微尺度环境下预混火焰稳燃方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代便携式电子设备要求其配套的能源系统具有更长的供电时间。使用微型能源系统供电,由于能量密度大大提高,可大大延长续航时间。将庞大的火电厂系统,通过MEMS技术微型化,作为便携式电源是可行的。但微型能量系统的核心部件,微尺度燃烧器的尺寸为毫米级甚至微米级。在如此小的尺度内实现稳定燃烧而不发生熄火或吹脱,是微动力能源系统研究领域的难点问题。
     宏观尺度的基本稳燃方法主要通过提升燃料混合气体的温度、促进对流等方法提高反应强度,改善燃烧过程。因此在微尺度稳燃方案中可以依据相同的原则,使用内部加热,外部加热,催化燃烧,壁面热回流等方法提升反应温度或者降低熄火温度,从而改善燃烧稳定性。实验对象主要为内径为2mm的石英玻璃圆管,使用氢气/空气预混气体作为燃料。
     本研究通过试验研究各种稳燃方案在不同运行工况下的效果。测量燃料气体不同流量、当量比工况下的可燃极限的改变。并测量特定工况下的燃烧器表面温度分布,跟踪燃烧器运行过程中的能量散失情况。并结合数值模拟方法分析燃烧器内部的详细燃烧过程。
     抑制熄火由满足燃烧点火能入手。经过各种稳燃方法的试验,外部热风加热,或者直接预热燃料混合气体均可以稳燃。以预热稳燃为例:燃料混合气体总流量0.12L/min时,不预热时可燃极限当量比为0.339-3.639。在250℃预热温度时扩展到0.317-4.304。使用催化剂降低熄火温度,也可以抑制热熄火。对微型刚玉陶瓷燃烧器使用Pt催化剂的稳燃效果实验。结果显示总流量在0.12L/min时,催化剂使用前后浓相的可燃极限当量比由11.90上升到18.03。
     催化剂稳燃实验中观察到使用催化剂后,由于非均相反应对气相反应的抑制作用,催化燃烧器中反应强度变弱,壁面具有更为均匀和较低的温度分布。为观察均相反应和气相反应并存的燃烧过程,在不同材质的催化燃烧器中进行了实验对比,并结合数值模拟对燃烧器内部火焰进行研究。结果显示壁面材料影响催化燃烧器中的反应模式。具有低导热率的燃烧器有利于反应模式向气相反应转变,有助于提高反应强度。比如在燃料混合气体总流量0.12L/min,石英玻璃燃烧器中OH浓度数量级为10-3气相反应占主导。而在紫铜燃烧中OH浓度降低为10-10,非均相反应占主导。相应的反应中心温度由1474K降低到约1000K。由于反应强度变弱,催化燃烧器在抑制熄火同时,较易发生吹脱。
The portable electronical device in the modern times requires the compatible power source with longer operation period. The micro power system has higher power density, thus prolongs the operation period effectively. Therefore, minimizing the large power plant system into portable power source, through MEMS technology, is feasible. However, the micro combustor, which is the core of micro power system, has scale of micro or micron meter. It is difficult to overcome quenching or blowout and stabilize flame in such small scale.
     The methods for stabilizing flame in macro scale is mainly enhancing the reaction intensity, through increasing the temperature of fuel mixture, or improving the circumfluence section. The similar principle is applied in the micro scale combustor. The micro flame stability is improved, through increasing the reaction temperature or decreasing the critical quenching temperature with methods of heating, catalyst, heat recirculation, etc. Experiment is conducted in the quartz-glass combustor with straight-tube shape, having inner diameter of 2 mm. The combustor is operated with H2/air premixture.
     The effects of different stabilizing methods are tested under various operation conditions. The stability limits, surface temperature distribution, and heat loss of the micro combustor during operation are measured under different flow rates and equivalence ratio of fuel gases. Numerical simulation is also applied to analyze the details of internal combustion processes.
     Inhibiting quenching requires sufficient heat for ignition energy. According to the experimental results,both heating the combustor and preheating premixture stabilize the flame. Take preheating as an example:at the total flow rate of 0.12 L/min, the equivalence ratio extends from 0.339-3.639 to 0.317-4.304 after the premixture temperature increases from environment temperature to 250℃. Catalyst stabilizes the combustion through decreases the quenching temperature. According to the experimental results of catalytic combustor, at 0.12 L/min, the equivalence ratio in the rich case increases from 11.90 to 18.03 after applying catalyst.
     In the catalytic combustor, the reaction intensity is weakened, because the heterogeneous reaction inhibits the homogeneous one. As a result, the combustor wall has relatively even and low temperature distribution. For the purpose of investigating the interaction of two reaction modes, performances of catalytic combustors with different wall materials are compared. Moreover, numerical simulation is applied to analyze the details of combustion processes. According to the simulation results, wall material affects the reaction mode. The combustor wall with lower thermal conductive coefficient converts the reaction mode to homogeneous reaction, thus enhances the reaction intensity. For example, at the total flow rate of 0.12 L/min, the order of magnitude of OH concentration is -3 in the quartz-glass combustor, indicating homogeneous reaction domains. But in the copper combustor, the order of magnitude decreases to -10, thus heterogeneous reaction domains. Accordingly, the reaction temperature decreases from 1474 K to 1000 K. Although the catalytic combustor inhibits quenching effectively, the weak reaction intensity may induces blowout.
引文
[1]Ian A. I.A. Waitz, GGauba, Y.S.T Tzeng, Combustors for micro-gas turbine engines[J], ASME J. Fluids Eng.120 (1998) 109-117.
    [2]G J. Snyder, J. R. Lim, C. K. Huang, et al., Thermoelectric microdevice fabricated by a MEMS-like electrochemical process[J], Nature Materials & Design 2 (2003) 528-531.
    [3]Jeongmin Ahn, Craig Eastwood, Lars Sitzki, et al., Gas-phase and catalytic combustion in heat-recirculating burners[J], Proceedings of the Combustion Institute 30 (2005) 2463-2472.
    [4]C. M. Spadaccini, A. Mehra, J. Lee, et al., High power density silicon combustion systems for micro gas turbine engines[J], Journal of Engineering for Gas Turbines and Power-Transactionsof the Asme 125 (2003) 709-719.
    [5]Stuart A. Jacobson, Alan H. Epstein, An information survey of power MEMS, The international symposium on micro-mechanical engineering, Tsukuba, Japan,2003
    [6]Yongsheng Zhang, Junhu Zhou, Weijuan Yang, et al., Burning stability analysis of micro-combustion and experimental research of combustion in microscale tube[J], Journal of Zhejiang University (Engineering Science) (2006) 1178-1182.
    [7]Junhu Zhou, Maosheng Liu, Weijuan Yang, et al., Performance Analysis of the Microcombustion Engine for Micro Air Vehicles[J], Journal of Combustion Science and Technology (2006) 193-197.
    [8]A.C. Fernandez-Pello, Micro-power generation using combustion:issues and approaches, Twenty-Ninth International Symposium on Combustion, The Combustion Institute, Sappor, Jappan,2002, pp.1-45.
    [9]S.A. Jacobson, A.H.Epstein. An Informal Survey Of Power MEMS[C]. The International Symposium on Micro-Mechanical Engineering; 2003 Dec.1-3; Tsukuba, Japan.
    [10]C.M. Spadaccini, Amit A. Mehra, J. Lee, High power density silicon combustion system for micro gas turbine engines[J], Eng gas turbines Power 9 (2003) 517-527.
    [11]C. H. Kuo, P. D. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors[J], Proceedings of the Combustion Institute 31 (2007) 3277-3284.
    [12]周俊虎,刘茂省,杨卫娟,et al.,微燃烧发动机应用于微型飞行器的性能分析[J],燃烧科学与技术12(2006)193-197.
    [13]李德桃,潘剑锋,薛宏,et al.,微动力机电系统的发展动态与展望[J],江苏大学学报:自然科学版(2006)489-492.
    [14]潘剑锋,黄俊,刘久斌,et al.,微型发动机的若干发展动态及分析[J],小型内燃机与摩托车35(2006)46-50.
    [15]A.H. Epstein, S.D. Senturia, G. Anathasuresh, et al., POWER MEMS AND MICROENGINES, IEEE Transducers' 97 Conference, Chicago,1997.
    [16]A. H. Epstein, S. D. Senturia, Microengineering:Macro Power from Micro Machinery,1997, pp.1211-1215.
    [17]A. H Epstein, S. DSenturia, GAnathasuresh. Power MEMS and microengines[C]. Proceeding of international conference on transducer; 1997 1997; Chicago.
    [18]C. H. Lee, K. C. Jiang, P. Jin, et al., Design and fabrication of a micro Wankel engine using MEMS technology[J], Microelectronic Engineering 73-74 (2004) 529-534.
    [19]W. M. Yang, S. K. Chou, C. Shu, et al., Microscale combustion research for application to micro thermophotovoltaic systems[J], Energy Conversion and Management 44 (2003) 2625-2634.
    [20]潘剑锋,杨文明,李德桃,et al.,微热光电系统原型的设计制造和测试[J],工程热物理学报(2005)887-890.
    [21]潘剑锋,李德桃,邓军,et al.,微热光电系统中的微燃烧研究[J],热科学与技术3(2004).
    [22]张永生,周俊虎,杨卫娟,et al.,微型燃烧器热电转化实验研究[J],中国电机工程学报26(2006)114-118.
    [23]Yongsheng Zhang, Junhu Zhou, Weijuan Yang, et al., Study of the Experiment on Thermoelectric-microcombustors[J], Proceedings of the CSEE (2006) 114-118.
    [24]胡宇群,微型飞行器中的若干动力学问题研究[M],南京航空航天大学,南京,2002.
    [25]A. P. London, A. A. Ayon, A. H. Epstein, et al., Microfabrication of a high pressure bipropellant rocket engine[J], Sensors and Actuators A:Physical 92 (2001) 351-357.
    [26]Aaron J. Knobloch Kelvin Fu, Fabian C. Martinez,David C. Walther, Carlos Fernandez-Pello, AI P. Pisano,. design and experimental results of small-scale rotary engines[C]. presented at Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition; 2001; New York.
    [27]Khalil Najafi Chunbo Zhang, Luis P. Bemal, Peter D. Washabaugh. Micro Combustion-Thermionic Power Generation:Feasibility, Design and Initial Results[C]. presented at The 12th International Conference on Solid State Sensor Actuators and Microsyslems; 2003; Boston.
    [28]Jinsong Hua, Meng Wu, Kurichi Kumar, Numerical simulation of the combustion of hvdrogen-air mixture in micro-scaled chambers Part Ⅱ:CFD analysis for a micro-combustor[J], Chemical Engineering Science 60 (2005) 3507-3515.
    [29]Loy Chuan Chia, Bo Feng, The development of a micropower (micro-thermophotovoltaic) device[J], Journal of Power Sources 165 (2007) 455-480.
    [30]Paul D. Ronney, Dionisios G Vlachosi, A CFD study of propane/air microtlame stability[J], Combustion and Flame 138 (2004) 97-107.
    [31]薛元,陈剑波,姚强,超微型燃烧器的研究现状及进展[J],燃气轮机技术15(2002)22-40.
    [32]Yung-Cheng Chen, Robert W. Bilger, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion:Ⅱ. Lean hydrogen/air Bunsen flames[J], Combustion and Flame 138 (2004) 155-174.
    [33]S. Yuasa, K. Oshimi, H. Nose, et al., Concept and combustion characteristics of ultra-micro combustors with premixed flame[J], Proceedings of the Combustion Institute 30 (2005) 2455-2462.
    [34]S. W. Churchill, Chem. Eng. Technol 12 (1989) 249-254.
    [35]岑可法,樊建入,燃烧流体力学[M],水利电力出版社北京,1991.
    [36]Geropp. D, Leder. A, LDA-Measurements and Some Theorectical Aspects of Seperated Flows Pro.5th Symp. on Turbulents Flows 1985.
    [37]徐旭常,关于煤粉火焰稳定性和煤粉预燃室及火焰稳足船的位置[J],工程热物理学报9(1988).
    [38]付维标,大速差同向射流-一种新型火焰稳定与强化燃烧的空气动力学原理[J], 中国科学(A辑)8(1987).
    [39]吴承康,The Use of Nonsymmetrical Jets for the Stabilization of Low Grade coal Flames,22Nd Symp. on Combustion,1988.
    [40]王月明,曹欣玉,岑可法,利用反吹射流稳燃和控制水煤浆燃烧的理论和实验研究[J],工程热物理学报9(1988).
    [41]R.I.Masel, M.Shannon. Microcombustor Having Submillimeter Critical Dimensions[C]. The Board of Trustees of the University of Illinois; 2001; Urbana.
    [42]D. G. Norton, D. G. Vlachos, A CFD study of propane/air microflame stability[J], Combustion and Flame 138 (2004) 97-107.
    [43]D. Walther B. Cooley, A.C. Fernandez-Pello. Exploring the Limits of Microscale Combustion[C]. Fall Technical Meeting, Western States Section/Combustion Institute; 1999; Irvine.
    [44]Nam Il Kim, Takuya Kataoka, Shigenao Maruyama, et al., Flammability limits of stationary flames in tubes at low pressure[J], Combustion and Flame 141 (2005) 78-88.
    [45]Nam Il Kim, Uen Do Lee, Hyun Dong Shin, Laminar premixed flame propagation using large axial velocity variation[J], Symposium (International) on Combustion 28 (2000) 1867-1874.
    [46]Kaoru Maruta, Takuya Kataoka, Nam Il Kim, et al., Characteristics of combustion in a narrow channel with a temperature gradient[J], Proceedings of the Combustion Institute 30 (2005) 2429-2436.
    [47]Kaoru Maruta, Koichi Takeda, Jeongmin Ahn, et al., Extinction limits of catalytic combustion in microchannels[J], Proceedings of the Combustion Institute 29 (2002) 957-963.
    [48]潘剑锋,李德桃,杨文明,et al.,微热光电系统燃烧器的研究[J],中国机械工程(2005)527-529.
    [49]李军伟,钟北京,甲烷/氧气在微细直管内的燃烧和散热研究[J],燃烧科学与技术14(2008)199-204.
    [50]李军伟,钟北京,微细直管燃烧器的散热损失研究[J],中国电机工程学报27(2007)59-64.
    [51]王国锋,钟北京,唐皇哉,微细通道中甲烷与氧气的预混燃烧[J],燃烧科学与技术(2006)97-100.
    [52]胡国新,王明磊,微细通道内可燃气体预混燃烧实验与微型发动机燃烧方案[J],热能动力工程(2003)352-355.
    [53]胡国新,王明磊,李艳红,一种微细型腔内氢气与空气预混燃烧的实验研究[J],中国电机工程学报(2004)201-204.
    [54]张永生,周俊虎,杨卫娟,et al.,T型微细管道内氢气空气预混燃烧实验研究[J],中国电机工程学报25(2005)128-131.
    [55]曹海亮,徐进良,张永立,et al.,微小尺度下氢气预混燃烧的实验研究[J],力学学报(2006)316-322.
    [56]D. Bradley, P. H. Gaskell, A. Sedaghat, et al., Generation of PDFS for flame curvature and for flame stretch rate in premixed turbulent combustion[J], Combustion and Flame 135 (2003) 503-523.
    [57]S. Patel, S. S. Ibrahim, M. A. Yehia, et al., Investigation of premixed turbulent combustion in a semi-confined explosion chamber[J], Experimental Thermal and Fluid Science 27(2003)355-361.
    [58]Chang R. Choi, Kang Y. Huh, Development of a Coherent Flamelet Model for a Spark-Ignited Turbulent Premixed Flame in a Closed Vessel[J], Combustion and Flame 114 (1998)336-348.
    [59]James F. Driscoll, Turbulent premixed combustion:Flamelet structure and its effect on turbulent burning velocities[J], Progress in Energy and Combustion Science In Press, Corrected Proof.
    [60]H. Boughanem, A. Trouve, The domain of influence of flame instabilities in turbulent premixed combustion[J], Symposium (International) on Combustion 27 (1998) 971-978.
    [61]Gwang G. Lee, Kang Y. Huh, Hideaki Kobayashi, Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner[J], Combustion and Flame 122 (2000) 43-57.
    [62]Yung-Cheng Chen, Robert W. Bilger, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion--Ⅰ:hydrocarbon/air bunsen flames[J], Combustion and Flame 131 (2002) 400-435.
    [63]I. G. Shepherd, R. K. Cheng, T. Plessing, et al., Premixed flame front structure in intense turbulence[J], Proceedings of the Combustion Institute 29 (2002) 1833-1840.
    [64]C. J. Lawn, R. W. Schefer, Scaling of premixed turbulent flames in the corrugated regime[J], Combustion and Flame 146 (2006) 180-199.
    [65]Omer L. Gulder, Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime[J], Proceedings of the Combustion Institute 31 (2007) 1369-1375.
    [66]S. S. Shy, E. I. Lee, N. W. Chang, et al., Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner[J], Symposium (International) on Combustion 28 (2000) 383-390.
    [67]Timothy T. Leach, Christopher P. Cadou, The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors[J], Proceedings of the Combustion Institute 30 (2005) 2437-2444.
    [68]Bayt.R.L, Analysis, Fabrication and Testing of a MEMS-Fabricated Micoropropulsion Svstem MIT
    Cambridge,1999.
    [69]Piokos.E.S, Brcucr.K.S, Numerical modeling of micornechanical devices using the direct simulation moute carlo method[J], Journal of fluid Engineering (1996) 464-469.
    [70]Bird.G.A, Approach to translational equilibrium in a rigid sphere gas[M], Phys Fluids,1963.6.
    [71]Ivanov.M.S, Markelov.G.N, Numerical study of cold gas micornozzle flows, The 37th aerospase science Meeting & Exhibit, AIAA, Reno Nu,1999.
    [72]张先锋,刘明侯,张根烜,et al.,微喷管流场及其推力性能数值模拟[J],宇航学报(2006)720-725.
    [73]邵敏,刘向军,微细直管内甲烷燃烧的数值模拟研究[J],工业加热37(2008)13-17.
    [74]陈俊杰,王谦,氢气微尺度催化燃烧过程的数值模拟[J],能源研究与利用(2009)13-16.
    [75]李德桃,潘剑锋,邓军,et al.,微型发动机的燃烧模型和数值模拟[J],燃烧科 学与技术(2003)183-185.
    [76]钟北京,洪泽恺,甲烷微尺度催化燃烧的数值模拟[J],工程热物理学报(2003)173-176.
    [77]钟北京,洪泽恺,微燃烧器内甲烷催化燃烧的数值模拟[J],热能动力工程(2003)584-588.
    [78]钟北京,燕健,微通道内甲烷空气预混气的熄火极限[J],倩华大学学报47(2007)2044-2047.
    [79]刘茂省,杨卫娟,周俊虎,et al.,H2/空气预混燃烧模拟计算和散热的研究[J],燃烧科学与技术14(2008)259-264.
    [80]张永生,周俊虎,杨卫娟,et al.,微燃烧稳定性分析和微细管道燃烧实验研究[J],浙江大学学报40(2006)1178-1182.
    [81]丁敏,刘明候,陈义良,et al.,微细圆管中的稳定火焰传播[J],燃烧科学与技术13(2007)376-381.
    [82]林博颖,张根炬,刘明侯,et al.,微小空腔内气体的预混燃烧[J],燃烧科学与技术13(2007)269-274.
    [83]黄显峰,赵黛青,张春林,et al.,微尺度扩散火焰特性的数值解析[J],工程热物理学报26(2005)883-886.
    [84]曹彬,陈光文,袁权,微通道反应器内氢气催化燃烧[J],化工学报55(2004)42-46.
    [85]Niket S. Kaisare, Soumitra R. Deshmukh, Dionisios G. Vlachos, Stability and performance of catalytic microreactors:Simulations of propane catalytic combustion on Pt[J], Chemical Engineering Science 63 (2008) 1098-1116.
    [86]Paul D. Ronney, Analysis of non-adiabatic heat-recirculating combustors[J], Combustion and Flame 135 (2003) 421-439.
    [87]Stuart W. Churchill, Thermally stabilized combustion[J], Chemical Engineering & Technology 12 (1989) 249-254.
    [88]Amanda J. Barra, Janet L. Ellzey, Heat recirculation and heat transfer in porous burners[J], Combustion and Flame 137 (2004) 230-241.
    [89]Amanda J. Barra, Guillaume Diepvens, Janet L. Ellzey, et al., Numerical study of the effects of material properties on flame stabilization in a porous burner[J], Combustion and Flame 134 (2003) 369-379.
    [90]邓军,李德桃,潘剑锋,et al.,微型火焰管中燃烧的研究[J],工程热物理学报(2004)537-539.
    [91]Junwei Li, Beijing Zhong, Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor[J], Applied Thermal Engineering In Press, Corrected Proof.
    [92]S.A. Lloyd, F.J. Weinberg, A Burner For Mixtures Of Very Low Heat Content[J], Nature 251(1974)47-49.
    [93]S.A Lloyd, F.J. Weinberg, Nature 251 (1974) 47-49.
    [94]李军伟,钟北京,王建华,甲烷/空气在微小型Swiss-roll燃烧器内燃烧的实验研究[J],热能动力工程23(2008)195-200.
    [95]J. Vican, B. F. Gajdeczko, F. L. Dryer, et al., Development of a microreactor as a thermal source for microelectromechanical systems power generation, Twenty-Ninth International Symposium on Combustion, Sapporo, Japan 2002, pp.909-916.
    [96]George A. Boyarko, Chih-Jen Sung, Steven J. Schneider, Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications[J], Proceedings of the Combustion Institute 30 (2005) 2481-2488.
    [97]Ahn Jeongmin, Eastwood Craig, Sitzki Lars, et al., Gas-phase and catalytic combustion in heat-recirculating burners[J], Proceedings of the Combustion Institute 30 (2005) 2463-2472.
    [98]J. Vican, B.F. Gajdeczko, F. L. F.L. Dryer, et al., Development of a microreacto as a thmal source for micro-electro-mechnaical systms pwer generation[J], Proceedings of the Combustion Institute 29 (2002) 909-916.
    [99]A. Mehra C. M. Spadaccini, J. Lee, X. Zhang, S. Lukachko, and I. A. Waitz, High power density silicon combustion systems for micro gas turbine engines[J], Journal of Engineering for Gas Turbines and Power-Transactionsof the Asme 125 (2003) 709-719.
    [100]曹彬,陈光文,袁权,微通道反应器内氢气催化燃烧[J],化工学报(2004)42-47.
    [101]Michael Grimm, Sandip Mazumder, Numerical investigation of wall heat conduction effects on catalytic combustion in split and continuous monolith tubes[J], Computers & Chemical Engineering In Press, Corrected Proof.
    [102]Urs Dogwiler, Peter Benz, John Mantzaras, Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions[J], Combustion and Flame 116 (1999) 243-258.
    [103]Jamelyn D. Holladay, Evan O. Jones, Max Phelps, et al., Microfuel processor for use in a miniature power supply [J], Journal of Power Sources 108 (2002) 21-27.
    [104]岑可法,姚强,骆仲泱,et al.,高等燃烧学[M],浙江大学出版社,杭州,2002.
    [105]杨世铭,陶文铨,传热学[M],高等教育出版社,北京,1998.
    [106]Thierry Poinsot, Sastien Candel, Arnaud Trouv, Applications of direct numerical simulation to premixed turbulent combustion[J], Progress in Energy and Combustion Science 21 (1995)531-576.
    [107]FLUENT 6.1 User's Guide[M],2003-01-25.
    [108]Nam Il Kim, Kaoru Maruta, A numerical study on propagation of premixed flames in small tubes[J], Combustion and Flame 146 (2006) 283-301.
    [109]D. G Norton, D. G. Vlachos, Combustion characteristics and flame stability at the microscale:a CFD study of premixed methane/air mixtures[J], Chemical Engineering Science 58(2003)4871-4882.
    [110]R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN Release 4.0[M], San Diego, CA,2004.
    [111]Guan-Bang Chen, Yei-Chin Chao, Chih-Peng Chen, Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation[J], International Journal of Hydrogen Energy 33 (2008) 2586-2595.
    [112]Junwei Li, Beijing Zhong, Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor[J], Applied Thermal Engineering 28 (2008) 707-716.
    [113]Zhijun Zhou, Yang Wang, Weijuan Yang, et al. Improving Micro Combustor Stability With External Heating [C]. Micro/Nanoscale Heat & Mass Transfer International Conference; 2009; Shanghai, China.
    [114]X. Lan, J. Gao, C. Xu, et al., Numerical Simulation of Transfer and Reaction Processes in Ethylene Furnaces[J], Chemical Engineering Research and Design 85 (2007) 1565-1579.
    [115]N. S. Kaisare, D. G. Vlachos, Optimal reactor dimensions for homogeneous combustion in small channels[J], Catalysis Today 120 (2007) 96-106.
    [116]Guan-Bang Chen, Yei-Chin Chao, Chih-Peng Chen, Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation[J], International Journal of Hydrogen Energy In Press, Corrected Proof.
    [117]Nam Il Kim, Souichiro Kato, Takuya Kataoka, et al., Flame stabilization and emission of small Swiss-roll combustors as heaters[J], Combustion and Flame 141 (2005) 229-240.
    [118]Guan-Bang Chen, Chih-Peng Chen, Chih-Yung Wu, et al., Effects of catalytic walls on hydrogen/air combustion inside a micro-tube[J], Applied Catalysis A:General 332 (2007) 89-97.
    [119]V.V.Zamashchikov, S.S.Minaev, Limits of flame propagation in a narrow channel with gas filtration[J], Shock Waves 37 (2001) 21-26.
    [120]W. M. Yang, S. K. Chou, C. Shu, et al., Combustion in micro-cylindrical combustors with and without a backward facing step[J], Applied Thermal Engineering 22 (2002) 1777-1787.
    [121]Wonyoung Choi, Sejin Kwon, Hyun Dong Shin, Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor[J], International Journal of Hydrogen Energy 33 (2008) 2400-2408.
    [122]R. Schwiedernoch, S. Tischer, O. Deutschmann, et al., Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith[J], Proceedings of the Combustion Institute 29 (2002) 1005-1011.
    [123]Seyed-A. Seyed-Reihani, Gregory S. Jackson, Effectiveness in catalytic washcoats with multi-step mechanisms for catalytic combustion of hydrogen[J], Chemical Engineering Science 59 (2004) 5937-5948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700