007 Oct; 18 (10): 871-880.
    [71] McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol. 2003;140(8):1381-1388.
    [72] Orlacchio A, Bernardi G, Orlacchio A, Martino S. RNA interference as a tool for Alzheimer's disease therapy. Mini Rev Med Chem. 2007; 7(11): 1166- 1176.
    [73] Matsuda T, Cepko CL. Analysis of gene function in the retina. Methods Mol Biol. 2008; 423: 259-278.
    [74] O'Neill B, Millington-Ward S, O'Reilly M, Tuohy G, Kiang AS, Kenna PF, Humphries P, Farrar GJ. Ribozyme-based therapeutic approaches for autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000; 41(10):2863-2869.
    [75] Nishida Y, Yokota T, Takahashi T, Uchihara T, Jishage K, Mizusawa H. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun. 2006; 350 (3): 530- 536.
    [76] Harms MP, Kotyk JJ, Merchant KM. Evaluation of white matter integrity in ex vivo brains of amyloid plaque-bearing APPsw transgenic mice using magnetic resonance diffusion tensor imaging. Exp Neurol. 2006; 199 (2): 408- 415 .
    [77] Basi G, Frigon N, Barbour R, Doan T, Gordon G, McConlogue L, Sinha S, Zeller M. Antagonistic effects of beta-site amyloid precursor protein-cleaving enzymes 1 and 2 on beta-amyloid peptide production in cells. J Biol Chem. 2003; 278 (34):31512-31520.
    [78] Orlacchio A, Bernardi G, Orlacchio A, Martino S. RNA interference as a tool for Alzheimer's disease therapy. Mini Rev Med Chem. 2007; 7(11):1166-1176.
    [79] Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001; 293(5534):1487-1491.
    [80] Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia. 2008;56(2):154-163.
    [81] Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008; 115(1): 5-38.
    [82] Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39 (3):409- 421.
    [83] Miller VM, Gouvion CM, Davidson BL, Paulson HL. Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 2004; 32 (2): 661-668.
    [84] Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer's disease. J Alzheimers Dis. 2006; 9 (3 Suppl):341- 347.
    [85] Feng X, Zhao P, He Y, Zuo Z. Allele-specific silencing of Alzheimer's disease genes: the amyloid precursor protein genes with Swedish or London mutations. Gene. 2006; 371 (1): 68-74.
    [86] Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun. 2003; 301 (1): 231-235.
    [87] Koike H, Tomioka S, Sorimachi H, Saido TC, Maruyama K, Okuyama A, Fujisawa-Sehara A, Ohno S, Suzuki K, Ishiura S. Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem J. 1999; 343 Pt 2:371- 375.
    [88] Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S, Adamson J, Lees AJ, Rossor MN, Quinn NP, Kertesz A, Khan MN, Hardy J, Lantos PL, St George-Hyslop P, Munoz DG, Mann D, Lang AE, Bergeron C, Bigio EH, Litvan I, Bhatia KP, Dickson D, Wood NW, Hutton M. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001; 56 (12): 1702-1706.
    [89] Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003; 422(6930):438-441.
    [90] Saito S, Araki W. Expression profiles of two human APH-1 genes and their roles in formation of presenilin complexes. Biochem Biophys Res Commun. 2005; 327(1): 18-22.
    [91] Luo HM, Deng H, Xiao F, Gao Q, Weng W, Zhang PF, Li XG. Down-regulation amyloid beta-protein 42 production by interfering with transcript of presenilin 1 gene with siRNA. Acta Pharmacol Sin. 2004; 25(12): 1613-1618.
    [92] Massey LK, Mah AL, Monteiro MJ. Ubiquilin regulates presenilin endoproteolysis and modulates gamma-secretase components, Pen-2 and nicastrin. Biochem J. 2005; 391(Pt 3): 513-525.
    [93] Xie Z, Romano DM, Kovacs DM, Tanzi RE. Effects of RNA interference-mediated silencing of gamma-secretase complex components on cell sensitivity to caspase-3 activation. J Biol Chem. 2004; 279 (33): 34130-34137.
    [94] Gonzalez-Alegre P, Miller VM, Davidson BL, Paulson HL. Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol. 2003; 53(6):781- 787.
    [95] Ding H, Schwarz DS, Keene A, Affar el B, Fenton L, Xia X, Shi Y, Zamore PD, Xu Z. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell. 2003; 2 (4):209-217.
    [96] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002; 297 (5580): 353- 356 . Erratum in: Science 2002 Sep 27; 297(5590):2209.
    [97] Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchenio T, Lozano G, Harel-Bellan A. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A. 2002; 99(23):14849- 14854.
    [98] Micklem DR, Lorens JB. RNAi screening for therapeutic targets in human malignancies. Curr Pharm Biotechnol. 2007; 8 (6): 337-343.
    [99] Evans R, Naber C, Steffler T, Checkland T, Keats J, Maxwell C, Perry T, Chau H, Belch A, Pilarski L, Reiman T. Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells. Leuk Lymphoma. 2008; 49 (3): 559- 469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700