新型平衡变压器和谐波抑制变压器理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕电力系统负序和谐波两大热点问题,从电力系统重要装备-变压器本身原理和结构出发,就如何利用变压器潜能解决负序和谐波问题,展开了一系列理论和应用研究。本论文的研究具有重大的理论意义和工程实用价值,并有广阔的工程应用背景。
     本论文结合教育部重点研究项目“新型变压装置及应用”(102174)和湖南省“十五”重大科技专项“高压直流输电新型换流变压器研制”(05GK1001-2),开展了大量的研究工作。本文的主要研究工作包括以下几个方面。
     本文系统性地分析了电力系统负序和谐波及其抑制方法,阐述了现有各种平衡变压器的主要技术特点和应用范围,指出了其使用的局限性。分析了无源滤波器、有源滤波器和混合滤波器的主要拓扑结构及其特点,指出了实现有源滤波器的三个技术关键。
     本文探索了平衡变压器的内在规律,系统性地分析了Scott-Teaser变压器、Le Blanc变压器、Wood Bridge变压器、阻抗匹配平衡变压器、多功能平衡变压器、YN/A平衡变压器、YN/>/~-V平衡变压器、四相四柱式变压器等现有平衡变压器的运行原理,形成了较为完整的平衡变压器的理论构架,为平衡变压器的分析、计算和运行提供了理论依据。
     本文提出了新型平衡变压器的理论构想,发明了三种新型平衡变压器,即“星形-双梯形接线三相变四相或三相变两相平衡变压器”,“星形-梯形接线三相变两相平衡变压器”以及“星形-三角形接线三相变两相和三相变三相平衡变压器”。提出了三种新型平衡变压器的接线方案,建立了新型平衡变压器的数学模型,形成了新型平衡变压器较为完整的理论体系。提出了以绕组短路阻抗作为平衡条件和解耦条件的构想,并导出了绕组短路阻抗所应满足的关系式。这些理论成果是新型平衡变压器设计、制造和运行的理论指导和依据。
     本文首创的三种新型平衡变压器具有结构简单、设计制造方便、综合性能优良,材料利用率高等特点,可消除零序电流,并对负序电流具有十分显著的抑制作用,特别适合于需要单相或两相或三相负荷的应用场合。对于星形-双梯形接线平衡变压器和星形-梯形接线平衡变压器,其材料利用率可达100%,具有十分广阔的应用前景。三种新型平衡变压器已申请国家发明专利。
     本文提出了谐波抑制变压器的基本概念和拓扑结构,阐述了感应型谐波抑制变压器和自耦型谐波抑制变压器的基本原理,给出了基于无源滤波器、有源滤波器和混合滤波器等多种谐波抑制变压器的结构形式,说明了谐波抑制变压器的技术特点。这些理论成果为今后进一步研究指明了方向。
     本文分析了多功能平衡变压器、谐波屏蔽变压器和新型换流变压器等多种实用的谐波抑制变压器之基本结构、技术特点、工作原理和应用场合。研制了三种变压器模型,并完成了模型的型式试验。提出了基于谐波抑制变压器的滤波器设计方法,阐述了基于变压器谐波磁势安匝平衡机理的滤波器设计原理,给出了滤波器设计实例和参数。
     本文完成了基于新型换流变压器的直流输电试验平台的设计工作,分析了系统结构和组成原理,阐述了控制系统各部分功能框图及控制特性,给出了滤波方案和滤波器结构及参数,为该试验平台投入运行做好了理论准备。
     本文对谐波抑制变压器进行了应用与试验研究,提出了基于多功能平衡变压器和谐波屏蔽变压器的滤波方案和试验方案,模拟了现场运行的多种工况,测取了大量的试验数据,分析了试验结果,证实了谐波抑制变压器的原理是正确的,且具有很好的滤波效果。
     本文研制了多功能平衡变压器样机,解决了多功能平衡变压器工程应用中的许多关键技术难题,实现了多功能平衡变压器样机及其配套滤波器的现场挂网运行,实施了该变压器的基本功能和高次谐波滤波、无功补偿和提供变电所用电源等多项辅助功能。通过现场测试数据,研究了该变压器的各种运行方式。现场试验结果证实了该变压器的运行原理和滤波效果,为该变压器的推广应用积累了宝贵的现场运行经验。该项成果已通过上海铁路局组织的技术鉴定,同意在铁路上推广应用。
     新型平衡变压器和谐波抑制变压器适应了电力系统抑制负序和谐波的迫切要求,它们利用变压器本身的磁势平衡原理,构造出适应不同应用领域的结构形式,充分利用了变压器的多项潜能,使之具有综合效应,符合节能、省材、简单等基本要求,具有十分广阔的应用前景。
Focused on hot topics of negative sequence and harmonic in power system and based upon the principle and structure of transformers which are the essential components in power system, this article develops a series of theoretical and application researches to solve the negative sequence and harmonic problems by utilizing the transformer's potential. With its heavy theoretical significance and engineering value, this study gains a wide applications in engineering practice.This dissertation, together with key study project 102174 of Ministry of Education - new-style transforming device and its application as well as key science & technology project 05GK1001-2 of the Tenth Five Year Plan of Hunan Province -research & manufacture of new-style converter transformer in HVDC power transmitting system, makes numbers of studies in the following aspects.In this dissertation, negative sequence, harmonic and their suppression methods in power system are systematically analyzed, basic technical characteristics and application range of various types of existing balancing transformers as well as their application limitation are expounded. The main topological structures and their features of passive filter, active filter and compound filter are anatomized and meanwhile three technical keys in active filter application are listed.Inherent rules of the balancing transformer are explored. Operation principals of the existing balancing transformers, such as Scott-Teaser transformers, Le Blanc transformers, Wood Bridge transformers, impedance-matched balancing transformers, multi-function balancing transformers, YN/A balancing transformers, YN/> /~-V balancing transformers, four-phase four-leg transformers and etc, are systematically discussed. A more sound theory framework of balancing transformers is shaped as the theoretical benchmark for the analysis, calculation and operation of balancing transformers.In this dissertation, the theoretical assumptions of new-style balancing transformer are presented. Three connection models of new-style balancing transformers, i.e. star-double trapezia connection three-phase to four-phase or two-phase balancing transformer, star-trapezium connection three-phase to two-phase balancing transformer and star-delta connection three-phase to two-phase and three-phase balancing transformer, are invented. The connection schemes for these three models of new-style balancing transformer are proposed, the mathematical models of new-style balancing transformers are established and a more sound theoretical system of new-style balancing transformer is profiled. The conceits, taking short circuit impedance of winding as balance condition and decoupling condition, are provided and the corresponding equations that apply to short circuit impedance of winding are deducted. These fruits are theoretical guideline and foundation for the design, manufacturing and operation of new-style balancing transformers.
     The three models of new-style balancing transformers, which were pioneered by the author and characterized by simple structure, design and manufacturing easiness, excellent all-around performance and high utilization rate of material, can eliminate zero sequence currents, considerably suppress negative sequence currents and especially suit for the application that single phase load or two phase load is necessary. For star-double trapezia connection or star- trapezium connection balancing transformers which remain an infinite application potential, the utilization rate of material can be up to 100%. Already, the three models of new-style balancing transformers have applied for national invention patents.
     The general concept and topological structure of harmonic-suppressed transformers are indicated in this dissertation. The fundamental principals of inductive harmonic-suppressed transformers and auto-coupling harmonic-suppressed transformers are illustrated. Various harmonic-suppressed transformer structures relative to passive filters, active filters and compound filters are defined. The technical features of harmonic-suppressed transformers are specified. These theoretical achievements orientate the further researches in the future.
     The primary structures, technical characteristics, operation principles and applications of various practical harmonic-suppressed transformers like multi-function balancing transformers, harmonic-shielded transformers and new-style converter transformers are investigated. The test models of these three kinds of transformers were developed and passed the type-tests. The filter design methods for harmonic-suppressed transformers are offered, the design principals for filters with harmonic magnetic-potential ampere-turn balance are explained and the examples and data of filter design are given as well.
     Design works concerning the testing platform of DC power transmitting based on new-style converter transformers are concluded. The system architectures and combination principals are discussed. The functions and control characteristics of each part in control system are classified. The filtering methods, filter architectures and parameters are tabulated. This has concreted a solid theory foundation for the startup of the testing platform.
     The application and testing of harmonic-suppressed transformers are studied. The filtering methods and testing schemes for multi-function balancing transformers and harmonic-shielded transformers are delivered. Several operation conditions of on-site operation are simulated. A great number of test data are obtained. After being examined, the testing results show that the principals of harmonic-suppressed transformers are true and the filtering effects are excellent.
     A sample of multi-function balancing transformer is developed. Many key technical roadblocks in engineering practices of multi-function balancing transformers are swept away. The onsite networking between multi-function balancing transformer sample and its matching filter is carried out. The main functions of this transformer as well as auxiliary functions such as higher harmonic filtering, reactive compensation and supplying power for substation are realized. Based on the onsite testing data, various operation modes of this transformer are considered. The onsite testing results witnessed the operation principal and the filtering effect of this transformer. It gathered valuable onsite operation experiences for the extended application of this transformer. This achievement has passed the technical appraisement of Shanghai Railroad Bureau and was approved to be adopted in railroad system.
     The new-style balancing transformers and harmonic-suppressed transformers successfully met the imperative requirements of negative sequence and harmonic suppression. Bearing an infinite application potential, these transformers take various architectures, by means of balancing nature of transformer's magnetic potential, to match different fields, achieve comprehensive results by squeezing transformer's potentials and satisfy the basic requirements such as power saving, material efficiency and simple structure.
引文
[1] 刘福生,左辰.阻抗匹配平衡变压器牵引负荷的负序影响和谐波分析.电网技术,1989,13(1):26-32
    [2] 中国国家标准GB50052-1995.供配电系统设计规范.北京:中国标准出版社,1995
    [3] 刘福生,左辰.AT供电系统牵引变压器的选型分析.电工技术学报,1987,2(4):32-38
    [4] 张伯龄,周鸿昌,袁光有.平衡变压器的理论分析与设计.变压器,1982,19(11):2-9
    [5] Martin J. Heathcote. The J &P transformer book twelfth edition. Reed Educational and Professional Publishing Ltd, London, 1998
    [6] Chen B K, Guo B S. Three phase models of specially connected transformers. IEEE Trans. Power Delivery, 1996, 11 (1): 323-330
    [7] 刘福生.关于伍德桥接线变压器的改进方案.湖南大学学报,1985,2(2)
    [8] 刘福生,聂光前.利用阻抗匹配的方法构成的新型平衡变压器.铁道学报,1988,10(4):16-22
    [9] 刘福生,肖乐军,周有庆.阻抗匹配平衡变压器的等值电路及其应用.铁道学报,1994,16(3):23-31
    [10] 张志文,王耀南,刘福生,等.平衡变压器的阻抗匹配系数与产品性能关系研究.湖南大学学报,2003.6,30(3):49-53,77
    [11] 肖乐军,刘福生,黄梅.阻抗匹配平衡变压器的数学模型及实验验证.电工技术学报,1993,8(4):11-15
    [12] 肖乐军,江荣汉,等.阻抗匹配平衡变压器牵引供电系统的短路分析.电力系统及其自动化学报,1995,7(4):19-25
    [13] 张志文,刘福生,熊芝耀,等.阻抗匹配平衡变压器的电量变换和运行计算.电工技术学报,2000,15(2):6-11
    [14] 周勇,王绪雄,刘中元.阻抗匹配平衡变压器的负序电流。郑州大学学报,2002,23(14):43-46
    [15] 熊芝耀,程敏胜,张志文,等.阻抗匹配平衡变压器单相负荷平衡补偿的研究与分析计算.湖南大学学报,2001,28 (2):45-49
    [16] 刘伟,陈文吉,钟泽章.电气化铁道阻抗匹配平衡变压器微机保护.电力自动化设备,1995,15(2):52-54
    [17] 汤先恒,郝元.阻抗匹配平衡变压器的电流差动保护.电力自动化设备.1995.15(2):55-57
    [18] 周有庆,刘湘涛,张秀芝,等.阻抗匹配平衡变压器的几种差动保护接线方式剖析.铁道学报,1997,19(4):40-45
    [19] 周有庆,张秀芝.阻抗匹配平衡变压器的三继电器差动保护接线方式分析.电力系统及其自动化学报,1993,5(3).
    [20] 周有庆,刘福生,张秀芝.阻抗匹配平衡变压器的两继电器差动保护接线方式研究.电力系统及其自动化学报,1995,7(2)
    [21] 曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡变压器的同相牵引供电系统.铁道学报,2003,25 (3):49-54
    [22] Sun Zhuo, Jiang Xinjian, Zhu Dongqi, et al. A novel active power quality compensator topology for electrified railway. IEEE Trans. Power Electronics, 2004, 19(4): 1036-1041
    [23] 郭蕾,高仕斌,陈小川.阻抗匹配平衡变压器的电磁暂态仿真研究.电气化铁道,2005,(1):15-18
    [24] 周有庆,刘光晔,刘湘涛.一种Y/>/~-▽接线的新型平衡变压器研究.中国电机工程学报,1998,18(5):364-367
    [25] 刘光晔,周有庆,姚建刚.YN//V新型平衡变压器阻抗平衡关系的基本理论.电工技术学报,1999,14(1):31-34
    [26] 刘光哗,周有庆,姚建刚.新型平衡变压器的平衡条件及等值电路研究.中国电机工程学报,1999,19(4):84-88
    [27] 李群湛,贺建闽,张雪,等.一种三相.两相变压器.中国专利:CN2340073Y,1999
    [28] 郭宝库.三相变两相平衡变压器 中国专利:CN2147631Y,1993
    [29] 陆家榆,盛剑霓,成党生.考虑绕组漏抗时YN/A联结变压器的平衡条件.变压器,1995,32(3):17-20
    [30] 陆家榆,陈莉,丁青青,等.YN/A联接平衡变压器运行特性的数学模型.中国电机工程学报,1998,18(5):345-349
    [31] Venkata S S, Guyker W C, Booth W H, et al. EPPC-A computer program for six-phase transmission line design. Paper No. 81 TD 724-4, 1981 IEEE T & D Conference, Minneapolis, Minnesota
    [32] Grant I S, Stewart J R, Wilson D D, et al. High phase order transmission line research. CIGRE symposium 22-81, Paper No. 220-02, Stockholm, 1981
    [33] Stewart J R, Kallaur E, Grant I S. Economics of EHV high phase order transmission. IEEE Trans. Power Apparatus and Systems. 1984, 103(11): 3386-3392
    [34] Stewart J R, Grant I S. High phase order-ready for application. IEEE Trans. Power Apparatus and Systems, 1982, 101(6): 1757-1767
    [35] Stewart J R, et al. Insulation coordination, environmental and system analysis of existing double circuit Iine reconfigured to six-phase operation. IEEE Trans. Power Delivery, 1992, 7(3): 1628-1633
    [36] Chandrasekaran A, Elangovan S, Subrahrnanian P S. Stability aspect of a six-phase transmission system. IEEE Trans. Power System, 1986, 1(1): 108-112
    [37] Londers T L, Richeda R J, Krizauskas E. High phase order economics: constructing a new transmission line. IEEE Trans. Power Delivery, 1998, 13(4): 1521-1526
    [38] Stewart J R, Oppel L J, Richeda R J. Corona and field effects experienced on an operating utility six-phase transmission line. Submitted for IEEE 1998 Winter Power Meeting
    [39] Stewart J R, Oppel L J, Richeda R J. Corona on an operating utility six-phase transmission line. IEEE Trans. Power Delivery, 1998, 13(4): 1363-1369
    [40] 张永立.多相架空输电线路综论.电网技术,1995,19(6):23-26
    [41] 刘福生,肖乐军,张志文.三相变两相(四相)的阻抗匹配原理及其应用.全国高等学校电力系统及其自动化专业第十届学术年会论文集,上海交通大学,1994,164-170
    [42] 周有庆,姚建刚,等.四相输电方式研究.中国电机工程学报,1999,19(5):80-84
    [43] 刘光晔.三相变四相电力变压器的接线方案与原理研究.中国电机工程学报,2000.20(1):81-84
    [44] 刘光晔.三相变四相电力变压器阻抗理论研究.中国电机工程学报,2000,20(2):47-50
    [45] Liu Guangye, Yang Yihan. Three-phase-to-four-phase transformer for four-phase power-transmission systems. IEEE Trans. Power Delivery, 2002, 17(4): 1018-1022.
    [46] 刘光晔,杨以涵.四相架空输电线路的换位与参数研究.中国电机工程学报,2000,20(3):76-79
    [47] 高仕斌,钱清泉.电气化铁道应用三相变四相电力变压器的理论分析.中国电机工程学报,2004,24(3):174-177
    [48] 娄奇鹤,高仕斌.三相变四相变压器在AT供电系统中的应用研究.中国电机工程学报,2005,25(1):124-130
    [49] 张志文,熊芝耀,刘福生.多功能平衡变压器的等值电路.电工技术学报,2002,17(1):28-31
    [50] 张志文,王耀南,刘福生,等.多功能平衡牵引变压器运行方式研究.中国电机工程学报,2004,24(4):125-132
    [51] 张志文,刘福生,熊芝耀.多功能平衡牵引变压器的谐波分析及计算.湖南大学学报,1998,25(1):47-51
    [52] 张志文,熊芝耀,刘福生.多功能平衡变压器滤波装置的选型与分析.电力系统及其自动化学报,2001,13(3):34-37
    [53] 张志文,王耀南,等.多功能平衡变压器及其配套滤波器谐波治理研究.电工技术学报,2004,19(3):25-30
    [54] Zhang Zhiwen, Wang Yaonan, Li Jianying, et al. Study on suppressing harmonics for multi-function balanced transformer. Proceedings of the Sixth International Conference on Electrical Machines and Systems, 2003, vol. Ⅰ: 305-308
    [55] Kimbark E W. Direct current transmission, vol.Ⅰ, ch.8, New York: John Wiley & Sons, 1971
    [56] 中国国家标准GB/T 14549-93.电能质量 公用电网谐波.北京:中国标准出版社,1993
    [57] 吴竞昌,孙树勤,宋文南等.电力系统谐波.北京:水利电力出版社,1988
    [58] 夏道止.沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [59] Forrest J A C, Allard B. Thermal problems caused by harmonic frequency leakage fluxes in three-phase, three-winding converter transformers. IEEE Trans. Power Delivery, 2004, 19(1): 208-213
    [60] Pierce L W. Transformer design and application considerations for nonsinusoidal load currents. IEEE Trans. Industry Applications, 1996, 32(3): 633-645
    [61] Kennedy S P, Ivey C L. Application, design and rating of transformers containing harmonic currents. PPIC-90-35, 1990, 19-31
    [62] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [63] Key T S, et al. Comparison of standards and power supply options for limiting harmonic distortion in power system. IEEE Trans. Industry Applications, 1993, 29(4): 688-695
    [64] Wagner V E, et al. Effects of harmonics on equipment. IEEE PWRD, 1993, 8(2): 672-700
    [65] Toshilihiko T, et al. A new method of harmonic power detection based on the instantaneous active power in three-phase circuit. IEEE-PWRD, 1995, 10(4): 1737-1742
    [66] Akagi H, Nabae A, Atoh S. Control strategy of active power filters using multiple voltage-source PWM converters. IEEE Trans. Industry Applications 1986, 22(3): 460-465
    [67] Luis Moran, et al. An APF implementation with pwm voltage-source inverters in cascade. IEEE-APEC, Conference Record, 1995, 108-113
    [68] Yamamoto H, et al. A new control for large capacity self-communicated inverter for power transmission use. JIEE Annual Meeting, 1996, 199-200
    [69] Peng F Z, Kohata M, Akagi H. Compensation characteristics of shunt and series active filter. Proceedings of 1992 Chinese-Japanse Power Electronics Conf., Beijing, China, 1992, 381-387
    [70] Fujita H, Akagi H. An approach to harmonic current-free AC/DC power conversion for large industrial loads: the integration of a series active filter with a double-series diode rectifier. IEEE Trans. Industry Applications, 1997, 33(5): 1233-1240
    [71] Nabae A et al. Suppression of flicker in an arc-fumace supply system by an active capacitance-a novel voltage stabilizer in power systems. IEEE Trans. Industry Applications, 1995, 31(1): 107-111
    [72] Campos A, Joos G, Ziogas P D, Lindsay J F. Analysis and design of a series voltage unbalance compensator based on a three-phase VSI operating with unbalanced switching functions. IEEE Trans. Power Electronics, 1994, 9(3): 269-274
    [73] Tanaka T, Akagi H. A new method of harmonic power detection based on the instantaneous active power in three-phase circuits. IEEE Trans. Power Delivery, 1995, 6(3):1737-1742
    [74] 李庚银,陈志业,丁巧林,等.dq0坐标系下广义瞬时无功功率定义及其补偿.中国电机工程学报,1996,16(3):176-179
    [75] 刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器.中国电机工程学报,1997,17(1):37-41
    [76] 刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用.电工技术学报,1999,14(2):49-54
    [77] Scares V, Verdelho P, Marques G D. An instantaneous active and reactive current component method for active filters. IEEE Trans. Power Electronics, 2000, 15(4): 660-669
    [78] 冯培悌,章梅.基于瞬时功率理论的畸变电流(或电压)观测方法.浙江大学学报,2000,34(3):305-311
    [79] 杨君,王兆安,丘关源.不对称三相电路谐波及基波负序电流实时检测方法研究.西安交通大学学报,1996.3:94-99
    [80] 杨君,王兆安,丘关源.单相电路谐波及无功电流的一种检测方法.电工技术学报,1996,11(6):42-47
    [81] 叶忠明,董伯藩,钱照明.谐波电流的提取方法比较,电力系统自动化,1997,21(12):21-24,4
    [82] 王群,吴宁,苏向丰.有源电力滤波器谐波电流检测的一种新方法.电工技术学报,1997,12(1):1-5
    [83] 王群,吴宁,谢品芳.一种基于神经元的自适应谐波电流检测法.电力系统自动化,1997,21(10):13-16
    [84] 姚为正,王群,刘进军,等.串联型有源电力滤波器控制方式的研究.电工技术学报,1999,14(6):47-51
    [85] Wang Z A, Wang Q, Yao W Z, et al. A series active power filter adopting hybrid control approach. IEEE Trans. Power Electronics, 2001, 16(3):301-310
    [86] 叶忠明,董伯港,钱照明.串联有源电力滤波器的控制策略.浙江大学学报,1998,32(4):437-443
    [87] 刘飞,邹云屏,李辉.一种用于高压混合电力滤波器的复合控制方法.电力系统自动化,2004,28(21):58-61
    [88] Peng F Z, et al. A new approach to harmonic compensation in power system. IEEE-IAS Conference Record, 1988, 874-880
    [89] Peng F Z, Akaki H, Nabae A.. A new approach to harmonic compensation in power systems-A combined system of shunt passive and series active filters. IEEE Trans. Industry Applications, 1990, 26(6): 983-990
    [90] Bhattacharya S, Divan D. Design and implementation of a hybrid series active filter system. Proceedings of PESC'95, 1995, 189-195
    [91] Peng F Z, Akagi H, Nabae A. Compensation characteristics of the combined system of shunt passive and series active filters. IEEE Trans. Industry Applications, 1993, 29(1): 144-152
    [92] Fujita H, Akagi H. A practical approach to harmonic compensation in power systems-series connection of passive and active filters. IEEE Trans. Industry Applications, 1991, 27(6): 1020-1025
    [93] Cameron M M. Trends in power factor correction with harmonic filtering. IEEE Trans. Industry Applications, 1993, 29 (1): 60-65
    [94] Takeda M, Ikeda K, Teramoto A, et al. Harmonic current and reactive power compensation with an active filter. IEEE Power Electronics Specialists Conference, 1988, vol.2:1174-1179
    [95] Fujita H, et al. A practical approach to harmonic compensation in power systems. IEEE-IAS Annual Meeting, Conference Record, 1995, 1107-1112
    [96] Balbo N, Penzo R, Sella D, et al. Simplified hybrid active filters voltage industrial applications. International Conference on 1994, 263-269
    [97] Bhattacharya S, Divan D, Banerjee B. Control and reduction of total harmonic distortion in a hybrid series active and filter system. IEEE PESC Conf Record, Seattle, WA, 1993, 779-786
    [98] 朱东起,姜新建,马大铭.无源和有源滤波器串联构成的并联型综合电力滤波系统.清华大学学报,1999,39(3):49-52
    [99] 王跃,杨君,王兆安,等.电气化铁路用混合电力滤波器的研究.中国电机工程学报,2003,23(7):23-27
    [100] 李达义,陈乔夫,贾正春.一种实用的基于基波磁通补偿的串联混合型有源电力滤波器.电工技术学报,2003,18(1):67-71
    [101] Li Dayi, Chen Qiaofu, Jia Zhengchun, et al. A Novel Active Power Filter With Fundamental Magnetic Flux Compensation. IEEE Trans. Power Delivery, 2004, 19(2): 799-805
    [102] 中华人民共和国铁道部.中长期铁路网规划,2004.2,http://www.china-mor.gov.cn/
    [103] 苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究.电网技术,2005,29(24):1-4,41
    [104] 赵慧芳.电气化铁道用斯科特、逆斯科特变压器.变压器,1997,34(5):19-21
    [105] 刘光晔,周有庆,杨以涵.斯科特平衡变压器中性点接地方案及原理分析.变压器,1999,36(2):7-9
    [106] 刘光晔,周有庆,杨以涵.改进的斯科特变压器中性点接地条件及输入阻抗研究.变压器,1999,36(3):1-4
    [107] Huang S R, Chen B N. Harmonic study of the Le-Blanc transformer for Taiwan railway's electrification system. IEEE Trans. Power Delivery, 2002, 17(2): 495-499
    [108] Lu K C, Chen N. A two-relay differential protective scheme for Le-Blanc transformer. IEEE Trans. Power Delivery, 1999, 14(3): 857-862
    [109] Kwang-Cheng Lu, Nanming Chen.A two-relay differential protective scheme for Le-Blanc transformer. IEEE Trans. Power Delivery, 1999, 14(3): 857-862
    [110] [苏]C.B.瓦修京斯基著,崔立君,杜恩田等译.变压器的理论与计算.北京:机械工业出版社,1983
    [111] 变压器杂志编辑部.电力变压器设计计算方法.辽宁:辽宁科学技术出版社、1988
    [112] 任震,余得伟,唐卓尧.基于模糊优化设计的混合滤波器治理电气化铁道谐波的一种新方法.中国电机工程学报,2001,21(2):66-68,79
    [113] 任震,曾艳,戴保明.高压直流输电系统中C型阻尼滤波器的优化模型及其算法.中国电机工程学报,2002,22(12):123-126
    [114] 沈赞埙,肖原,夏道止.高压直流输电工程中交流侧滤波器装置的优化设计,500kV电网学术会议论文集(输变电分册),1986
    [115] Saied M M, Khader S A. Optimal design of AC filter circuits in HVDC converter stations. IEEE Thirtieth IAS Annual Meeting, 1995, 3: 2213-2218
    [116] Enright W, Arrillaga J, Wood A R, et al. The smoothing transformer, a new concept in DC side harmonic reduction of HVDC schemes. IEEE Trans. Power Delivery, 1996, 11(4): 1941-1947
    [117] Liu Y H, Arrillaga J, Watson N R. A New High-Pulse Voltage-Sourced Converter for HVDC Transmission. IEEE Trans. Power Delivery, 2003, 18(4): 1388-1393
    [118] Tanaka T, Fujikawa S, Funabiki S. A New Method of Damping Harmonic Resonance at the DC Link in Large-Capacity Rectifier-Inverter Systems Using a Novel Regenerating Scheme. IEEE Trans. Industry Applications, 2002, 38(4): 1131-1138
    [119] Zhang W, Asplund G, Aberg A, et al. Active DC Filter for HVDC System-A Test Installation in the Konti-Skan DC Link at Lindome Converter Station. IEEE Trans. Power Delivery, 1993, 8(3): 1599-1606
    [120] Gole A M, Verdolin R, Kuffel E. Firing angle modulation for eliminating transformer DC currents in coupled AC-DC systems. IEEE Trans. Power Delivery, 1995, 10(4): 2040-2047
    [121] 李兴源.高压直流输电系统的运行和控制.北京:科学出版社,1998
    [122] 黄俊,王兆安.电力电子变流技术(第3版).北京:机械工业出版社,1996
    [123] 徐政.交直流电力系统动念行为分析.北京:机械工业出版社,2004
    [124] Szechtman M, Wess T, Thio C V. First benchmark model for HVDC control studies. Electra, 1991, (135): 54-73
    [125] Szechtman M, Wess T, Thio C V. A benchmark model for HVDC system studies. International Conference on AC and DC power transmission. 1991, 374-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700