杨树miRNA基因家族进化与靶基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是重要的速生用材树种。随着毛果杨基因组测序的完成和相关遗传学和生物信息学研究的开展,目前杨树已成为公认的木本模式植物。对于许多生物学问题,例如木材形成、细胞壁次生生长、多年生生长、开花调控、生物进化、逆境胁迫响应等,杨树具有重要的研究价值。miRNA是一类广泛存在于动植物的内源调控小分子RNA,在植物中主要通过序列互补介导靶mRNA的降解以抑制靶基因的表达,从而参与植物发育调控与逆境胁迫响应。研究miRNA有助于揭示很多生命现象的分子机理,并可能应用于作物和林木的遗传改良。本文研究了杨树7个保守程度不同的miRNA基因家族的分子进化模式,进一步通过降解组分析鉴定miRNA靶基因并进行基因本体富集分析,并对2个miRNA靶基因进行了分离克隆与功能分析。主要研究结果如下:
     1.杨树MIR169基因家族的分子进化分析。串联重复和16.6~83.1百万年前的染色体大片段重复在毛果杨MIR169基因家族扩张中均发挥了重要作用;部分重复基因在进化过程中丢失;植物MIR169基因在单子叶植物与双子叶植物分化前已经分化为MIR169_1和MIR169_2两个家族,在杨树中又分别从MIR169_1和MIR169_2家族中分化出MIR169_4和MIR169_3家族。MIR169基因家族在表达方式上已经出现了较大的分化,其中MIR169u在多种组织中具有最高的表达活性;杨树MIR169基因家族的预测靶基因包括转录因子、蛋白激酶等多种基因,其中转录因子NF-YA是杨树MIR169主要的靶基因;MIR169基因家族可能在杨树中形成了复杂的调控网络,对杨树的生长发育和适应性等具有重要的调控作用。
     2.杨树MIR171基因家族的分子进化分析。杨树MIR171基因家族主要通过48~54百万年前的染色体大片段重复进行扩张,其表达方式已经出现分化,其中MIR171l/m/n在多种组织中具有最高的表达水平。MIR171基因家族可能主要通过调控GRAS转录因子和信号转导蛋白参与杨树生长发育、光信号转导和光形态建成的调控。
     3.杨树MR156基因家族的分子进化研究。杨树MIR156基因家族主要通过染色体大片段重复实现扩张,而串联重复对此没有贡献;不同家族成员表达方式已经分化,其中MIR156g/h/i/j表达活性最高;家族成员间启动子顺式作用元件存在差异;杨树MIR156的靶基因包括29个SBP结构域蛋白质基因,由于成熟序列存在差异,家族成员调控的靶基因也表现出差异,说明杨树MIR156基因家族成员的功能已经分化,在杨树中可能形成了复杂的调控网络。
     4.杨树4个新起源miRNA家族的进化。杨树MIR1444家族主要通过染色体大片段重复实现扩张,MIR1446家族主要通过染色体大片段重复和串联重复实现扩张,而非保守的MIR6425、MIR6462家族主要通过串联重复进行扩张;这4个基因家族成员的表达方式均已经分化,其中MIR1444、MIR1446在多种组织中具有较高的表达活性,而MIR6425、MIR6462仅具有较低的表达活性;MIR1446、 MIR6425、MIR6462家族内不同成员的成熟序列基本一致,其预测的靶基因也一致,而MIR1444家族中不同成员的成熟序列则出现了一定程度的分化,其预测的靶基因也不一致。对以上7个不同保守程度的miRNA基因家族的比较分析表明:起源较早、保守程度较高的miRNA基因家族成员数量较多,表达活性较高,功能分化程度较高,主要通过调控转录因子在杨树生命活动中发挥重要的调节作用;而起源较晚、保守程度较低的miRNA基因家族成员数量较少,表达活性较低,功能分化程度较低,其调控的靶基因多为酶等功能蛋白。
     5.杨树降解组分析与miRNA靶基因富集分析。构建了胡杨叶片降解组文库并进行高通量测序,获得42659177条原始序列,去除接头、污染序列及低质量序列后得到了34657804条干净序列用于降解组分析,共鉴定了23个miRNA靶基因。基因富集分析结果表明,胡杨叶片降解组分析中鉴定的miRNA靶基因富集于氧化还原酶活性和抗氧化活性,参与细胞氧化还原平衡的维持。这说明miRNA可能在杨树盐胁迫条件下对清除ROS、维持氧化还原的平衡具有重要的调控作用。对杨树、拟南芥和水稻高度保守和低度保守miRNA的预测靶基因分别进行单一富集分析和交叉比对。发现这三种植物的高度保守miRNA的预测靶基因都显著富集于转录因子,同时还发现杨树高度保守miRNA的预测靶基因显著富集于氧化还原过程,而低度保守miRNA靶基因富集程度较低。
     6.杨树miRNA靶基因的克隆与功能分析。从胡杨中克隆了MIR171的靶基因Pescll的全长cDNA, Pescll属于GRAS转录因子家族。RLM5'RACE实验证明Pescll存在miR171a-3p/b的靶位点。在盐胁迫条件下,Pescll表达水平上调,说明Pescll参与了杨树盐胁迫响应。从胡杨中克隆了MIR1444的预测靶基因Pecngcl的全长cDNA。 Pecngcl属于环核苷酸门离子通道基因家族。PeCNGCl定位于细胞膜,转Pecngcl能提高拟南芥的耐盐性。Pecngcl在叶片中表达,且其表达受盐胁迫条件的诱导,说明盐胁迫条件下Pecngcl可能对维持杨树叶片中Na+、K+的平衡发挥作用。
Pupulus plants are fast-growing commercial trees. Owing to the availability of the Populus trichocarpa genome sequence and plenty of Populus-specific genetic databases, Populus is known as a model for research of woody plants. Populus serves as a reference for many fundamental scientific investigations of wood formation, secondary cell wall formation, perennial and seasonal growth, flowering, evolution and resistance physiology. MicroRNAs (miRNAs) are a class of short non-coding RNAs found widely in eukaryotic organisms. MiRNAs function as regulators of development and stress responses in plants. Study of miRNA will contribute to reveal molecular mechanisms of many phenomenon of life, and may be applied to genetic improvement of crops and forest trees. To understand the evolutionary mechanisms of miRNAs in poplar, the evolution and functional diversity of3more conserved and4less conserved poplar miRNA gene families was comparatively studied in this dissertation, and the poplar miRNA targets were investigated by degradome sequencing and gene ontology enrichment analysis, and then two miRNA target genes were cloned and their functions were analyzed. The main research contents and results are as fellows:
     1. Molecular evolution of the poplar MIR169gene family. Tandem duplications and chromosome segmental duplications, which happened16.6-83.1million years ago, contributed equally to the expanding of ptc-MIR169gene family, Several members of this family has disappeared during evolution. Before the differentiation of monocots and dicots, the plant MIR169family had been differentiated into two families, MIR169_1and MIR169_2, then MIR169_4and MIR169_3family differentiated from MIR169_1and MIR169_2respectively in poplar. The expression patterns diversified obviously among the gene family. MIR169u has highest expression activity in many tissues. The predicted target genes of poplar MIR169include transcription factors, protein kinases, etc. The NF-YAs are major targets of poplar MIR169. These findings suggest that the ptc-MIR169gene family is involved in complex regulatory networks, and plays significant roles in development and stress response in poplar.
     2. Evolutionary of the poplar MIR171genes. The poplar MIR171gene family expanded mainly through large-scale duplication48-54million years ago and the expression patterns and functions have diversified. MIR171l/m/n have the highest expression activity in many tissues. Poplar MIR171gene family involves in complex regulation of development, light responsiveness and photomorphogenesis by targeting GRAS transcription factors and signal transduction proteins.
     3. Molecular evolution of the poplar MIR156gene family. The ptc-MIR156gene family expanded mainly via large-scale duplications instead of tandem duplications. The expression patterns and cis-acting elements have diversified among the members in this family and the MIR156g/h/i/j have the highest level of expression. Owing to the variance in the mature sequences, the target genes, including29SBP domain proteins, also differ among these members. These findings suggest that ptc-MIRl56gene family have diversified in functions and formed complex regulatory networks in poplar.
     4. Evolution of4new miRNA gene families in poplar. The more conserved gene family, MIR1446, expanded mainly through chromosome large-scale duplications, and MIR1444expanded through chromosome large-scale duplications as well as tandem duplications, and the less conserved gene families, MIR6425and MIR6462expanded mainly via tandem duplications; the expression patterns of the4gene families have all diversified, the MIR1444/1446gene families expressed higher in multiple tissues than MIR6425/6462families; the mature sequences of different members are same in MIR1446/6425/6462families, therefore their target genes are same; on the other hand, the mature sequences of different members are different in MIR1444families, so their target genes are different. Comparative analysis of the above-mentioned seven miRNA gene families shows that the older and more conserved miRNA gene families generally contain more members, higher expression levels, higher rates of functional diversification, and their target genes include mainly transcription factors; whereas the younger and less conserved miRNA gene families usually have fewer members, lower expression levels, lower rates of functional diversification, and their target genes are mainly functional protein (e.g., enzymes).
     5. Degradome sequencing and gene ontology enrichment analysis of miRNAs target genes in polar. A leaf degradome library of Populus euphratica was constructed and sequenced by Illumina HighSeqTM platform, yielding42,659,177row reads. After removing the adaptors sequences, pollution sequences and low-quality sequences,34,657,804clean reads were obtained. A total of23miRNA targets were identified by analysis of the degradome sequences. All targets identified by degradome analysis were subjected to AgriGO to investigate gene ontology. The miRNA targets were significantly enriched in oxidoreductase activity, antioxidant activity and cell redox homeostasis. These results suggested that miRNAs play important roles in eliminating of ROS and maintaining of redox homeostasis under salt stress. The targets of highly conserved and lowly conserved miRNAs from poplar, Arabidopsis and rice were analyzed by singular enrichment analysis and the realist were cross compared. The results showed that the targets of more conserved miRNAs from above3species were enriched significantly in transcriptional factors, and the targets of more conserved miRNA from poplar were also enriched significantly in oxidation reduction process. In contrast, the enrichment significance of the targets of less conserved miRNAs was lower than more conserved miRNAs。
     5. Cloning and functional analysis of miRNA target genes in polar. The full length cDNA of one of the MIR171targets, Pescll, was cloned from Populus euphratica. The Pescll belongs to the GRAS transcription factor family and has a miR171a-3p/b target site which was validated by RNA ligase mediated5'RACE. Under salt stress conditions, the expression of Pescll rose in leaves, suggesting that the Pescll participates in response to salt stress in polar. The full length cDNA of Pecngcl, which belongs to the GRAS transcription factor family, was cloned from Populus euphratica. The PeCNGCl located in the cell membrane, which was validated by transient expression in tobacco epidermal cell. The Arabidopsis plants transferred by Pecngcl showed higher salt tolerance than wild type. Under salt stress conditions, the expression of Pecngcl rose in leaves, suggesting that the Pecngcl involved in maintaining of Na+/K+homeostasis in leaves under salt stress in polar.
引文
[1]Axtell MJ. Classification and comparison of small RNAs from plants[J]. Annu Rev Plant Biol, 2013,64:137-159.
    [2]Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu Rev Plant Biol,2006,57:19-53.
    [3]王豫颖,苍晶,张达,等.植物microRNA研究进展[J].东北农业大学学报,2009,40(6):117-121.
    [4]王波,冯晓黎,张富春.植物中microRNA的合成及在发育和抗逆中的作用[J].植物生理学通讯,2006,42(3):581-588.
    [5]曲涛,吴建民,赵志光,等.植物microRNA及其抗胁迫作用机制研究进展[J].西北植物学报,2007,27(6):1275-1284.
    [6]章文蔚,罗玉萍,李思光microRNA及其在植物生长发育中的作用[J].植物生理学通讯,2006,42(6):1015-1020.
    [7]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [8]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes Dev,2002, 16(13):1616-1626.
    [9]蔡蕊,未晓巍,武慧,等.植物microRNA的生物信息学预测与分析[J].植物遗传资源学报,2013,14(3):565-570.
    [10]Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes[J]. Plant Cell,2011,23(2):431-442.
    [11]Molnar A, Schwach F, Studholme DJ, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii[J]. Nature,2007,447(7148):1126-1129.
    [12]Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii[J]. Genes Dev,2007,21(10):1190-1203.
    [13]Ma Z, Coruh C, Axtell MJ. Arabidopsis lyrata small RNAs:transient MIRNA and small interfering RNA loci within the Arabidopsis genus[J]. Plant Cell,2010,22(4):1090-1103.
    [14]Fahlgren N, Jogdeo S, Kasschau KD, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana[J]. Plant Cell,2010,22(4):1074-1089.
    [15]Heisel SE, Zhang Y, Allen E, et al. Characterization of unique small RNA populations from rice grain[J]. PLoS One,2008,3(8):e2871.
    [16]Lelandais-Briere C, Naya L, Sallet E, et al. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules[J]. Plant Cell,2009,21(9):2780-2796.
    [17]Szittya G, Moxon S, Santos DM, et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families[J]. BMC Genomics,2008,9:593.
    [18]Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots[J]. BMC Genomics,2008,9:160.
    [19]Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants[J]. Plant Cell,2007,19(6):1750-1769.
    [20]Allen E, Xie Z, Gustafson AM, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana[J]. Nat Genet,2004,36(12):1282-1290.
    [21]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell,2004,14(6):787-799.
    [22]Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species[J]. Genome Biol Evo1,2012,4(3):230-239.
    [23]Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP. A family of microRNAs present in plants and animals[J]. Plant Cell,2006,18(12):3355-3369.
    [24]Felippes FFd, Schneeberger K, Dezulian T, et al. Evolution of Arabidopsis thaliana microRNAs from random sequences[J]. RNA,2008,14(12):2455-2459.
    [25]Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events[J]. Genome Res,2006,16(4):510-519.
    [26]Guddeti S, Zhang DC, Li AL, et al. Molecular evolution of the rice miR395 gene family[J]. Cell Res,2005,15(8):631-638.
    [27]Wang S, Zhu Q-H, Guo X, et al. Molecular evolution and selection of a gene encoding two tandem microRNAs in rice[J]. FEBS Lett,2007,581(24):4789-4793.
    [28]Li AL, Mao L. Evolution of plant microRNA gene families[J]. Cell Res,2007,17(3):212-218.
    [29]Fahlgren N, Carrington JC. miRNA Target Prediction in Plants[J]. Methods Mol Biol,2010,592: 51-57.
    [30]Mallory AC, Reinhart BJ, Jones-Rhoades MW, et al. MicroRNA control of PHABULOSA in leaf development:importance of pairing to the microRNA 5'region[J]. EMBO J,2004,23(16): 3356-3364.
    [31]Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell,2005,8(4):517-527.
    [32]Dai X, Zhuang Z, Zhao PX. Computational analysis of miRNA targets in plants:current status and challenges[J]. Brief Bioinform,2011,12(2):115-121.
    [33]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell,2004,14(6):787-799.
    [34]Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Dev Cell,2007, 13(1):115-125.
    [35]Dsouza M, Larsen N, Overbeek R. Searching for patterns in genomic data[J]. Trends Genet,1997, 13(12):497-498.
    [36]Zhang Y. miRU:an automated plant miRNA target prediction server[J]. Nucleic Acids Res,2005, 33(Web Server issue):W701-704.
    [37]Dai X, Zhao PX. psRNATarget:a plant small RNA target analysis server[J]. Nucleic Acids Res, 2011,39(Web Server issue):W155-159.
    [38]Xie F, Huang S, Guo K, et al. Computational identification of novel microRNAs and targets in Brassica napus[J]. FEBS Lett,2007,581(7):1464.
    [39]Allen E, Xie Z, Gustafson A, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell,2005,121(2):207.
    [40]Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PLoS One,2007,2(2): e219.
    [41]Llave C, Xie ZX, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science,2002,297(5589):2053-2056.
    [42]Kasschau KD, Xie Z, Allen E, et al. P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function[J]. Dev Cell,2003,4(2):205-217.
    [43]Chen M, Meng YJ, Mao CZ, et al. Methodological framework for functional characterization of plant microRNAs[J]. J Exp Bot,2010,61(9):2271-2280.
    [44]董淼,黄越,陈文铎,等.降解组测序技术在植物]miRNA研究中的应用[J].植物学报,2013,48(003):344-353.
    [45]German MA, Luo SJ, Schroth G, et al. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome[J]. Nat Protoc,2009, 4(3):356-362.
    [46]Franco-Zorrilla JM, del Toro FJ, Godoy M, et al. Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations[J]. Plant J,2009,59(5): 840-850.
    [47]沈亚欧,林海建,张志明,等.植物逆境miRNA研究进展[J].遗传,2009,31(3):227-235.
    [48]Mazzucotelli E, Mastrangelo AA, Crosatti C, et al. Abiotic stress response in plants:When post-transcriptional and post-translational regulations control transcription[J]. Plant Sci,2008, 174(4):420-431.
    [49]Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, et al. Non-coding RNAs in the plant response to abiotic stress[J]. Planta,2012,236(4):943-958.
    [50]Zhang JF, Yuan LJ, Shao Y, et al. The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis[J]. Plant Cell Environ,2008,31(4): 562-574.
    [51]Sunkar R, Chinnusamy V, Zhu JH, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends Plant Sci,2007,12(7):301-309.
    [52]Apel K, Hirt H. Reactive oxygen species:Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology,2004,55:373-399.
    [53]Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9(10):490-498.
    [54]Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell,2006,18(8):2051-2065.
    [55]丁艳菲,王光钺,傅亚萍,等.miR398在植物逆境胁迫应答中的作用[J].遗传,2010,32(2):129-134.
    [56]Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta,2009,229(4):1009-1014.
    [57]Raghothama KG, Karthikeyan AS. Phosphate acquisition[J]. Plant and Soil,2005,274(1-2): 37-49.
    [58]Bari R, Pant BD, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology,2006,141(3):988-999.
    [59]Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell,2006,18(2):412-421.
    [60]Aung K, Lin SI, Wu CC, et al. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene[J]. Plant Physiology,2006,141(3):1000-1011.
    [61]Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant Journal,2008,53(5):731-738.
    [62]Allen E, Xie ZX, Gustafson AM, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell,2005,121(2):207-221.
    [63]Lappartient AG, Vidmar JJ, Leustek T, et al. Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. Plant Journal,1999,18(1):89-95.
    [64]Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene,1999,239(1): 15-27.
    [65]Li WX, Oono Y, Zhu JH, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell,2008, 20(8):2238-2251.
    [66]Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol,2009,10:29.
    [67]Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science,2006,313(5793):1596-1604.
    [68]Sterky F, Bhalerao RR, Unneberg P, et al. A Populus EST resource for plant functional genomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(38):13951-13956.
    [69]Yang XH, Kalluri UC, DiFazio SP, et al. Poplar genomics:state of the science[J]. Crit Rev Plant Sci,2009,28(5):285-308.
    [70]程强,潘惠新,徐立安,等.杨树基因组计划及其分子生物学研究进展[J].南京林业大学学报:自然科学版,2009,33(1):131-135.
    [71]张勇,张守攻,齐力旺,et al.杨树——林木基因组学研究的模式物种[J].植物学通报,2006,23(3):286-293.
    [72]Taylor G. Populus: Arabidopsis for forestry. Do we need a model tree?[J]. Ann Bot,2002,90(6): 681-689.
    [73]Jansson S, Douglas CJ. Populus:A model system for plant biology[J]. Annu Rev Plant Biol,2007, 58:435-458.
    [74]Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res,2011,39(suppl 1):D152-D157.
    [75]Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus[J]. Plant J,2008,55(1): 131-151.
    [76]Lu S, Sun YH, Shi R, et al. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. Plant Cell,2005,17(8):2186-2203.
    [77]Puzey JR, Karger A, Axtell M, et al. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets[J]. PLoS One,2012,7(3):e33034.
    [78]Shuai P, Liang D, Zhang Z, et al. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics,2013,14:233.
    [79]Li B, Yin W, Xia X. Identification of microRNAs and their targets from Populus euphratica[J]. Biochem Biophys Res Commun,2009,388(2):272-277.
    [80]Li B, Qin Y, Duan H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experimental Botany,2011,62(11):3765-3779.
    [81]覃玉蓉.胡杨microRNAs的克隆及其功能研究[D].北京:北京林业大学,2011.
    [82]李博生MicorRNA调节胡杨抗逆性状的分子机制研究[D].北京:北京林业大学,2012.
    [83]Qin Y, Duan Z, Xia X, et al. Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica[J]. Plant Cell Rep,2011,30(10): 1893-1907.
    [84]张译云,任媛媛,陈磊,等1.毛白杨12种microRNAs的低温胁迫差异表达分析[J].中国农学通报,2012,26(7):1-7.
    [85]张泽云.毛白杨低温胁迫相关microRNAs的鉴定及差异表达分析[D].北京:北京林业大学,2012.
    [86]Chen L, Zhang Y, Ren Y, et al. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing[J]. Biochem Biophys Res Commun,2012,417(2):892.
    [87]Chen L, Ren Y, Zhang Y, et al. Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing[J]. Planta,2012,235(5): 873-883.
    [88]Chen L, Ren Y, Zhang Y, et al. Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa[J]. Gene,2012,504(2):160.
    [89]Ren Y, Chen L, Zhang Y, et al. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress[J]. Funct Integr Genomic,2012,12(2): 327.
    [90]Song Y, Ma K, Ci D, et al. Sexual dimorphismdloral microRNA profiling and target gene expression in andromonoecious poplar(Populus tomentosa)[J].PLoS One,2013,8(5):
    [91]Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci U S A,2013:
    [92]Baucher M, Moussawi J, Vandeputte OM, et al. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco[J]. Plant Biol,2012:
    [93]Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees[J]. Biochem Biophys Res Commun,2013:
    [94]Zhao JP, Diao S, Zhang BY, et al. Phylogenetic analysis and molecular evolution patterns in the MIR482-MIR1448 polycistron of Populus L[J]. PLoS One,2012,7(10):e47811.
    [95]Flowers TJ. Improving crop salt tolerance[J]. Journal of Experimental Botany,2004,55(396): 307-319.
    [96]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual review of plant biology,2008, 59:651-681.
    [97]苏志学.土壤盐碱化及其防治措施[J].吉林水利,2006,3:10-12.
    [98]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002,33(6):449-455.
    [99]彭津琴,刘永强,杨玉芳,等.遏制土壤盐碱化、荒漠化的必要性及技术进展[J].天津农业科学,2008,14(4):26-29.
    [100]Flowers TJ, Troke PF, Yeo AR. Mechanism of Salt Tolerance in Halophytes[J]. Annu Rev Plant Physiol Plant Molec Biol,1977,28:89-121.
    [101]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.
    [102]张娟,姜闯道,平吉成.盐胁迫对植物光合作用影响的研究进展[J].农业科学研究,2008,29(3):74-80.
    [103]Flowers TJ, Colmer TD. Salinity tolerance in halophytes[J]. New Phytol,2008,179(4):945-963.
    [104]Zhu JK. Plant salt tolerance[J]. Trends Plant Sci,2001,6(2):66-71.
    [105]李娅娜,江可珍,别之龙.植物盐胁迫及耐盐机制研究进展[J].黑龙江农业科学,2009,(3):153-155.
    [106]Byrt CS, Munns R. Living with salinity[J]. New Phytol,2008,179(4):903-905.
    [107]Chen S, Polle A. Salinity tolerance of Populus[J]. Plant Biol,2010,12(2):317-333.
    [108]曾会明,沈昕.胡杨(Populus euphratica)盐相关基因的克隆[J].内蒙古农业大学学报:自然科学版,2004,25(2):76-80.
    [109]卢永丰,王振亮.耐盐治沙好树种—胡杨[J].河北林业科技,2002,4:54-54.
    [110]马焕成,王沙生.盐胁迫下胡杨的离子响应[J].西南林学院学报,1998,18(1):42-47.
    [111]Chen SL, Li JK, Wang SS, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Can J For Res-Rev Can Rech For,2003,33(6):967-975.
    [112]Chen SL, Lia JK, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCI stress[J]. For Ecol Manage,2002,168(1-3):217-230.
    [113]Sun J, Dai SX, Wang RG, et al. Calcium mediates root K+/Na+homeostasis in poplar species differing in salt tolerance[J]. Tree Physiol,2009,29(9):1175-1186.
    [114]Ottow EA, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiol,2005,139(4):1762-1772.
    [115]Brosche M, Vinocur B, Alatalo ER, et al. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert[J]. Genome Biol,2005,6(12):17.
    [116]Wu Y, Ding N, Zhao X, et al. Molecular characterization of PeSOSI:the putative Na(+)/H (+) antiporter of Populus euphratica[J]. Plant molecular biology,2007,65(1-2):1-11.
    [117]Beritognolo I, Piazzai M, Benucci S, et al. Functional characterisation of three Italian Populus alba L. genotypes under salinity stress[J]. Trees-Struct Funct,2007,21(4):465-477.
    [118]Chen SL, Li JK, Wang TH, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. J Plant Growth Regul,2002,21(3):224-233.
    [119]Knight H, Knight MR. Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends in Plant Science,2001,6(6):262-267.
    [120]Zhang HC, Yin WL, Xia XL. Calcineurin B-Like family in Populus:comparative genome analysis and expression pattern under cold, drought and salt stress treatment[J]. Plant Growth Regulation,2008,56(2):129-140.
    [121]Chang Y, Chen SL, Yin WL, et al. Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars[J]. J Integr Plant Biol,2006,48(3):286-293.
    [122]Wang RG, Chen SL, Zhou XY, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiol,2008,28(6): 947-957.
    [123]Chen XM. Small rNAs and their roles in plant development[J]. Annu Rev Cell Dev Biol,2009, 25:21-44.
    [124]Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses[J]. Biochim Biophys Acta,2008,1779(11):743-748.
    [125]Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses[J]. Annu Rev Plant Biol,2009,60:485-510.
    [126]Zhou M, Luo H. MicroRNA-mediated gene regulation:potential applications for plant genetic engineering[J]. Plant Mol Biol,2013:1-17.
    [127]魏强,梁永宏,李广林.植物miRNA的进化[J].遗传,2013,25(3):315-323.
    [128]Zhang Z, Li J, Zhao X-Q, et al. KaKsCalculator:calculating Ka and Ks through model selection and model averaging[J]. Geno Prot Bioinfo,2006,4(4):259-263.
    [129]Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Mol Biol Evol,2000,17(1):32-43.
    [130]Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. Plant Cell,2004,16(7):1667-1678.
    [131]Larkin M, Blackshields G, Brown N, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics,2007,23(21):2947-2948.
    [132]Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol,2011,28(10):2731-2739.
    [133]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol,1987,4(4):406-425.
    [134]Felsenstein J. Evolutionary trees from DNA sequences:a maximum likelihood approach[J]. J Mol Evol,1981,17(6):368-376.
    [135]Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000,290(5494):1151-1155.
    [136]Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae)[J]. Mol Biol Evol,2000,17(10):1483-1498.
    [137]Wan L-C, Zhang H, Lu S, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata[J]. BMC genomics,2012,13(1):132.
    [138]方炎明.陆地植物新系统树之诠释与简评[J].南京林业大学学报(自然科学版),2009,33(4):1-7.
    [139]Hedges SB, Kumar S:The timetree of life[M]. New York:Oxford University Press,2009. 131-220.
    [140]Sanderson M, Thorne J, Wikstrom N, et al. Molecular evidence on plant divergence times[J]. Am J Bot,2004,91(10):1656-1665.
    [141]Sterck L, Rombauts S, Jansson S, et al. EST data suggest that poplar is an ancient polyploid[J]. New Phytol,2005,167(1):165-170.
    [142]De Bodt S, Maere S, Van de Peer Y. Genome duplication and the origin of angiosperms[J]. Trends Ecol Evol,2005,20(11):591-597.
    [143]Jiang WK, Liu YL, Xia EH, et al. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants[J]. Plant Physiol,2013, 161(4):1844-1861.
    [144]Combier J-P, Frugier F, de Billy F, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula[J]. Genes Dev, 2006,20(22):3084-3088.
    [145]Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res,2004,32(5):1792-1797.
    [146]Cui X, Xu SM, Mu DS, et al. Genomic analysis of rice microRNA promoters and clusters[J]. Gene,2009,431(1-2):61-66.
    [147]Marchler-Bauer A, Lu S, Anderson JB, et al. CDD:a Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Res,2011,39(Database issue):D225-229.
    [148]Gu RS, Fonseca S, Puskas LG, et al. Transcript identification and profiling during salt stress and recovery of Populus euphratica[J]. Tree Physiol,2004,24(3):265-276.
    [149]Pysh LD, Wysocka-Diller JW, Camilleri C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J,1999,18(1):111-119.
    [150]Torres-Galea P, Huang LF, Chua NH, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Mol Genet Genomics,2006,276(1):13-30.
    [151]赵永斌.植物GRAS蛋白的结构与功能[J].吉林师范大学学报:自然科学版,2007,(4): 29-31.
    [152]郭华军,焦远年,邸超,等.拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索[J].植物学报,2009,44:290-299.
    [153]Fode B, Siemsen T, Thurow C, et al. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters[J]. Plant Cell,2008,20(11):3122-3135.
    [154]Zhou M, Gu L, Li P, et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica)[J]. Frontiers in Biology,2010,5(1):67-90.
    [155]Voinnet O. Origin, biogenesis, and activity of plant microRNAs[J]. Cell,2009,136(4):669-687.
    [156]Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species[J]. Genome Biol Evol,2012,4(3):230-239.
    [157]孙红正,葛颂.重复基因的进化--回顾与进展[J].植物学报,2010,45(1):13-22.
    [158]Yu S, Galvao VC, Zhang Y-C, et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors[J]. Plant Cell,2012,24(8):3320-3332.
    [159]Xing S, Salinas M, H6hmann S, et al. MiR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell,2010,22(12): 3935-3950.
    [160]Wang J-W, Czech B, Weigel D. MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana [J]. Cell,2009,138(4):738-749.
    [161]Wu G, Park MY, Conway SR, et al. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis[J]. Cell,2009,138(4):750-759.
    [162]Wang J-W, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 2008,20(5):1231-1243.
    [163]Zhang B, Pan X, Cannon CH, et al. Conservation and divergence of plant microRNA genes[J]. Plant J,2006,46(2):243-259.
    [164]葛安静,张春华,董清华,等.草莓SBP基因家族生物信息学初步分析[J].中国农学通报,2012,28(13):215-220.
    [165]吴巨友,薛亚男,张绍铃.植物环核苷酸门控离子通道基因的功能及其调控[J].西北植物学报,2010,30(8):1716-1720.
    [166]王月,侯和胜.植物环核苷酸门控通道(CNGC)基因家族的结构与功能[J].植物生理学通讯, 2007,43(1):1-8.
    [167]Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development[J]. New Phytol,2007,175(3):387-404.
    [168]Koehler C, Merkle T, Neuhaus G. Characterisation of a novel gene family of putative cyclic nucleotide-and calmodulin-regulated ion channels in Arabidopsis thaliana[J]. Plant Journal,1999, 18(1):97-104.
    [169]Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants[J]. FEBS Lett,2007, 581(12):2237-2246.
    [170]Chin K, Moeder W, Yoshioka K. Biological roles of cyclic-nucleotide-gated ion channels in plants:What we know and don't know about this 20 member ion channel family[J]. Botany,2009, 87(7):668-677.
    [171]Apse MP, Blumwald E. Na+transport in plants[J]. FEBS Lett,2007,581(12):2247-2254.
    [172]Guo KM, Babourina O, Christopher DA, et al. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis[J]. Physiol Plantarum,2008,134(3):499-507.
    [173]Addo-Quaye C, Eshoo TW, Bartel DP, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Curr Biol,2008,18(10):758-762.
    [174]German MA, Pillay M, Jeong DH, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nat Biotechnol,2008,26(8):941-946.
    [175]Li YF, Zheng Y, Addo-Quaye C, et al. Transcriptome-wide identification of microRNA targets in rice[J]. Plant J,2010,62(5):742-759.
    [176]Song QX, Liu YF, Hu XY, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing[J]. BMC Plant Biol,2011,11:16.
    [177]Mao W, Li Z, Xia X, et al. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber[J]. PLoS One,2012,7(3)::e33040.
    [178]Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis[J]. Plant J,2010,62(6):960-976.
    [179]Hao DC, Yang L, Xiao PG, et al. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis[J]. Physiol Plantarum,2012,146(4):388-403.
    [180]Tang G. Plant microRNAs:an insight into their gene structures and evolution[C]. In:Seminars in cell & developmental biology. Elsevier 2010:782-789.
    [181]Addo-Quaye C, Miller W, Axtell MJ. CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J]. Bioinformatics,2009,25(1):130-131.
    [182]Du Z, Zhou X, Ling Y, et al. agriGO:a GO analysis toolkit for the agricultural community[J]. Nucleic Acids Res,2010,38(Web Server issue):W64-70.
    [183]Burge SW, Daub J, Eberhardt R, et al. Rfam 11.0:10 years of RNA families[J]. Nucleic Acids Res,2013,41(Database issue):D226-232.
    [184]Brugiere N, Dubois F, Limami AM, et al. Glutamine synthetase in the phloem plays a major role in controlling proline production[J]. Plant Cell,1999,11(10):1995-2012.
    [185]Diaz P, Betti M, Sanchez DH, et al. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress[J]. New Phytologist,2010,188(4):1001-1013.
    [186]汪军玲,王松太miRNA体内作用靶标鉴定的策略[J].中国生物工程杂志,2009,29(03):85-88.
    [187]夏伟,曹国军,邵宁生MicroRNA靶基因的寻找及鉴定方法研究进展[J].中国科学C辑,2009,39(1):121-128.
    [188]Kocsy G, Tari I, Vankova R, et al. Redox control of plant growth and development[J]. Plant Sci, 2013,211:77-91.
    [189]Turkan I, Demiral T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot,2009,67(1):2-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700