白杨杂交试验与杂种无性系多性状综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交育种是杨树新品种培育最重要的手段。本研究以白杨派内不同种及杂种为亲本,通过人工控制授粉,利用组织培养的方法对幼胚进行挽救,获得以毛白杨为母本的杂种群体。同时对先前杂交获得的经苗期试验初选的29个白杨杂种无性系和1个选种无性系(LM50)进行4个地点2-4年树高、胸径测定分析,对这些无性系进行遗传稳定性评价。进一步利用生长性状、光合特性和抗氧化系统对30个白杨杂种无性系进行综合评价。同时采用SSR标记特异性扩增分析的方法构建这些白杨杂种无性系指纹图谱。主要研究结果如下:
     1.利用17个亲本材料,选配了19个杂交组合开展白杨派内不同种、杂种的杂交试验。对杂交亲本进行花序长度、宽度测定分析。结果表明不同杨树单株花序长度、宽度存在显著差异。雄株花序长度变化范围为44.40-126.43mm,宽度变化范围为11.29-15.73mm。雌株花序长度变化范围为13.84-25.48mm,宽度变化范围为5.01-7.30mm。从杂交亲和力来看,以银腺杨和毛新杨作母本的杂交组合亲和力较高,获得种子量较大。以毛白杨为母本的杂交组合在幼胚未成熟时果穗容易脱落。利用组织培养方法培育出以毛白杨为母本的6个杂交组合的杂交子代420株。对2年生子代苗高、地径调查分析结果表明不同杂交组合间子代苗高、地径差异显著。苗高平均值为49.67-84.42cm,地径平均值为5.61-10.86mm。相同杂交组合内苗高变异系数为13.66%-45.32%,地径变异系数为13.03%-39.51%,为无性系苗期选择提供了依据。
     2.以实验室先前杂交获得的杂种无性系进行苗期试验后,初选出29个苗期优良无性系,另加1个毛白杨选种无性系(LM50),共30个无性系为材试材,采用完全随机区组设计试验。对其4年生幼林的生长性状进行调查分析,结果发现30个白杨杂种无性系树高、胸径和材积在不同地点间、无性系间以及无性系与地点的交互作用间存在极显著差异(P<0.01)。4年生树高、胸径和材积的表型变异系数范围为19.84%-69.04%,遗传变异系数范围为14.65%-62.59%。遗传变异系数占表型变异系数比重逐年增大,表明随着植株增长,其变异增大,且这种变异主要由遗传因素引起。白杨杂种无性系树高、胸径和材积的重复力随着树龄的增加而增大,4年生各指标重复力为0.8887-0.9902。白杨杂种无性系树高、胸径和材积年-年相关性分析结果表明1年生胸径与4年生胸径表型相关系数高达0.8075,遗传相关系数达0.8841。3年生胸径和4年生胸径表型相关系数达0.9838,遗传相关系数达0.9979。表型相关和遗传相关可以为无性系选择提供理论依据。对不同地点白杨杂种无性系进行适应性分析结果发现无性系BL28、BL87、BL69、BL101和BL103具有广泛适应性,在4个地点栽培差异不大,其余无性系在不同地点显示出特殊地域适应性。
     3.对河北省邯郸市峰峰矿区试验点的30个白杨杂种无性系的17个生长和形态性状进行综合评价,结果表明白杨杂种无性系间17个性状差异达极显著(P<0.01)水平。无性系各性状的表型变异系数范围为15.63%-57.50%,遗传变异系数范围为8.99%-52.57%。各指标重复力变化范围为0.7734-0.9849,表明白杨杂种无性系间存在丰富的遗传变异,且变异受强的遗传控制,为无性系筛选提供基础。利用30个白杨杂种无性系的14个性状进行主成分分析,可以把14个性状分成3个主成分,第一主成分是树高、胸径等生物量性状,第二主成分主要包括通直度、节间距等干形性状,第三主成分包括叶片长度、宽度和叶面积等叶片性状。利用主成分评价无性系,BL106、BL107、BL23、BL46、BL78和BL83第一主成分值Y1是正值,且较大,表明这几个无性系树高、地径、胸径、材积、冠幅等生长量较大;无性系BL104、BL106、BL107、BL28、BL69和BL85第二主成分Y2值较大,说明这几个无性系通直度、节间距和分枝度较大;无性系BL106、LM50、BL104、BL107、BL98和BL49第三主成分Y3值较大,表明这些无性系叶片的长度、宽度和叶面积较大。
     4.测定30个白杨杂种无性系的光合指标,结果表明无性系Pn、Gs和Tr日变化呈双峰曲线,Ci日变化曲线呈先下降后上升的趋势。Pn-Par响应曲线和Pn-Ca响应曲线均呈S形,光饱和点lsp处于1396.55-1469.86μmol·m-2·s-1之间,光补偿点lcp处于33.08-81.17μmol.m-2.s-1之间。二氧化碳饱和点csp处于974.03-1080.50μmol.mol-1间,二氧化碳补偿点ccp处于74.03-93.35μmol.mol-1之间。30个白杨杂种无性系间瞬时光合指标呈显著差异(P<0.01)水平,平均Pn、Gs、Ci和Tr分别为19.82μmol.m-2.s-1,0.37mo1.m-2·s-1,263.68μmol·mol-1和4.38 mol·m-2.s-1。光合指标Pn、Gs、Tr与树高、胸径均达显著正相关水平,表明光合指标对无性系生长有很大影响。
     5.通过对白杨杂种无性系不同月份叶绿素含量、MDA含量、POD活性和SOD活性动态变化规律研究发现,白杨杂种无性系叶绿素含量平均值呈现“低-高-低”的变化趋势。丙二醛(MDA)含量平均值处于一直上升状态,而过氧化物酶(POD)和超氧化物歧化酶(SOD)活性呈现先上升后下降的趋势。相关性分析表明POD、SOD、叶绿素含量与生物量显著正相关,MDA含量与生物量显著负相关。利用聚类分析,对无性系预抗性进行评价,把30个白杨杂种无性系分为3类,第一类酶活力最高,预抗性最强,在受到胁迫时受伤害最小,第二类无性系预抗性较强,第三类无性系预抗性最差,在遭遇胁迫时最容易受到伤害。
     6.利用16对SSR引物对30个白杨杂种无性系进行特异性扩增,共获得40条DNA特异性条带,每对引物扩增的DNA谱带数目处于2-6条间,平均2.5条谱带,扩增的DNA带大小在100-600bp之间。30个白杨杂种无性系之间遗传距离变化范围在0.0864-0.2716,平均遗传距离为0.1436。利用DNA谱带进行无性系指纹图谱的构建,发现白杨杂种无性系间亲缘关系较近,可以用多对引物组合来实现无性系的区分。
     本研究利用生物量、干形、光合指标、抗氧化系统对白杨杂种无性系综合评价,同时利用SSR分子标记对无性系进行指纹图谱构建,为优良无性系选择提供理论依据,具有重要的理论意义和应用价值。
Cross breeding is the most important method to breed new poplar varieties. This study used different poplar species and hybrid clones as parent materials, saving the immature embryos by artificial pollination and tissue culture in order to get hybrid population bred by Populus tomentosa. This study also analyzed the heights and diameters at breast height of trees aged from two to four years in four sites, and these trees included 29 poplar hybrid clones and one selected clone (LM50) by previous cross breeding during seedling test. Genetic stabilities of these clones were also evaluated. Comprehensive evaluation of 30 poplar hybrid clones was made by analyzing growth characters, photosynthesis and antioxidant system. Fingerprint mapping of hybrid clones was established by SSR specific amplification analysis. The results were as follows:
     1.19 cross combinations were selected from 17 parent materials to form cross experiment among species and hybrid clones in Leuce. By analyzing flower buds length and width of crossing parents, we found that there was significantly difference of flower anthotaxys length and width between individuals. The range of male plants flower anthotaxys length was between 44.40 and 126.43mm, and the range of width was between 11.29 and 15.73mm, while the ranges of female plant were from 13.84 to 25.48mm, and from 5.01 to 7.30mm respectively. The hybridization compatibility and the amount of seeds were high when using P. alba×P. glandulosa and P. tomentosa×P. bolleana as hybrid parents. The clusters of clones with P. tomentosa as hybrid parent were easily to shed when young embryos were immature.420 P. tomentosa hybrid progenies from 6 cross combinations were produced by tissue culture. The result of analyzing seedling height and ground diameter of 2-year offspring showed that there was significant difference of seedling height and ground diameter among different cross combinations. The average seedling height was from 49.67 to 84.42cm and the average ground diameter was between 5.61 and 10.86mm. The variation coefficient of height in the same cross combination was from 13.66% to 45.32%, and that of ground diameter was between 13.03% and 39.51%, and these results provided evidence for clone selection during seedling.
     2.29 superior clones and one poplar selected clone (LM50) were chosen as test materials, and field experiments were set in randomized blocks. By investigating growth characters of 4-year young plantation, we found that the heights, diameters at breast height and volumns of 30 poplar hybrid clones were significantly different among different sites, clones and interaction of clones and sites. The range of phenotypic variation coefficient was between 19.84% and 69.04%, and the range of genetic variation coefficient was from 14.65% to 62.59%. The proportion of genetic variation coefficient in phenotypic variation coefficient increased every year, indicating that the variation was caused mainly by genetic fators. The repeatabilities of heights, diameters at breast height and volumns of 30 poplar hybrid clones increased by the ages of trees, and the repeatabilities of each factor during 4 years were between 0.8887 and 0.9902. The correlation analysis of poplar heights, diameters at breast height and volumns showed that the phenotypic variation coefficient of diameters at breast height between one-year and four-year poplars was up to 0.8075, and that the genetic variation coefficient was 0.8841. While the phenotypic variation coefficient of diameters at breast height between three-year and four-year poplars was 0.9838 and with genetic variation coefficient 0.9979. Phenotypic variation coefficient and genetic variation coefficient could provide theoretical basis for clone selection. The adaptability analysis of poplar clones at different sites showed that clones of BL28, BL87, BL69, BL101 and BL103 had wide adaptation and made no difference planting in 4 sites. While the other clones showed particular regional adaptabilities at different sites.
     3. By comprehensively evaluating 17 indices in 30 poplar hybrid clones in Fengfeng mining area in Handan, Hebei Province, we found that these indices among different hybrid clones were extremely significantly different (P<0.01). The range of phenotypic variation coefficient of hybrid clones was between 15.63% and 57.50%, and the range of genetic variation coefficient was from 8.99%to 52.57%. The repeatabilities of each factor were between 0.7734 and 0.9849, showing that there was ample genetic diversity in poplar clones and the variation was highly controled by genes, and this result can provide basis for clone selection. We used principal component analysis to divide 14 indices of poplar clones into 3 principal components, and the first principal component was biomass characters such as height and diameter at breast height, the second was stem form characters such as stem straightness and distance between leaves, the third was leaves characters such as leaf length, width and leaf area. The result of principal component analysis showed that principal component values Y1 of clones BL106, BL107, BL23, BL46, BL78 and BL83 were positive and high, and indicated that the biomass such as height, ground diameter, diameter at breast height, volumn and crown width were high; while principal component values Y2 of clones BL104, BL106, BL107, BL28, BL69 and BL85 were high, revealing that the straightness, distance between branch, and branching degree of clones were high, and the principal component values Y3 of clones BL106, LM50, BL104, BL107, BL98 and BL49 were higher and showed the length, width and area of leaves of these clones were higher.
     4. The results of photosynthetic indices of 30 poplar hybrid clones showed that the diurnal variations of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were classified as double-peak curves, while diurnal intercellular CO2 concentration (Ci) decreased at first and then increased. Pn-Par response curves and Pn-Ca response curves were classified as S-curve, the light saturation points (lsp) were between 1396.55 and 1469.86μmolm-2s-1, and light compensation points (lcp) were between 33.08 and 81.17μmolm-2s-1. CO2 saturation points (csp) were between 974.03 and 1080.50μmol CO2 mol-1, and CO2 compensation points (ccp) ranged from 74.03 to 93.35μmol CO2 mol-1. The difference of instantaneous photosynthetic indices among 30 poplar hybrid clones was extremely significant (P<0.01), and the average Pn, Gs, Ci and Tr were 19.82μmol·m-2·s-1, 0.37 mol·m-2·s-1,263.68μmol·mol-1 and 4.38 mol·m-2·s-1 respectively. Photosynthetic indices, Pn、Gs、Tr were significantly positively related to the height and diameter at breast heigh of trees, indicating that photosynthetic indices had great effect on growth of clones.
     5. Study on the monthly dynamic variation of contents of chlorophyll, MDA and activities of POD and SOD of poplar clones showed that trend of chlorophyll contents was low-high-low. The average malondialdehyde (MDA) kept increasing, while peroxidase (POD) and superoxide dismutase (SOD) increased at first and then decreased. Correlation analysis showed that POD,SOD and chlorophyll content were significantly positively related to biomass, while MDA content was significantly negtively correlated to biomass. We evaluated the pre-resistance of different clones by cluster analysis and classified the 30 hybrid clones into 3 groups, and the first group had high enzyme activity, revealing their most strong resistance and would be vulnerable by stress. The second group had stronger resistance, and the third group with low resistance would be susceptible to stress.
     6.30 poplar hybrid clones were specifically amplified by using 16 pairs of SSR primers, and 40 DNA specific bands were obtained, the numbers of DNA bands which were amplified by each pair of primers were from 2 to 6 and the average number of bands was 2.5, and the DNA bands were between 100-600bp. The range of genetic distance among 30 poplar clones was from 0.0864 to 0.2716, with an average distance of 0.1436. Fingerprinting map of hybrid clones was established with DNA bands, and the result showed that there was close genetic relationship among poplar hybrid clones.
     In present study, biomass, stem form, photosynthetic indices and antioxidant system were used to comprehensively evaluate poplar hybrid clones. Meanwhile, fingerprinting map was also established for the evaluation. All these provided the valuable theoretical basis for superior hybrid clones selection.
引文
1. Dickmann D I.Stuart K W.美洲东北部杨树的遗传改良.杨树,1985,2(2):81-84
    2. 白爽,李俊涛,姜静,等.转柽柳晚期胚胎富集蛋白基因烟草的耐低温性分析.生物技术通讯,2006,17(4):563-566
    3. 柏章才,马亚怀,李彦丽.2006年国家甜菜品种区域试验品种稳定性测定.中国糖料,2009,2:28-30
    4. 蔡立森,王建武,姜龙,等.国家黄淮南片冬小麦区试品种稳定性分析.安徽农业科学,2007,35(30):9493-9500
    5. 曹德昌,李景文.胡杨种群生殖生态学研究进展.科学技术与工程,2009,9(5):1202-1208
    6. 曹雪丹,李文华,鲁周民,等.北缘地区枇杷春季光合特性的研究.西北林学院学报,2008,23(6):33-37
    7. 陈碧云,伍晓明,张冬晓,等.国家冬油菜区试新品种的SSR指纹图谱分析.分子植物育种,2008,6(4):709-716
    8. 陈冠喜,李开绵,叶剑秋等.6个木薯品种光合特性的研究.中国农学通报,2009,25(12):263-266
    9. 陈洪伟,康向阳,张正海,等.小青杨与胡杨杂交及其杂种后代分子鉴定.北京林业大学学报,2009,31(2):86-91
    10.陈鸿雕,刘闯,潘成良,等.我国杨树育种研究现状及其今后策略.辽宁林业科技,1992,(5):3-7
    11.陈奕吟,陈玉珍.低温锻炼对胡杨愈伤组织抗寒性、可溶性蛋白、脯氨酸含量及抗氧化酶活性的影响.山东农业科学,2007,3:46-49
    12.陈永忠,谭晓风,王德斌,等.林木分子标记辅助选择育种.湖南林业科技,2002,29(3):17-20
    13.代莉,李淑玲,孙红召.毛白杨抗虫、感虫无性系树皮内酶活性的初步探讨.贵州林业科技,2003,31(2):1-5
    14.澹台湛,李鹏,赵忠,等.白杨派杂种无性系生根特性研究.西北植物学报,2005,25(5):911-916
    15.邓松录,狄晓艳,王孟本,等.杨树无性系光合特征的研究.植物研究,2006,26(5):600-608
    16.董天慈.小叶杨与胡杨亚属间有性杂交.遗传,1980,(1):25-28
    17.杜克兵,许林,沈宝仙,等.黑杨派杨树杂交子代的遗传分析及苗期选择.华中农业大学学报,2009,28(5):624-630
    18.段艳凤,刘杰,卞春松,等.中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析.作物学报,2009,35(8):1451-1457
    19.段咏新,李松泉,傅家瑞,等.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻,1997,12(6)23-25
    20.方升佐.中国杨树人工林培育技术研究进展.应用生态学报,2008,19(10):2308-2316
    21.方升佐,徐锡增,吕士行.杨树定向培育.安徽.安徽科学技术出版社,2004
    22.方晓娟,李吉跃,聂立水,等.毛白杨杂种无性系稳定碳同位素值的特征及其水分利用效率.生态环境学报,2009,18(6):2267-2271
    23.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    24.房用,慕宗昭,王月海,等.16个杨树无性系蒸腾特性及其影响因子研究.山东大学学报,2006,41(6):168-172
    25.冯岑,陈建华,吴际友,等.4个台湾桤木无性系光合特性研究.中国农学通报,2009,25(12):75-78
    26.符毓秦,刘玉媛,李均安,等.美洲黑杨杂种无性系-陕林3、4号杨的选育.陕西林业科技,1990,(3):1-9
    27.高建社,樊军峰,张存旭,等.黑杨与白杨远缘杂交技术研究.西北农林科技大学学报,2006,34(10):72-80
    28.高健,黄大国.影响滩地杨树净光合速率的生理生态因子研究.中南林学院学报,2002,22(2):40-43
    29.高仁之.数量遗传学.成都:四川大学出版社,1986
    30.高岩,张汝民,姚云峰,等.盐胁迫对梭梭幼苗体内保护酶系统活性的影响.内蒙古大学学学报(自然科学版),1997,28(2):253-256
    31.苟萍,李冠,马东建.速生杨与钻天杨生理生化特性比较研究.西北植物学报,2003,23(4):656-659
    32.顾万春.统计遗传学.北京:科学出版社.2004
    33.管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F1无性系的多形状选择.南京林业大学学报,2005,29(2):6-10
    34.管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F]无性系遗传变异.浙江林学院学报,2004,21(4):376-381
    35.韩一凡,杨自湘,‘主建园,等.杨树抗性育种进展.见:林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991
    36.何贵平,陈益泰,关志山,等.杉木无性系生长及分枝习性的遗传变异.林业科学研究,1997,10(5):556-559
    37.胡斌,樊军锋,高建设,等.美洲黑杨与青杨、川杨和卜氏杨人工杂交及杂种苗生长和抗病性状测定.浙江林学院学报,2009,26(6):778-783
    38.黄德龙.柳桉家系适应性试验与遗传变异分析.山地农业生物学报,2008.27(3):207-212
    39.黄东森,朱湘渝,王瑞玲,等.中林46等12个杨树新品种杂交育种.见:林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991
    40.黄东森.中林“三北”1号.阔叶树优良无性系图谱.北京:北京农业大学出版社,1991
    41.黄东森.中林46等12个杨树新品种杂交育种.杨树遗传改良.北京:北京农业大学出版社,1991
    42.黄海,罗友丰,陈志英,等.统计分析spss10.0.北京:人民邮电出版社,2000
    43.黄金东,常国斌,刘畅.比利时时格哈兹博根杨树研究中心的杨树育种研究.辽宁林业科技,1998,4:4-7
    44.黄鹏,路生林.国外李品种区域化栽培试验.河北林果研究,2006,21(1):59-62
    45.黄秦军,苏晓华,张香华.SSR分子标记与林木遗传育种.世界林业研究,2002,15(3):14-21
    46.黄秦军,苏晓华.美洲黑杨×青杨F2代基本材性性状遗传变异研究.林业科学研究,2003,16(2):141-145
    47.黄秋婵,韦友欢.阳生植物和阴生植物叶绿素含量的比较分析.湖北农业科学,2009, 48(8):1923-1929
    48.江银荣,陆虎华,潘宝国,等.大麦新品种稳定性分析.安徽农学通报,2009,15(16):115-116
    49.姜磊,杨秀艳.生理生化指标在林木遗传育种中的应用.河北林果研究,2005,20(1):76-79
    50.姜锡兵,李博,张志毅,等.美洲黑杨与大青杨杂种无性系苗期光合特性研究.北京林业大学学报,2009,31(5):151-154
    51.姜笑梅,许明坤,黄东森.木材材性株内径向变异模型研究初探.林业科学,1997,33(2):168-175
    52.姜岳忠,李善文,秦光华,等.黑杨无性系区域化试验初报.林业科学,2006,42(12):143-147
    53.姜岳忠,秦光华,陈东洲,等.杨树胶合板材纸浆材新品种‘鲁林1号杨’.林业科学,2009,45(5):178
    54.姜岳忠,秦光华,乔玉玲,等.杨树胶合板材纸浆材新品种‘鲁林2号杨’.林业科学,2009,45(7):178
    55.姜岳忠,秦光华,乔玉玲,等.杨树胶合板材纸浆材新品种‘鲁林3号杨’.林业科学,2009,45(12):159
    56.解孝满,解荷锋,张有慧,等.毛白杨无性系木材性状与生长性状的相关分析.山东林业科技,2008,2:34-35
    57.金志明,金培林,金晓红,等.白林二号杨.吉林林业科技,2001,30(3):10-13
    58.金志明.白城小青黑杨的选育.杨树,1985,2(2):9-19
    59.金志明.白林3号杨树选育初报.吉林林业科技,1986,(2):1-4
    60.李宝福.福建中亚热带7个桉树无性系多点造林对比试验研究.林业科学研究,2007,20(2):181-187
    61.李伯林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报,1989,15(1):6-12
    62.李春迤,毛立仁,秦德智.日本栗引种试验初报.北方果树,2008(6):7-10
    63.李定航,高双喜.速生杨新品种-中林北京2000系列杨.中国林业.2001,3,37
    64.李合生.现代植物生理学.北京:高等教育出版社,2002
    65.李惠菊,徐秀梅.新疆杨、速生杨(中林-46)树种光合特性研究.防护林科技,2008,3:25-28
    66.李火根,黄敏仁,潘惠新,等.美洲黑杨新无性系生长动态遗传分析及早期选择.南京林业大 学学报,1996,4:1-6
    67.李火根,黄敏仁,潘惠新,等.美洲黑杨新无性系生长遗传稳定性分析.东北林业大学学报,1997,25(6):1-5
    68.李继东,毕会涛,冯健灿,等.毛白杨无性系有机物质含量和酶活性与抗性关系研究.河南科学,2006,24(4):517-520
    69.李金花,姜英淑,宋红竹,等.美洲黑杨与不同种源青杨杂种子代无性系遗传变异和初步选择研究.林业科学研究,2004;17(3)368-373
    70.李金花,苏晓华,张绮纹,等.用RAPD标记检测与杨树生长和物候期有关的QTLs.林业科学研究,1999,12(2):111-117
    71.李静怡,张志毅.三倍体毛白杨无性系光合特性的研究.北京林业大学学报,2000,22(6):12-15
    72.李开隆,杨传平,刘桂丰.黑龙江省杨树遗传育种研究进展.东北林业大学学报,2003,31(4):45-48
    73.李开隆,周光达,杨传平,等.中国山杨与美洲山杨杂交育种的研究.植物研究,2004,24(2):215-219
    74.李宽钰,黄敏仁,王明庥,等.白杨派、青杨派和黑杨派的DNA多态性及系统进化研究.南京林业大学学报,1996,20(1):6-11
    75.李丕军,林思祖,李宏,等.银×新无性系二次选优及无性系的推广.东北林业大学学报,2009,37(2):94-95
    76.李善文,张志毅,于志水,等.杨树杂交亲本分子遗传距离与子代生长性状的相关性.林业科学,2008,44(5):150-154
    77.李善文.杨树杂交亲本与子代遗传变异及分子基础研究.北京:北京林业大学博士学位论文,2004
    78.李世峰,张博,陈英,等.美洲黑杨种质资源遗传多样性的SSR分析.南京林业大学学报,2006,30(4):10-14
    79.李文荣,任建中,段自安.杨树与柳树新品种及其栽培.北京:中国林业出版社,2008
    80.李亚江,董雁.杨树新无性系叶绿素含量和光合速率的测定.辽宁林业科技,2002,(6):14-35
    81.李毅,刘榕,孙雪新.箭杆杨×胡毛杨良种选育及测定.林业实用技术,2002,(2):7-8
    82.李周歧,王章荣.鹅掌楸属种间杂交可配性与杂种优势的早期表现.南京林业大学学报,2001,2(8):34-38
    83.梁海永,刘彩霞,刘兴菊,等.杨树品种的SSR分析及鉴定.河北农业大学学报,2005,28(4):27-31
    84.林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶活性及质膜过氧化作用的关系.植物学报,1984,26(6):605-615
    85.刘建伟,胡新生,刘雅荣,等.半干旱地区八种杨树无性系间苗期净光合速率变化的研究.林业
    科学研究,1994,7(5):475-480
    86.刘俊恒,胡宁,刘小片,等.应用AMMI模型对夏玉米区试组合的评价分析.杂粮作物,2009,29(3):159-162
    87.刘培林,赵吉恭,林顺伊,等.黑林1号,2号,3号的选育与区域试验.见:土忠虞,沈熙环主编.中国林木遗传育种进展.北京:科学技术文献出版社,1993
    88.刘培林,赵吉恭.山杨良种选育.见:林业部科技司主编.阔叶树遗传改良.科学技术文献出版社,北京:1991
    89.刘榕,史元增主编.甘肃杨树.兰州:兰州科技大学出版社,1995
    90.刘威.辽宁省粳稻品种稳定性及适应性分析.北方水稻,2008,38(3):81-82
    91.刘伟洲,邓贵东,何明海.黑龙江省乡土杨树与美洲黑杨杂交新品种的选育技术.延边大学农学学报,2001,23(1):8-12
    92.刘月君,张立果,石彩华,等.廊坊杨树杂种新无性系的选育.林业科技通讯,1998,(12):7-10
    93.刘志新,李艳芝,何庆庚.等.新选育的杨树良种-秦皇岛杨.河北林业科技,1996,4:1-3
    94.卢孟柱,卞祖娴.五种杨树叶绿体DNA的提取及RFLP分析.林业科学研究,1992,5,(4):465-468
    95.鲁福成,王明启,魏雪生,等.逆境条件下几种蔬菜作物生理指标的变化.天津农业科学,2001,7(2):6-10
    96.陆定志.叶片的衰老及其调节控制.植物生理生化进展,1983,2:20-52
    97.鹿学程,孙玉浩,向玉茹.昭林6号杨树杂交育种.杨树,1985,2(2):1-8
    98.吕志华.DNA分子标记在林木遗传育种中的应用及进展.楚雄师范学院学报,2006,21(9):68-76
    99.马常耕,译.[苏]H.B.斯塔罗娃.杨柳科的育种.北京:科学技术文献出版社,1984
    100.马常耕,周天相,徐金良.杉木无性系生长的遗传控制和早期选择初探.林业科学,2000,36:62-69
    101.马常耕.我国杨树杂交育种的现状和发展对策.林业科学,1995,31(1):60-68
    102.马常耕.总结经验开创我国杨树育种新局面.山东林业科技,1984,(2):1-12
    103.孟伟伟,潘惠新,黄敏仁,等.美洲黑杨×欧美杨杂种无性系生长分析.南京林业大学学报,2008,32(1):139-141
    104.潘礼晶,赵西珍,许兴华.毛白杨无性系数量性状的遗传距离分析.山东林业科技,1997.(4):11-15
    105.庞金宣,郑世锴,刘国兴,等.窄冠型杨树新品种选育.林业科技通讯,2001,4:8-9
    106.彭儒胜,李晓鹏,梁德军,等.辽宁省杨树杂交育种研究进展.林业科技,2006,31(2):10-12
    107.彭儒胜,张兴芬,赵继梅,等.胡杨杂交育种研究初报.辽宁林业科技,2009,2:24-31
    108.彭振华.长江中下游滩地杨树栽培与利用.北京:中国林业出版社,2002
    109.秦锡祥.杨树抗云斑天牛新品种选育.杨树遗传改良.北京:北京农业大学出版社,1991
    110.丘进清.闽北柳桉种源/家系的试验研究.中南林业科技大学学报,2007,27(3):33-36
    111.邱光明,翁俊华.河北杨良种选育研究.见:林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991
    112.邱箭,郑彩霞,于文鹏.胡杨多态叶光合速率与荧光特性的比较研究.吉林林业科技,2005,34(3):19-21
    113.全国杨树科技协作组,王明庥.杨树良种选育的进展.林业科学,1977,13(4):20-25
    114.任建中,刘长青,汪清锐.杨树纸浆材优良无性系选择方法的研究.北京林业大学学报,2003,25,(4):25-29
    115.邵世光.阴生植物与阳生植物.生物学教学,2007,32(8):68-69
    116.沈艳华,徐锡增,方升佐,等.硅对盐胁迫下杨树幼苗生长和膜脂过氧化的影响.福建林学院学报,2009,29,(1):69-73
    117.施溯筠,蒋基建,金明植,等.速生杨树的研究概述.延边大学农学学报,2000,22(1):66-71
    118.史瑞,迟德富,张晟铭.10种杨树酶活性与抗性的关系.东北林业大学学报,2008,36(9):74-75
    119.宋红竹,张绮纹,周春江.杨树部分种的AFLP遗传多样性分析.林业科学,2007,43(12):64-69
    120.苏东凯,周永斌,唐庆华,等.不同杨树品种光合生理生态特性研究.西北林学院学报,2006,21(2):39-41
    121.苏培玺,张立新,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的影响.植物生态学报,2003,27(1):34-40
    122.苏晓华,丁昌俊,马常耕.我国杨树育种的研究进展及对策.林业科学研究,2010,23(1):31-37
    123.苏晓华,黄秦军,张冰玉,等.中国杨树良种选育成就及发展对策.世界林业研究,2004,17(1):46-49
    124.苏晓华,张绮纹,郑先武,等.美洲黑杨(Populus deltoids Marsh.)×青杨(P.cathayana Rehd)分子连锁图谱的构建.林业科学,1998,34(6):29-37
    125.苏晓华,张绮纹.世界杨树杂交育种亲本利用的进展及对策.世界林业研究,1992(2):29-33
    126.孙国荣,彭永臻,阎秀峰,等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响.林业科学,2003,39(1):165-167
    127.孙远清,胡崇富,董雁,等.抗寒速生杨树新品种辽育1号和辽育2号.林业科技,2002,27(4):1-4
    128.谭晓风,胡芳名.分子标记及其在林木遗传育种研究中的应用.经济林研究,1997,15(2):19-22
    129.汤玉喜,吴立勋,吴敏,等.杨树无性系生长与材性遗传变异及综合选择研究.湖南林业科
    技,2005,32(5):1-5
    130.唐启义,冯明光.DPS数据处理-实验设计、统计分析及数据挖掘.北京:科学出版社,2007
    131.童富淡,胡家恕,陈进红,等.不同育秧方式对早稻叶片SOD活性、电解质渗透率和发根力的影响.浙江农业大学学报,1997,23(6):682-686
    132.万劲,方升佐,翟学昌.7个杨树能源林无性系的初步选择.林业科技开发,2008,22(3):35-38
    133.汪耀富,韩锦峰,林学语.烤烟成长前期对干旱胁迫的生理生化响应研究.作物学报,1996,22(1):117-122
    134.汪泽军,李福英,阎东丰,等.毛白杨无性系冠幅、冠长与生长的相关性研究.河南科技学院学报,2009,37(4):14-18
    135.王爱国,叶发辉,罗广华.活性氧对花生叶片大分子量DNA的损伤.植物生理学通讯,1993,29(4):260-262
    136.王斌,李百炼,张金凤,等.杂种白杨离体再生体系的建立.西北植物学报,2009,29(4):704-710
    137.王恭祎,宋玉山,武惠肖,等.抗盐碱杨树新品种-廊坊杨4号的选育.林业科技通讯,2001,6:29-30
    138.王继红,李先萍.中金系列杨树新品种特性及效益分析.山西林业,2001,4:25-26
    139.王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,(1):]
    140.王军辉,顾万春,李斌,等.桤木优良种源/家系的选择研究-生长的适应性和遗传稳定性分析.林业科学,2000,36(3):59-66
    141.王克胜,卞学瑜,李淑梅,等.欧美杨无性系区域试验的效应分析与稳定性测定.林业科学研究,1996,9(1)92-96
    142.王明庥,黄敏仁,邬荣领,等.美洲黑杨×小叶杨杂交育种研究.见:林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991
    143.王明庥,黄敏仁.NL-80105、80106、80205、80121、80213.阔叶树优良无性系图谱.北京:北京农业大学出版社,1991
    144.王娜,许兴,李树华,等.春小麦碳同位素分辨率与相关生理性状的遗传相关分析.干旱地区农业研究,2009,24(4):94-98
    145.王庆斌,张玉波,刘国刚,等.美洲黑杨杂种无性系引种苗期选择.东北林业大学学报,2002,30(5):11-14
    146.王绍琰,李桂华,张晓媛.白杨派杨树新杂种无性系性状分析.宁夏农林科技,1987,(1):19-27
    147.王绍琰.银白杨×新疆杨优良无性系的选育.杨树,1985,2(1):1-7
    148.王通强,马晓峰,吴有祥.油菜杂种及亲本指纹图谱构建和杂种纯度鉴定.食品与生物技术学 报,2009,28(3):377-384
    149.王伟,崔秀珍,李哲.棉花海陆杂交种主要性状的遗传相关分析.江苏农业科学,2009,3:51-53
    150.王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展.生物技术通报,2002,(1):16-19
    151.王宗银.浅谈造林保存率.植树造林,2009,8:2
    152.卫尊征,张金凤,张德强,等.白、青杨派间杂交幼胚培养及杂种子代的分子鉴定.北京林业大学学报,2008,30(5):73-77
    153.魏玉玲,闫玉信,王健华,等.美洲黑杨杂交新品种选育与推广.河南林业科技,2005,25(1) :8-10
    154.温宝阳.绿化新品种-银中杨.中国林业,1998,5:42
    155.温达志,周国逸,张德强,等.4种禾本科牧草植物蒸腾速率与水分利用效率的比较.热带亚热带植物学报,2000,(3):67-76
    156.吴鸿锦,刘志光,韩克展,等.新杂交种沙毛杨的选育,北京林业大学学报,1996,18(3):48-53
    157.吴瑞云.4个杨树杂交品系的净光合速率特征.中南民族学院学报,1999,18(4):10-12
    158.吴瑞云.欧美杨杂交种‘中嘉8’净光合速率与若干生态因子的相关分析.亚热带植物科学,2007,36(4):16-19
    159.吴晓春,张羽,于启滨.韩国树木改良研究概况.世界林业研究,1994,7(1):88-90
    160.向碧霞,黄敏仁,王明庥.分子标记在杨树遗传改良中的应用.南京林业大学学报,1998,22(12):83-87
    161.徐纬英,马常耕.新杂交种-群众杨.杨树遗传改良.北京:北京农业大学出版社,1991
    162.徐纬英.杨树选种学.北京:科学出版社,1960
    163.徐纬英主编.杨树.哈尔滨:黑龙江人民出版社,1988
    164.许乃银,陈旭升,狄佳春,等.棉花区域实验中品种稳定性分析方法探讨.江西棉花,2004,26(4): 9-13
    165.续九如.林木数量遗传学.北京:中国林业出版社,2006
    166.续九如.重复力及其在树木育种中的应用.北京林业大学学报,1988,10(4):97-102
    167.严楚江.花果形态学.福州:福建人民出报社,1964
    168.杨成超,别婉丽,董雁,等.银白杨与白榆缘缘杂交的研究.西北林学院学报,2006,21(4):54-57
    169.杨成生,莫保儒,邹天福,等.“群改”、“中金”系列杨树引种苗期试验.甘肃林业科技,2002,27(4):48-50
    170.杨洪军,赵鹏舟,胡英阁.青山杨与小黑杨造林收益的对比.防护林科技,2006,5:60
    171.杨淑红,张瑞粉,孙淑云AFLP分子标记技术在杨树遗传育种中的应用.河南林业科技, 2009,29(2):55-58
    172.杨再强,谢以萍,王立新.四季杨和南抗杨光合特性的研究.华中农业大学学报,2008,27(5):654-658
    173.姚庆端.桉树优良无性系制浆造纸性能与适应性的研究.福建林学院学报,2004,24(4):316-322.
    174.叶培忠.白杨繁殖育种.林业科学,1955,1(1):37-46
    175.易先辉.应用AMMI模型评价湖南棉花区试品种的稳定性.江西棉花,2008,30(6):20-24
    176.尹佟明,黄敏仁,王明庥,等.利用RAPD标记构建响叶杨和银白杨分子标记连锁图.植物学报,1999,41(9):956-961
    177.尹伟伦.国际杨树研究新进展.哈尔滨:东北林业大学出版社,2001
    178.尤扬,杨立峰,周建,等.白兰花秋季光合特性研究.西北林学院学报,2009,24(6):24-27
    179.于振群,孙明高,魏海霞,等.干旱和盐分交叉胁迫对皂角幼苗膜脂过氧化及保护酶活性的影响.西北林学院学报,2007,22(3):47-50
    180.俞世蓉,吴兆苏小麦品种区域试验上几个问题的探讨.中国农业科学,1986,19(3):20-25
    181.张春玲,李淑梅,赵自成,等.杨树新品种‘丹红杨’.林业科学,2008,44(1):169
    182.张春霞.欧洲黑杨与川杨、滇杨杂交及杂种苗的SSR分析.陕西:西北农林科技大学硕士论文,2007
    183.张德强,张志毅,杨凯,等.毛新杨×毛白杨叶片表型和春季萌芽时间QTL分析.林业科学,2005,41(1):42-48
    184.张德强,张志毅,杨凯.分子标记技术在杨树遗传变异及系统分类中的应用.北京林业大学学报,2001,23(1):76-78
    185.张德强,张志毅,杨凯.杨树分子标记研究进展.北京林业大学学报,2000,22(6):79-84
    186.张德强.毛白杨遗传连锁图谱的构建及重要性状的分子标记.北京:北京林业大学博士论文.2002
    187.张建华,张金渝,杨晓洪,等.用SSR标记建立玉米黄早四DNA标准指纹图谱的方法研究.西南农业学报,2006,19(3):345-350
    188.张江涛,刘友全,赵蓬晖,等.欧美杨无性系幼苗光合生理特性比较.中南林业科技大学学报,2007,27(4):8-22
    189.张金凤,朱之悌,张志毅,等.中介亲本在黑白杨派间杂交中的应用.北京林业大学学报,2000,22(6):35-38
    190.张金凤,朱之悌.杨树分派的分子系统学与派间杂交研究进展.安徽农学通报,2007,13(1):48-51
    191.张绮纹.意大利杨树良种选育的程序和方法.林业科技通讯,1984(12):28-31
    192.张绮纹.黑杨派内杨树的遗传改良.林业科学,1987,23(2):174-181
    193.张守仁,高荣孚.光胁迫下杂种杨树无性系光合生理生态特性的研究.植物生态学报,2000,24
    (5),528-533
    194.张颂云.主要针叶树种应用遗传改良论文集.北京:中国林业出版社,1990
    195.张天真.作物育种学总论.北京:中国农业出版社,2003
    196.张香华,苏晓华,黄秦军,等.欧洲黑杨育种基因资源SSR多态性比较研究.林业科学研究,2006,19(4):477-483
    197.张新叶,尹佟明,诸葛强,等.利用RAPD标记构建美洲黑杨×欧美杨分子标记图谱.遗传,2000,22(4):209-213
    198.张亚东,胡兴宜,宋丛文.利用新型分子标记EST-SSR鉴定湖北省内的主栽黑杨品种.分子植物育种,2009,7(1):105-109
    199.张颖,孙向阳,曲天竹,等.三倍体毛白杨不同无性系叶片养分含量研究.西北林学院学报,2008,23(2):64-68
    200.张永诚,王玉环,苏来宽.速生杨树杂种无性系选育初报.见:徐纬英,张培呆主编.全国林木遗传育种第五次学术报告会论文汇编.哈尔滨:东北林业大学出版社,1990
    201.张有慧,解孝满,李景涛,等.毛白杨无性系多性状综合分析.山东林业科技,2008,2:31-33
    202.张玉波,王庆斌,李淑珍,等.牡丹江地区杨树遗传改良现状、问题及对策.东北林业大学学报,2002,30(4):65-66
    203.张蕴哲,刘红霞,邬荣领,等.毛新杨×毛白杨AFLP分子遗传图谱.林业科学研究,2003,16(5):595-603
    204.张志毅,李善文,何占国.中国杨树资源与杂交育种研究现状及发展对策.河北林业科技,2006,9:20-24
    205.赵凤君,高荣孚,沈应柏,等.水分胁迫下美洲黑杨不同无性系间叶片δ13C和和水分利用效率的研究.林业科学,2005,41(1):36-41
    206:赵汉章.美国的美洲黑杨种源试验及其遗传改良.杨树,1984,1(1):143-148
    207.赵可夫,王韶唐.作物抗性生理.北京:农业出版社,1990
    208.赵淑芳,樊军锋,高建社,等.银白杨与84K杨、毛白杨杂交及苗期测定.东北林业大学学报,2009,37(1):4-5
    209.赵天锡,陈章水.中国杨树集约栽培.北京:中国科学技术出版社,1994
    210.赵廷松,方文亮,曾清贤.5个核桃早实杂交新品种鲁甸县区域试验.西北林学院学报,2007,22(5):83-85
    211.赵自成,苏雪辉,胡建军.杨树新品种‘桑巨杨’.林业科学,2008,44(2):170
    212.郑彩霞,高荣孚,尹伟伦,等.研究生植物生理实验指导.北京:北京林业大学植物生理教研组,2006
    213.郑彩霞,邱箭,姜春宁,等.胡杨多形叶气孔特性及光合特性的比较.林业科学,2006,42(8):19-24
    214.郑淑霞,王占林.美洲黑杨×青杨杂交无性系抗锈病能力分析.青海农林科技,2004,增 刊:42-43
    215.中国林学会,中国杨树委员会编.第18届国际杨树会议论文集(中国部分).北京:中国林业出版社,1992
    216.周永斌,马学文,姚鹏,等.不同生长速度杨树品种的光合生理特性研究.沈阳农业大学学报,2007,38(3):336-339
    217.周永学,樊军锋,蔺林田,等.美洲黑杨×青杨杂种无性系引种育苗试验.西北林学院学报,2004,19(1):58-60
    218.周志春,金国庆.马尾松不同产地的遗传稳定性和生态学基础.南京林业大学学报.1998,22(3): 75-80
    219.朱春全,王世绩,王富国,等.六个杨树无性系苗木生长、生物量和光合作用的研究.林业科学研究,1995,8(4):388-394
    220.朱景乐,王军辉,张守攻,等.毛白杨材性指标预测及选择.林业科学,2008,44(7):23-28
    221.朱之悌.林木遗传学基础.北京:中国林业出版社,1989
    222.邹喻苹,葛颂,王晓东.系统与进化植物学的分子标记.北京:科学出版社,2001
    223. Ai J,Tschirner U.Fiber length and pulping characteristics of switchgrass,alfalfa stems,hybrid poplar and willow biomasses.Bioresource Technology.2010,101 (1):215-221
    224. Arquhar G D,Sharkey T D. Stomatal conductance and photosynthesis. AnnRev Plant Physiol, 1982,33:317
    225. Babayeva S,Akparov Z,Abbasov M,et al.Diversity analysis of central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting.Genet Resour Crop Evol.2009,56:293-298
    226. Bassman J B, Zwier J c. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa×P. eltoides clone.Tree Physiology,1991 (8):145-14
    227. Beavis W D.Molecular dissection of complex traits.CRC Press,Boca Raton,New York,1998: 145-162
    228. Benor S,Zhang M Y,Wang Z F,et al.Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers.J Genet Genomics.2008,35:373-379
    229. Botstein D,White R L,Skolnck M,et al.Construction of a genetic linkage map in man using restriction foagment length polymorphisms.Am J Hum Genet.1980,21 (3):314-318
    230. Bouvatel P,Lemoin M.Hybridzation les trembles et peupliers blances a la station de recherches de Nancy.Rev.Forest Frans.,1959, (10):8-12
    231.Bradshaw H D Jr,Stettler R F.Molecular genetics of growth and development in Populus. Ⅳ.Mapping QTLs with large effects on growth,form,and phenology traits in forest tree. Genetics,1995,139 (2):963-973
    232. Bradshaw H.D.et al.QTL mapping in interspecific hybrids of forest trees.Forest Genetic.1994, 1:191-196
    233. Calfapietra C,Ingmar Tulva,Eve Eensalu,et al.Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation.Enviromental Pollution,2005, 137:525-535
    234. Castiglione S,Wang G,Damiani G,et al.RAPD fingerprints for indentification and fortaxonomic studies of elite poplar clones.Theor Appl Genet.1993,87 (1-2):54-59
    235. Cervera M T.Gusmao J,Steenackers M,et al.Identification of AFLP molecular makers for resistance against Melampsora larici-populian in Populus.TAG,1996,93:733-737
    236.Ceulemans R,Scarascia-Mugnozza,Wiard B M,et al.Production physiology and morphology of Populus species and their hybridsa grown under short rotation.I.Clonal comparisons of 4-year growth and phenology.Can.J.For.Res.,1992,22 (12):1937-1948
    237. Ceulenans R J. Prospects of using physiology components of productivityas selection poplar breeding.Ho lzzucht 1989,43:17-25
    238. Chen K,Peng Y H,Wang Y H,et al.Genetic relationships among poplar species in section Tacamahaca (Populus L.) from western sichuan,china.Plant Science.2007,172:196-203
    239.Dickmann D I.An overview of the genus Populus.lri Poplar culture in north America.Part A,Chapter 1.Edited by Dickmann D I,Isebrands J G,Eckenwalder J E,et al.NRC Research Press,National Research council of Canada.2001,pp.1-42
    240. Dillen S Y,Storme V,Marron N,et al.Genomic regions involved in productivity of two interspecific poplar families in Europe.1.Stem height,circumference and volume.Tree Genetics & Genomes.2009.5:147-164
    241. Dillen SY, Marron N, Sabatti M,et al. Relationships among productivity determinants in two hybrid poplar families grown during three years at two contrasting sites. Tree Physiol.2009.29 (8):975-987
    242. Du K B,Shen B X,Xu L,et al.Estimation of genetic variances in flood tolerance of poplar and selection of resistant F1 generations.Agroforest syst,2008,74:243-257
    243. Eckenwalder J E.Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. II.Taxonomy. Can J.Bot.1984,62: 325-335
    244. Erickson J E,Stanosz G R,Kruger E L.Photosynthetic consequences of Marssonina leaf spot differ between two poplar hybrids.New Phytologist.2003,161:577-583
    245. Fang S Z,Xu X Z,Lu S X,et al.Growth dynamics and biomass production in short-rotation poplar plantations:6-year results for three clones at four spacings.Biomass and Bioenergy.1999,17: 415-425
    246. FANG S Z,YANG W Z.Interclonal and within-tree variation in wood properties of Populus clones.Journal of Forestry Research,2003,14 (4) 263-268
    247. Felix E,Tilley D R,Felton G,et al.Biomass production of hybrid poplar (populus sp.) grown on deep-trenched municipal biosolids.Ecological engineering.2008,33:8-14
    248. Fossati T, Grassi F, Sala F,et al. Molecular analysis of natural populations of Populus nigra L intermingled with cultivated hybrids.Mol Ecol.2003.12 (8):2033-2043
    249. Fossati T,Zapelli I,Bisoffi S.Genetic relationships and clonal identity in a collection of commercially relevant poplar cultivars assessed by AFLP and SSR. Tree Genetics & Genomes.2005.1:11-19
    250. Gaudet M,Jorge V,Paolucci I,et al.Genetic linkage maps of Populus nigra L,including AFLPs,SSRs,SNPs,and sex trait.Tree Genetics & Genomes.2008.4:25-36
    251. Gaudillere J P.Photosynthetic response of poplar leaves under varying quantum flux density. Ann Sci For.1989.46:479-482.
    252. Giridara-Kumar Surabhi,K.Raja Reddy,Shardendu Kumar Singh. Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp) cultivars with contrasting sensitivity to UV-B radiation.Environmental and Experimental Botany, 2009,66:160-171
    253. Guillemette T, DesRochers A.Early growth and nutrition of hybrid poplars fertilized at planting in the boreal forest of western Quebec.Forest Ecology and Management,2008,255,2981-2989
    254. Guo XY,Zhang XS,Huang ZY.2010. Drought tolerance in three hybrid poplar clones submitted to different watering regimes. Journal of Plant Ecology, DOI:10.1093/jpe/rtq007
    255. Harrington C A,Radwan M A,Debell D S.Leaf characteristics reflect growth rates of 2-year-old Populus trees.Can J For Res.1997.27:1321-1325
    256.Heilman P E,Stetter R F.Genetic variation and productivity of Populus trichocarpa and it hybrids. Ⅱ.Biomass production in a 4-year platation.Can.J.For.Res.1985,15 (3):384-388
    257. Hozain MI,Salvucci ME,Fokar M,et al.2010. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties.Tree Physiol.2010;30:32-44
    258. Huang LJ, Su XH, Zhang XH,et al. SSR molecular markers related to wood density and fibre traits in poplar.Yi Chuan Xue Bao.2004.31(3):299-304
    259.Hyum S K.A study for nomenclature and registration for poplar species of Section Leuce and their hybrids.In Report of the 17th session of International Poplar Commission in Ottawa,Canada,1984
    260. Isebrands J G, Ceulemans R, Wiard B. Genetics variation in photosynthetic traits among Populus clones in relation to yield. Plant Physiol Biochem.1988,26 (4):427-437
    261. Jill A,Ronald S,David R,et al.Growth and biomass of Populus irrigated with landfill leachate. Forest Ecology and Management.2007,248:143-152
    262. John S R,Robert W P.Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.Oecologia.1993,93:208-214
    263. Karacic A,Weih M.Variation in growth and resource utilization among eitht poplar clones grown under different irrigation and fertilization regimes in Sweden.Biomass and Bioenergy,2006,30, 115-124
    264. Kellogg E W,Fridovich I.Superoxide,hydrogen peroxide,and single oxygen in lipid peroxidation by axanthine oxidase system.J.Biol Chem.,1975,250:8812-8817
    265. Khasa,P.D.,Li,P.,Vallee,G.Magnussen,S.,Bousquet,J.,Early evaluation of Racosperma auriculiforme and R.mangium provenance trials on four site in Zaire. For.Ecol. Manage.1995.78: 99-113
    266. Kim S H,Dennis C.Gitz,Richard C,et al.Temperature dependence of growth,development,and photosynthesis in maize under elevated CO2.Enviromental and Experimental Botany,2007,61: 224-236
    267. Koxlowski T T,Kramer P J,Pallardy S G.The physiological ecology of woody plants.New York: Academic press,1991,275-279
    268.Krzan Z.Resistance of Populus deltoids clones to Melampsora larici-populina,in Poland.In Proceedings Symposium on Eastern Cottonwood and Related Species,1976,199-204
    269. Labrecque M,Trainan I.Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec.Biomass and Bioenergy,2005,29,1-9
    270. Lambers H, Pobrter H. Inherent variation in growth rate between higher plants:A research for physiological causes and ecological consequences.Advecolres.1992,23:188-216
    271. Lambeth C C,Endo M.et al.Genetic analysis of 16 clonal trials of Eucalyptus grandis and comparisons with seedlings checks.For.Sci.,1994,40:397-411
    272. Lars C.Biomass production of intensively growth poplars in the southernmost part of Sweden: Observations of characters,triats and growth potential.Biomass and Bioenergy.2006,30: 497-508
    273. Letts M G,Phelan CA,Johnson DR,et al.Seasonal Photosynthesic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland.Tree Physiol. 2008,28 (7):1037-1048
    274. Li B L,Gary W W,Dean W E.Hybrid aspen performance and genetic gains. North. J.Appl. For.,1993,10 (3):117-122
    275. Li SW,S.Reza Pezeshki,Shirlean Goodwin.Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia).Acta Oecologica,2004,25:17-22
    276. Liberloo M,Calfapietra C,Lukac M,et al.Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 word.Global Change Biology.2006.12:1094-1106
    277. Liu Z,Furnier GR.Comparison of allozyme,RFLP,and between trembling aspen and bigtooth aspen.TheorAppl Genet,1993,87:97-105
    278. Mae T.Physiological nitrogen efficiency in rice.Nitrogn utilization,photosynthesis and yield potential.Plant and Soil,1997,196:201-210
    279. Marron N,Sophie Y.Dillen,Ceulemans R.Evaluation of leaf traits for indirect selection of high yielding poplar hybrids.Environmental and Experimental Botany,2007,61,103-116
    280. Monclus R, Villar M, Barbaroux C, et al.Productivity,water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides×Populus trichocarpa F1 progeny. Tree Physiol.2009.29 (11):1329-1339
    281. Mori E S.,Kageyama,P.Y.,Ferreira,M.Genetic variation and progeny×location interaction in Eucalyptus urophylla, IPEF International,Piracicaba,1990,1:45-54
    282. Naghavi M R,Aghaei M J,Taleei A R,et al.Genetic diversity of the D-genome in T.aestivum and Aegilops species using SSR markers.Genet Resour Crop Evol.2009 (56):499-506
    283. Nei M,Li W H.Mathematical model for studying geneticvariation in term of restriction endonucleases.Proc.Natl.Acad.Sci.,1979,76:5269-5273
    284. Orlovic B S,Guzina V,Krstic B,et al.Genetic Variability in Anatomical,physiological and growth characteristics of hybrid poplar (Populus xeuramericana Dode (Guinier)) and eastern cottonwood(Populus deltoids Bartr.) clones.Silvae Genetica.1998.47 (4):183-190
    285. Ow LF, Griffin KL, Whitehead D, Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides x nigra. New Phytol.2008;178 (1):123-34
    286. Pellis A,Laureysens I,Ceulemans R.Growth and production of a short rotation coppice culture of poplar I.Clonal differences in leaf characteristics in relation to biomasss production.Biomass and Bioenergy.2004.27:9-19
    287. Phi H H,G.Jansson,C.Harwood,et al.Genetic variation in growth,stem staightness and branch thickness in clonal trails of Acacia auriculiformis at three contrasting sites in Vietnam.Forest Ecology and Management,2008,255:156-167
    288. Pliura A,S.Y.Zhang,John Mackay,et al.Genotypic variation in wood density and growth traits of poplar hybrid at four clonal trails.Forest Ecology and Management,2007,238,92-106
    289. Pospisil J.The importance of forest tree breeding;an example of the Aspen. Lesnictvi,1985, (4) 731-754
    290. Rae A M,Robinson K M.Street N R,et al.Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar.Can J For Res.2004.34:1488-1498
    291. Rae AM, Street NR, Robinson KM, et al. Five QTL hotspots for yield in short rotation coppice bioenergy poplar:the poplar biomass loci. BMC Plant Biol.2009.doi:10.1186/1471-2229-9-23
    292. Rahman M H, Dayanandan S, Rajora OP.Microsatellite DNA markers in Populus tremuloides. Genome.2000.43 (2):293-297
    293. Rajora P, Rahman H. Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus x canadensis) cultivars. Theor Appl Genet.2003.106 (3):470-407
    294. Regier N,Streb S,Cocozza C,et al.Drought tolerance of two black poplar (Populus nigra L.) clones:contribution of carbohydrates and oxidative stress defence. Plant, Cell & Environment. 2009,32 (12):1724-1736
    295. Rood S B,Nielsen J L,Shenton L,et al.2010.Effects of flooding on leaf development, transpiration,and photosynthesis in narrowleaf cottonwood,a willow-like poplar.Photosynthesis Research. Doi:10.1007/s 11120-009-9511-6
    296. Sanchez N,Grau J M,Manzanera J A,et al.RAPD markers for the identification of Populus.Silvae Genetica,1998,47 (2-3):67-70
    297. Sara O,Andrej P,Zoran G,et al.Results of poplar clone testing in field experiments. Genetika. 2006.38 (3):259-266
    298. Sasa S.Orlovic,Slobodanka P.Pajevic,Borivoj D.krstic.Selection of black poplar for water use efficiency.Proceedings for Natural Sciences,Matica Srpska Novi Sad,2002,102,45-51
    299.Sekawin M.Poplar breeding in the northern Italy.In Proceedings Symposium on Eastern Cottonwood and Related Species,1976,170-175
    300. Shehata A I,Al-Ghethar H A,Al-Homaidan A A.Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines.Saudi Journal of Biological Sciences.2009,16:57-62
    301.Shigern Chiba.Provenance and crossbreeding of populus maximowiczii in northern Japan.In Report of the 17th session of International Poplar Commission in Ottawa, Canada, 1984
    302. Silim S N,Ryan N,kubien D S. Temperature responses of photosynthesis and respiration in Populusbalsamifera L.:acclimation versus adaptation.Photosynthesis Research.2010. DOI:10. 1007/s 11120-010-9527y
    303. Sophie Y. Dillen, Nicolas Marron, Barbra Koch, et al. Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families(Populus deltoides'S9-2'×P. nigra'Ghoy' and P. deltoides'S9-2'x P. trichocarpa 'V24'). Ann Bot.2008.102 (3) 399-407.
    304. Sssa O,Vladislava G,Miroslav Z,et al.Evaluation of interspecific DNA variability in poplars using AFLP and SSR markers.African Journal of Biotechnology.2009.8 (20):5241-5247
    305. Steenackers J, Steenackers M, Steenackers V,et al.Poplar diseases,consequences on growth and wood quality.Biomass and Bioenergy.1996,10, (5/6):267-274
    306. Stettler R F,Fenn R C,Heilman P E,et al.Populus trichocarpa×Populus deltoids hybrids for short rotation culture:variation paterns and 4-year field performance. Can.J.For.Res.1988, 18:745-753
    307. Stettler R.F.,Zsuffa L.,Wu R.,The role of hybridization in the genetic manipulation of Populus, in:Stettler R.F.,Bradshaw H.D.Jr.,Heilman P.E.,Hinckley T.M. (Eds.),Biology of Populus,NRC Research Press,Ottawa,1996:87-112
    308. Surabhi G K,Reddy K R,Singh S K.Photosynthesis,fluorescence,shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation.Environmental and Experimental Botany.2009.66:160-171
    309. Tullus A,Tullus H,Soo T,et al.Above-ground biomass characteristics of young hybrid aspen (Populus tremula L.X P.tremuloides Michx.) plantations on former agricultural land in Estonia.Biomass and Bioenergy.2009,33,1617-1625
    310. Villar M,Lefever F,Bradshaw H D,et al.Molecular genetics of rust resistance in poplars (Melampsora larici-populian Klib/Populus spp.) by Bulked Segregant Analysis in a 2×2 factorial mating design.Genetics,1996,143 (1):531-536
    311. Wei X H,Yuan X P,Yu H Y,et al.Temporal changes in SSR allelic diversity of major rice cultivars in china.J Genet Genomics.2009,36:363-370
    312. Welsh J,Mcclell M.Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res,1990,18:7213-7218
    313. Williams J.G.K,Kubelik A.R.,Livak,K.J,et al.DNA polymorphism amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res,1990,18:6531-6535
    314. Woolaston,R.R.,Kanowski,P.J.,Nikles,D.G..Genotype-environment interactions in Pinus caribaea bar.hondurensis in Queensland,Australia.I.Population×site interactions.Silv.Genet.1991,40:224-228
    315.WU R L,Bradshaw H D,Stettler R F.Molecular genetics of growth of development in Populus V.Mapping quantitative trait loci affecting leaf variation.American Journal of Botany,1997,84 (2):143-153
    316.WU R L,Han Y F,Hu J J,et al.An intergrated genetic map of Populus deltoids based on amplified fragment length polymorphisms.Theor Appl Genet,2000,100 (8):1249-1256
    317. Wullschleger S D,Yin T M,Difazio S P,et al.Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar.Can J For Res.2005.35: 1779-1789
    318. Xiao X W,Yang F, Zhang S,et al. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress.Physiologia Plantarum.2009.136 (2):150-168
    319. Xiao X,Guo Q P,Cheng C W,et al.Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana.Tree Physiology,2008,28:1751-1759
    320. Yin C Y,Duan B L,Wang X,et al.Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application.Plant Science.2004.167: 1091-1097
    321. Zheng HQ, Lin SZ, Zhang Q,et al. Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar. Plant Cell Rep.2010.29:449-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700