边鸡遗传多样性及Myostatin基因对生长和繁殖性状的遗传效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用29个微卫星标记研究边鸡0世代群体的遗传多样性,并与2个对照品种(京海黄鸡和尤溪麻鸡)的遗传多样性进行比较;选择0世代边鸡群体中等位基因数在4个以上的21个微卫星标记研究1世代边鸡群体的遗传多样性,并与0世代边鸡群体的遗传多样性进行比较以了解边鸡群体的保种效果;采用PCR-SSCP技术检测边鸡及3个对照品种(京海黄鸡、尤溪麻鸡和AA鸡)肌肉生长抑制素基因(Myostatin)的单核苷酸多态性,并与边鸡的生长和繁殖性状进行相关分析,为边鸡群体的标记辅助选择提供依据;运用荧光定量PCR技术分析边鸡Myostatin基因G2283A位点形成的3种基因型在胸肌、腿肌和卵巢中表达量的差异,以探讨这一位点对边鸡的生长性状和繁殖性状具有显著效应的分子机理,同时分析边鸡Myostatin基因在胸肌、腿肌和卵巢中表达量的差异。主要研究结果如下:
     1.利用29个微卫星标记在3个鸡品种(边鸡、京海黄鸡和尤溪麻鸡)中总共检测到166个等位基因,其中32个等位基因为某一品种所特有。边鸡拥有的特有等位基因最多,为15个(46.9%),京海黄鸡次之,为12个(37.5%)。边鸡的平均多态信息含量(0.5168)和平均期望杂合度(0.5750)最高,京海黄鸡的平均多态信息含量(0.4915)和平均期望杂合度最低(0.5505)。在29个微卫星位点中,边鸡群体有15位点为高度多态位点,其余14个位点为中度多态位点。京海黄鸡和尤溪麻鸡的高度多态位点数分别为17和14个。在3个品种中一些位点显著的偏离哈代-温伯格平衡,杂合子缺失的水平也很高。通过固定指数(Fst)估计品种间的遗传分化为6.7%(P<0.001)。群体内的杂合子缺失(Fis)为22.2%(P<0.001)。边鸡的近交系数最高(0.249),京海黄鸡的最低(0.159)。这些研究结果可为边鸡、京海黄鸡以及尤溪麻鸡的遗传特征研究和保种提供初步依据。2.选用的等位基因数在4个以上的21个微卫星标记在2个世代的边鸡群体中共检测到122个等位基因,其中102个为两个世代所共有,19个为0世代所特有。0世代和1世代的边鸡群体的平均多态信息含量(PIC)分别为0.5473和0.5437;平均期望杂合度分别(He)为0.5967和0.6009;近交系数(Fis)分别为0.233和0.134。经过一个世代的繁育,PIC和He两个指标维持在原有水平,而群体的近交系数有所下降,说明采用的保种方法很好的保存了边鸡的遗传多样性,同时避免了近交程度过高而导致群体出现近交衰退。
     3.在4个鸡品种Myostatin基因中总共检测到17个突变,其中10个突变(A326G、C334G、G673A、G985C、G1085A、A1278T、C1346T、G1375A、A1473G和G1491A)位于5′调控区,4个突变(G2100A、G2109A、C2244G和G2283A)位于外显子1,3个突变(C7552T,C7638T和T7661A)位于外显子3。编码区的突变都未导致氨基酸的改变。
     4.边鸡、京海黄鸡、尤溪麻鸡和AA鸡Myostatin基因中分别有7、9、9和5个位点表现出多态。边鸡MYOE1-2位点为高度多态位点,MYO1和MYOE1-3位点为中度多态位点,其余4个位点为低度多态位点。京海黄鸡、尤溪麻鸡和AA鸡中高度多态位点数分别为1、2、0个,中度多态位点数都为4个。
     5.通过在线软件预测发现4个鸡品种Myostatin基因5′调控区的突变总共导致10个转录因子结合位点(E2F、CRE-BP、CREB、HFH-2、NKx-2、CdxA、Oct-1、V-Maf、Tst-1和C/EBPα)发生了改变。
     6.边鸡Myostatin基因5′调控区MYO1、MYO6和MYO7位点以及外显子区MYOE1-2、MYOE1-3位点对边鸡的生长性状具有显著或极显著的影响(P<0.05或P<0.01),推测Myostatin基因可能是影响边鸡生长性状的主效基因或与主效基因相连锁的一个标记。MYOE1-3位点DE和EE基因型的6-18周龄体重都显著或极显著的高于EE基因型(P<0.05或P<0.01),并且具有EE基因型的体重>DE基因型>EE基因型的规律,MYOE1-3位点在边鸡生长性状的标记辅助选择方面具有很大的应用潜力。
     7.边鸡Myostatin基因5′调控区MYO1、MYO6和MYO7位点对边鸡的开产体重有显著的影响(P<0.05),外显子区MYOE1-2、MYOE1-3、MYOE3-2和MYOE3-3位点对边鸡的开产日龄和300日龄产蛋数具有显著或极显著的影响(P<0.05或P<0.01),推测Myostatin基因可能是影响边鸡繁殖性状的的主效基因或与主效基因相连锁的一个标记。MYOE1-3位点DE基因型的开产日龄显著的早于DD基因型(P<0.05),EE基因型的开产日龄极显著的早于DD基因型(P<0.01);MYOE1-3位点DE基因型的300日龄产蛋数显著的高于DD基因型(P<0.05),EE基因型的300日龄产蛋数极显著的高于DD基因型(P<0.01),MYOE1-3位点在边鸡300日龄产蛋数的标记辅助选择方面具有很大的应用潜力。
     8.边鸡Myostatin基因7个多态位点两两组合对边鸡的生长性状和繁殖性状的互作效应达到显著(P<0.05)或极显著(P<0.01)的水平。
     9.通过荧光定量PCR技术发现Myostatin基因G2283A位点形成的3种基因型(DD、DE和EE)在胸肌、腿肌中的表达量存在差异,在卵巢中的表达量没有差异。在胸肌中,野生型(DD)的表达量是突变杂合型(DE)的表达量的1.40倍,是突变纯合型(EE)的4.66倍。在腿肌中,野生型的表达量是突变杂合型的表达量的1.27倍,是突变纯合型的8倍。研究结果还表明Myostatin基因主要在胸肌和腿肌中表达,在卵巢中只有微量表达,胸肌中的表达量是卵巢中的471.1倍,腿肌中表达量是卵巢中的501.5倍。
The level of genetic differentiation and genetic structure in Bian chicken of 0 generation and two controlled chicken populations (Jinghai chicken and Youxi chicken) were analysed based on 29 microsatellite markers; In order to see the effect of conservation in Bian chicken, twenty-one microsatellite markers which had 4 alleles in Bian chicken of 0 generation were choosen to analyse the diversity of Bian chicken in 1 generation and compared the diversity with Bian chicken of 0 generation; PCR-SSCP method was used to detect the SNPs of the Myostatin Gene in Bian chicken, using Jinghai chicken, Youxi chicken and Arbor Acre chicken as controlled populations. We analysed its relationship with growth traits and reproductive traits in Bian chicken as well in order to lay the foundation for Marker-assisted Selection (MAS) for Bian chicken; In order to find out the molecule mechanism that the mutation G2283A had significant effect both on growth traits and reproductive traits, FQ-PCR method was used to study the expreesion level in breast muscle, leg muscle and ovary among 3 genotypes which were formed by the mutation G2283A in the Myostatin gene. The expreesion level in breast muscle, leg muscle and ovary in Bian chicken was also studied. The main results are listed as follows:
     1. Based on 29 microsatellite markers, a total of 166 distinct alleles were observed across the 3 breeds (Bian chicken, Jinghai chicken and Youxi chicken), and 32 of these alleles (19.3%) were unique to only 1 breed. Bian chicken carried the largest number of private alleles at 15 (46.9%), followed by the Jinghai chicken with 12 private alleles (37.5%). The average polymorphism information content (0.5168) and the average expected heterozygote frequency (0.5750) of the Bian chicken were the highest, and those of the Jinghai chicken were 0.4915 and 0.5505, respectively, which were the lowest. Among 29 microsatellite loci, there were 15 highly informative loci in Bian chicken, and the other 14 were reasonably informative loci. The highly informative loci in Jinghai chicken and Youxi chicken were 17 and 14 respectively. Significant deviations from the Hardy-Weinberg equilibrium were observed at several locus-breed combinations, showing a deficit of heterozygotes in many cases. As a whole, genetic differentiation among the breeds estimated by the fixation index (Fst) were at 6.7% (p<0.001). The heterozygote deficit within population (Fis) was 22.2% (p<0.001), with the highest (0.249) in Bian chicken and lowest (0.159) in Youxi chicken. These results serve as an initial step in the plan for genetic characterization and conservation of the chicken genetic resource of Bian, as well as Jinghai and Youxi chickens.
     2. Twenty-one microsatellite markers which had 4 alleles were choosen to analyse the diversity of Bian chicken in the two generations. The results showed that a total of 122 alleles were detected, of which, 102 were detected in the two generations, and 9 alleles were unique to generation 0. The average polymorphism information content (PIC) of generations 0 and 1 was 0.5473 and 0.5437, respectively, and the average expected heterozygote frequency (He) of the two generations was 0.5967 and 0.6009, respectively. The inbreeding coefficient was 0.233 in generation 0 and 0.134 in generation 1. Through selection and breeding for one generation, the PIC and He were maintained, while the inbreeding coefficient (Fis) was somewhat decreased. It indicated that the conserved method was feasible. The conservation method not only conserved the genetic diversity of Bian chicken, but also avoided inbreeding depression.
     3. Seventeen mutations were detected in the four chicken breeds. Amongst them, 10 mutations (A326G, C334G, G673A, G985C, G1085A, A1278T, C1346T, G1375A, A1473G and G1491A) were located in the 5′regulatory region of the Myostatin gene and 4 mutations (G2100A,G2109A,C2244G, G2283A) were located in exon 1. The remaining 3 mutations (C7552T, C7638T, T7661A) were located in exon 3 . Mutations in the coding region of exons were synonymous mutations.
     4. In Bian chicken, Jinghai chicken, Youxi chicken and AA chicken there were 7, 9, 9 and 5 loci displayed polymorphisms in the Myostatin gene respectively. MYOE1-2 in Bian Chicken was a highly informative locus. MYO1 and MYOE1-3 were reasonably informative loci. The remaing 4 were slightly informative loci. The highly informative loci in Jianghai Chicken, Youxi Chicken and AA Chicken were 1, 2 and 0 respectively. The reasonably informative loci were all 4 in Jianghai Chicken, Youxi Chicken and AA Chicken .
     5. Through online software prediction it showed that the mutations in 5′regulatory region of the Myostatin gene in 4 chicken breeds resulted in 10 transcription factor binding site (E2F, CRE-BP, CREB, HFH-2, NKx-2, CdxA, Oct-1, V-Maf, Tst-1 and C/EBPα) changed.
     6. MYO1, MYO6 and MYO7 in the 5′regulatory region of the Myostatin gene and MYOE1-2, MYOE1-3 in the exonic region had significant effect on growth traits (P<0.05 or P<0.01). It suggested that Myostatin gene could be the major gene or is linked to the major gene that affects the growth traits in Bian chicken. For primers MYOE1-3, Bian chicken with genotype DE and EE had larger body weight than those with genotype DD (P<0.05 or P<0.01) from 6 to 18 wk of age. MYOE1-3 had a great potential to be used as genetic marker for growth traits in Bian chicken.
     7. MYO1, MYO6 and MYO7 in the 5′regulatory region of the Myostatin gene had significant effect on body weight at first egg (P<0.05). MYOE1-2, MYOE1-3, MYOE3-2 and MYOE3-3 in the exonic region had significant effect on age at first egg and egg number at 300 days (P<0.05 or P<0.01). It suggested that the Myostatin gene could be the major gene or is linked to the major gene that affects the reproductive traits in Bian chicken. For primers MYOE1-3, Bian chicken with genotype DD had larger age at first egg than those with genotype DE and genotype EE (P<0.05 and P<0.01 respectively). Correspondingly, Bian chicken with genotype EE and DE had larger egg number at 300 days than those with genotype DD (P<0.01 and P<0.05 respectively). MYOE1-3 had a great potential to be used as genetic marker for egg number at 300 days in Bian chicken.
     8. Significant interaction effect between different loci of the Myostatin gene were found on growth traits and reproductive traits (P<0.05 or P<0.01) in Bian Chicken.
     9. Using FQ-PCR method, it showed that the expression level was differ in breast muscle and leg muscle among 3 genotypes which were formed by the mutation G2283A in the Myostatin gene, while there was no difference in ovary among the 3 genotypes. In breast muscle, the expression level of genotype DD was 1.40 times than genotype DE and 4.66 times than genotype EE. In leg muscle, the expression level of genotype DD was 1.27 times than genotype DE and 8 times than genotype EE. The results also showed that Myostatin is principally expressed in breast muscle and leg muscle, while the expression level was very low in ovary. The expression level in breast muscle and leg muscle was 471.1 and 501.5 times than that in ovary respectively.
引文
[1]施立明.遗传多样性及其保存[J].生物科学信息. 1990, 2(4): 158-164.
    [2]葛颂主编.遗传多样性及其检验方法[G].北京:科学出版社, 1994: 123-140.
    [3]张细权,吕雪梅,杨玉华,等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报. 1998, 25(2): 112-129.
    [4] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet. 1980, 32: 314-331.
    [5] Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research. 1990, 18: 6531-6535.
    [6] Welsh J, Petersen C, Mcclelland M. Polymorphisms generated by arbitrarily primed PCR in the mouse:application to strain identification and genetic mapping[J]. Nucleic Acids Research. 1991, 19: 303-306.
    [7]王秋丽.八个不同蛋鸡群体的RAPD标记研究[D].西北农林科技大学硕士学位论文, 2003.
    [8]任军,高军,黄路生,等.江西省主要地方鸡种的RAPD分析及其群体遗传关系的研究[J].遗传. 2001, 23(4): 301-315.
    [9]汪永庆,徐来祥,张知彬. RAPD技术的标准化问题[J].动物学杂志. 2000, 35(4): 57-60.
    [10]汪小全,邹喻苹,张大明. RAPD应用于遗传多样性和系统学研究中的问题[J].植物学. 1996, 38(12): 954-962.
    [11]陈永久,张亚平.随机扩增多态DNA影响因素的研究[J].动物学研究. 1997, 18(2): 221-227.
    [12]韩双艳,郭勇. AFLP在分子生物学研究中的应用[J].生物技术通报. 2001(2): 22-24.
    [13]王永飞,马三梅,刘翠平,等.遗传标记的发展和分子标记的检测技术[J].西北农林科技大学报. 2001(6): 130-134.
    [14] Collins F S. Variation on a theme:cataloging human DNA sequence variation[J]. 1997, 278: 1580-1581.
    [15] Cooper D N, Smith H J, Cooke S, et al. An estimate of unique DNA sequence heterozygosity in the human genome[J]. Hum.Genet. 1985, 69: 201-205.
    [16] Kwok P Y, Deng Q, Zakeri H, et al. Increasing the information content of STS-based genome maps:Identifying polymorphisms in mapped STSs[J]. Genomics. 1996, 31(1): 123-126.
    [17] Orita M, Suzuki Y, Sekiya T, et al. A rapid and sensitive detection of point mutations and genetic polymorphism using polymerase chain reaction[J]. Genomics. 1989, 5: 874-879. 135
    [18] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Nalt Acad Sci USA. 1989, 86(8): 2766-2770.
    [19]张跃,郑光明,朱新平. PCR技术新应用与水产分子生物学研究[J].农业生物技术学报. 1999, 7(2): 1200-1993.
    [20]刘平华,李奎,彭中镇.猪生长激素基因的PCR-RFLP与PCR-SSCP研究概况[J].畜牧兽医杂志. 1994, 3: 16-18.
    [21] Vaiman D, Pailhoux E, Payen E, et al. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle[J]. Cytogenet Cell Genet. 1995, 70: 112-115.
    [22] Weber J L. Informativeness of human(dC-dA)n&(dG-dT)n polymorphisms[J]. Genomics. 1990, 7: 524-530.
    [23] Estoup A, Tailliez C, Cornuet J M, et al. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae)[J]. Mol Biol Evol. 1995, 12(6): 1074-1084.
    [24]陶钧,邹峰.湖南地方猪种群亲缘关系的生化遗传学研究[J].畜牧兽医学报. 1992, 23(1): 13-21.
    [25] Kunkel T. Slippery DNA and disease[J]. Nature. 1993, 365: 207-208.
    [26] Ashley C T, Warren S T. Trinucleotide repeats expansion and human disease[J]. Annu Rev Genet. 1995, 29: 703-728.
    [27] Maddox J. Triplet repeat genes raise question[J]. Nature. 1994, 368: 647-685.
    [28] Levinson G, Gutman G A. Slipped-strand mispairing:a major mechanism for DNA sequence evolution[J]. Mol Biol Evol. 1987, 8(4): 203-221.
    [29] Jeffreys A J, Tamaki K, Macleod A, et al. Complex gene conversion events in germ line mutation at human minisatellites[J]. Nature Genetics. 1994, 6: 136-145.
    [30] Henderson S T, Petes T D. Instability of simple sequence DNA in Saccharomyces cerevisiae[J]. Mol Cell Biol. 1992, 12: 2749-2757.
    [31] Levinson G, Gutman G A. High frequencies of short frameshift in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12[J]. Nucleic Acids Res. 1987, 15: 5323-5338.
    [32] Cheng H H. Mapping the chicken genome[J]. Poult Sci. 1997, 76: 1101-1107.
    [33] Cheng H H, Crittenden L B. Microsatellite markers for genetic mapping in the chicken[J]. Poult Sci. 1994, 73: 539-546.
    [34] Gao Y, Du Z Q, Wei W H, et al. Mapping quantitative trait loci regulating chicken body composition traits[J]. Anim Genet. 2009, Epub ahead of print.
    [35] Uemoto Y, Sato S, Odawara S, et al. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens[J]. Poult Sci. 2009, 88(3): 477-482.
    [36] Crooijmans R, Vander P, Strijk J. Preliminary linkage map of the chicken (Gallusdomestics) genome based on microsatellite markers 77 news markers mapped[J]. Poult Sci. 1996, 75: 746-754.
    [37] Archibald A L, Burt D W, Williams J L. Gene mapping in farm animals and birds a overview[J]. Proc.5th world Conger Genet. Appli Livest Prod. 1994, 21: 3-4.
    [38] Chatterjee R, Sharma R P, Bhattacharya T K, et al. Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens.[J]. Biochem Genet. 2010, 48(1-2): 71-82.
    [39] Gao Y, Du Z Q, Feng C G, et al. Identification of quantitative trait loci for shank length and growth at different development stages in chicken.[J]. Anim Genet. 2010, 41(1): 101-104.
    [40]周海龙,庆朱.丝羽乌骨鸡月产蛋性能与微卫星标记关系的研究[J].四川农业大学学报. 2005, 23(4): 450-453.
    [41]顾华兵,陈宽维,徐文娟,等.新扬州鸡不同周龄蛋品质与微卫星标记关联分析[J].中国畜牧杂志. 2008, 44(13).
    [42] Ellegren H, Johansson M, Sandberg K, et al. Cloning of highly polymorphic microsatellites in the horse[J]. Anim Genet. 1992, 23: 133-142.
    [43] Li H F, Han W, Zhu Y F, et al. Analysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program[J]. J Genet. 2009, 88(2): 197-203.
    [44]张勇,肖礼华,陈祥,等.利用微卫星标记分析贵州地方鸡种的遗传多样性及亲缘关系[J].畜牧兽医学报. 2006, 37(12): 1274-1281.
    [45]包文斌,陈国宏,李碧春,等.红色原鸡和中国家鸡遗传多样性及亲缘关系[J].中国科学. 2008, 38(1): 43-51.
    [46]李慧芳,朱云芬,韩威,等.中国地方鸡种遗传多样性和品种贡献率分析[J].家畜生态学报. 2009, 30(5): 10-15.
    [47] Shahbazi S, Mirhosseini S Z, Romanov M N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers[J]. Biochem Genet. 2007, 45(1-2): 63-75.
    [48] Dávila S G, Gil M, Resino-Talaván P, et al. Evaluation of diversity between different Spanish chicken breeds, a tester line, and a White Leghorn population based on microsatellite markers[J]. Poult Sci. 2009, 88(12): 2518-2525.
    [49] Bodzsar N, Eding H, Revay T, et al. Genetic diversity of Hungarian indigenous chicken breeds based on microsatellite markers[J]. Anim Genet. 2009, 40(4): 516-523.
    [50]张勇,肖礼华,陈祥,等.用微卫星标记分析贵州地方鸡种的遗传多样性及亲缘关系[J].中国畜牧杂志. 2009, 45(23): 1-6.
    [51]管松,侯冠彧,王东劲,等.中国热带地区三个鸡品种遗传多样性的微卫星分析[J].家畜生态学报. 2009, 30(3): 22-27.
    [52] Ponsuksili S, Wimmers K, Horst P. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting[J]. J Hered. 1998, 89(1): 17-23.
    [53]王金玉,龚允陈,陈国宏,等.鸡的DNA指纹与屠宰性能的相关性研究[J].遗传学报. 1999, 26(4): 324-328.
    [54]盛浩伟,王金玉,戴国俊,等.新扬州鸡DNA指纹J带与生产性能的相关性研究[J].生物技术. 2004, 3(18): 18-19.
    [55]张鹏,顾玉萍,王金玉,等.京海1号黄鸡DNA指纹中J带与体重的相关性研究[J].中国家禽学报. 2004, 8(1): 149-151.
    [56] Mcpherron A C, Lee S J. Double muscling in cattle due to mutations inthe Myostatin gene[J]. Proc Natl Acad Sci USA. 1997, 94(23): 12457-12461.
    [57] Smith T P, Lopez-Corrales N L, Kappes S M, et al. Myostatin maps to the interval containing the bovine mh locus[J]. Mamm Genome. 1997, 8(10): 742-744.
    [58] Sonstegard T S, Rohrer G A, Smith T P. Myostatin maps to porcine chromosome 15 by linkage and physical analyses[J]. Anim Genet. 1998, 29(1): 19-22.
    [59] Marcq F, Elsen J M, El Barkouki S, et al. Investigating the role of Myostatin in the determinism of double muscling characterizing Belgian Texel sheep[J]. Anim Genet. 1998, 29(suppl.1): 52-53.
    [60] Gonzalez-Cadavid N F, Taylor W E, Yarasheski K, et al. Organization of the human Myostatin gene and expression in healthy men and HIV-infected men with muscle wasting[J]. Proc Natl Acad Sci USA. 1998, 95(25): 14938-14943.
    [61] Sazanov A, Ewald D, Buitkamp J, et al. A molecular marker for the chicken Myostatin gene(GDF8) maps to 7p11[J]. Anim Genet. 1999, 30(5): 388-389.
    [62] Cheifetz S. The transforming growth factor-βsystem, a complex pattern of cross-reactive ligands and receptors[J]. Cell. 1987, 48: 409-415.
    [63] Peggy R B, Kenneth D C, Ronald W H, et al. Growth hormone differentially regulates muscle myotatinl and-2 and incresase circulating cortisol in rainbow trout[J]. Gen Comp Endocrinol. 2004, 3(23): 32-41.
    [64] Thomas M, Langley B, Berry C, et al. Myostatin,a megative regulator of muscle growth,functions by inhibiting myoblast proliferation[J]. J Biol Chem. 2000, 275(51): 40235-40243.
    [65] Thomas M B, Casula P, Wilby A. Biological control and indirect effects[J]. Trends Ecol Evol. 2004, 19(2): 61.
    [66] Oldham J M, Martyn J A, Sharma M, et al. Molecular expression of Myostatin and MyoD isgreater in double-muscled than normal-muscled cattle fetuses[J]. Am J Physiol Regul Integr Comp Physiol. 2001, 280(5): 1488-1493.
    [67] Gu Z L, Zhang H F, Zhu D H, et al. Single nucleotide polymorphism analysis of the chicken Myostatin gene in different chicken lines[J]. Acta Genetica Sinica. 2002, 29(7): 599-606.
    [68] Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J]. J Biol Chem. 2002, 277(51): 49831-49840.
    [69] Mcpherron A C, Lee S J. Suppression of body fat accumulation in Myostatin-deficient mice[J]. J Clin Invest. 2002, 109(5): 595-601.
    [70] Kim H S, Liang L, Dean R G, et al. Inhibition of preadipocyte differentiation by Kim Myostatin treatment in 3T3-L1 cultures[J]. Biochem Biophys Res Commun. 2001, 281(4): 902-906.
    [71] Lin J, Arnold H B, Della-Fera M A, et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochem Biophys Res Commun. 2002, 291(3): 701-706.
    [72] Reardon K A, Davis J. Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAsare upregulated in chronic human disuse muscle atrophy[J]. Muscle Nerve. 2001, 24(7): 893-899.
    [73] Krik S, Oldham J. Myostatin regulation during skeletal muscle regeneration[J]. J Cell Physio1. 2000, 184(3): 356-363.
    [74] Kocamis H, Kirkpatrick-Keller D C, Richter J, et al. The ontogeny of Myostatin, follistatin and activin-B mRNA expression during chicken embryonic development[J]. Growth Dev Aging. 1999, 63: 143-150.
    [75] Radaelli G, Domeneghini C, Arrighi S, et al. Loacalization of IGF-I receptor and IGFBP-2 in developing Umbrina cirrosa (Pisces: Osteichthyes)[J]. Gen Comp Endocrinol. 2003, 130(3): 232-244.
    [76] Grobet L, Martin L J, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle[J]. Nat Genet. 1997, 17: 71-74.
    [77] Wiener P, Woolliams J A, Frank-Lawale A, et al. The effects of a mutation in the myostatin gene on meat and carcass quality[J]. Meat Science. 2009, 83: 127-134.
    [78]张润锋,陈宏,雷初朝,等. 3个黄牛品种的myostatin 5′调控区多态与生长性状的相关分析[J].畜牧兽医学报. 2007, 38(12): 1273-1278.
    [79]肖功炎,赖贻海.“双肌臀”大白猪生长情况的观察[J].中国畜牧杂志. 1999, 35(4): 46.
    [80]李绍华.猪MSTN基因多态性及其分子标记的研究[D].华中农业大学硕士学位论文, 2001.
    [81]关学敏.猪生长抑制素基因5’调控区的突变与生产性能的相关分析[J].西北农业学报. 2006, 15(2): 7-9.
    [82] Hickford J G, Forrest R H, Zhou H, et al. Polymorphisms in the ovine Myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep[J]. Anim Genet. 2010, 41(1): 64-72.
    [83] Boman I A, Klemetsdal G, Blichfeldt T, et al. A frameshift mutation in the coding region of the Myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries)[J]. Anim Genet. 2009, 40(4): 418-422.
    [84]刘铮铸,李祥龙,巩元芳,等. MSTN基因内含子2多态性与山羊体重性状相关研究[J].畜牧兽医学报. 2006, 37(8): 745-748.
    [85]顾志良,朱大海,李宁,等.鸡Myostatin基因单核苷酸多态性与骨骼肌和脂肪生长的关系[J].中国科学. 2003, 33(3): 273-280.
    [86] Ye X H, Brown S R, Nones K, et al. Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens[J]. Genet Sel Evol. 2007, 39(1): 73-89.
    [87]颜文锦.京海黄鸡Myostatin基因单核苷酸多态性与相关性状的关系研究[D].扬州大学硕士学位论文, 2007.
    [88]黄培堂编译. PCR技术的原理和应用[Z].北京:中国科学技术出版社, 19901-9.
    [89] Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell nemia[J]. Science. 1985, 230(4732): 1350-1354.
    [90]帅小蓉,夏庆友.定量PCR技术的研究现状及应用概述[J].蚕学通报. 2002, 22(4): 20-28.
    [91]朱水芳.实时荧光聚合酶链式反应检测技术[M].北京:中国计量出版社, 2003: 33-49.
    [92]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志. 2007, 16(4): 492-497.
    [93]程金花.鹅PIT-1基因的克隆、表达和遗传效应研究[D].扬州大学博士学位论文, 2009.
    [94] Zimmermann B, Holzgreve W, Wenzel F, et al. Novel real-timequantitative PCR test for t risomy[J]. Clin Chem. 2002, 48(2): 362-363.
    [95] Qzaki H, Mclaughlin L W. The estimation of distances between specific backbone2labeled sites in DNA using fluorescence resonance energy t ransfer[J]. Nucleic Acids Res. 1992, 20(19): 5205-5214.
    [96] Woo T H, Patel B K, Clinco M, et al. Identification of Leptospira biflexa by real time homogeneous detection of rapid cyclePCR product[J]. Microbiology Methods. 1999, 35(1): 25-30.
    [97]康燕,封科军,蒋健晖,等.分子信标研究进展[J].化学传感器. 2008, 28(2): 1-11.
    [98] Hardegger D, Nadal D, Bossart W, et al. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR[J]. J Microbiol Methods. 2000, 41(1): 45-51.
    [99]郭杨,陈世界,郭万柱,等.荧光定量PCR技术及其应用研究进展[J].动物医学进展. 2009, 30(2): 78-82.
    [100] Aliyu S H, Aliyu M H, Salihu H M, et al. Rapid detection and quantitation of hepatitis B virus DNA by reaI-time PCR using a ew fluorescent ( FRET) detection system[J]. Clin Virol. 2004, 30 (2): 191-195.
    [101]欧阳松应,杨冬,欧阳红生,等.实时荧光定量PCR技术及其应用[J].生命的化学. 2004, 24(1): 74-76.
    [102]赵丽,崔保安,陈红英,等. Taq Man实时荧光定量PCR检测猪伪狂犬病病毒方法的建立与初步应用[J].中国预防兽医学报. 2009, 31(2): 137-140.
    [103]钟金栋,花群义,肖荣海,等.实时荧光定量RT-PCR检测猪水疱病病毒的研究[J].动物医学进展. 2006, 27(8): 61-66.
    [104]孔庆暖.应用荧光定量RT-PCR法检测mdr-1基因的表达[D].山东大学硕士学位论文, 2006.
    [105]白守民,梁碧玲,崔念基,等.用荧光定量RT-PCR检测鼻咽癌病人外周血CK-19 mRNA的表达[J].中山大学学报. 2003, 24(3): 249-252.
    [106] Pont-Kingdon G, Lyon E. Direct molecular haplotyping by melting curve analysis of hybridization probes: beta 2-adrenergic receptor haplotypes as an example[J]. Nucleic Acids Res. 2005, 33(10): 89.
    [107]欧阳松应,杨冬,欧阳红生,等.实时荧光定量PCR技术及其应用[J].生命的化学. 2004, 24(1): 74-76.
    [108]王晓建,杨旭,宋晓东,等.实时荧光定量PCR法检测转基因小鼠拷贝数[J].中国实验动物学报. 2007, 15(3): 170-174.
    [109]王小花,李建祥,王国卿,等. SYBR Green实时荧光定量PCR检测大豆转基因成分[J].食品科学. 2009, 30(8): 171-176.
    [110]唐中林,邓宏,李勇,等.等应用荧光定量PCR方法研究RPL29基因在通城猪和长白猪不同时期胚胎骨骼肌中的表达[J].畜牧兽医学报. 2008, 39(8): 1007-1012.
    [111]朱燕,罗欣,徐增莲,等.中国黄牛背最长肌中capnl mRNA表达与嫩度的关系[J].南京农业大学学报. 2006, 29(2): 89-93.
    [112]李馨,肖翠红,杨隽,等.鹅生长激素受体基因克隆及其个体发育性表达研究[J].中国畜牧杂志. 2008, 44(23): 9-12.
    [113]李冬立,文杰,赵桂苹,等.鸡肌内脂肪双向选择对脂肪性状及相关基因mRNA表达的影响[J].畜牧兽医学报. 2008, 39(1): 24-28.
    [114]赵小玲,刘益平,罗轶,等.鸡多个组织Perilipin基因表达的发育性变化与脂肪性状的相关研究[J].畜牧兽医学报. 2009, 40(2): 149-154.
    [115] Mwacharo J M, Nomura K, Hanada H, et al. Genetic relationships among Kenyan and other East African indigenous chickens[J]. Anim Genet. 2007, 38(5): 485-490.
    [116] Heifetz E M, Fulton J E, O'Sullivan P, et al. Mapping QTL affecting resistance to Marek's disease in an F6 advanced intercross population of commercial layer chickens[J]. BMC Genomics. 2009, 10: 20.
    [117] Berthouly C, Bed'Hom B, Tixier-Boichard M, et al. Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds[J]. Anim Genet. 2008, 39(2): 121-129.
    [118]白文林,尹荣焕,赵素君,等.边鸡微卫星DNA标记遗传多样性的研究[J].中国家禽. 2004, 8(1): 126-129.
    [119] Nei M. Analysis of gene diversity in subdivided populations[J]. Proc. Natl. Acad. Sci. USA. 1973, 70: 3321-3323.
    [120]包文斌.中国家鸡和红色原鸡遗传多样性及亲缘关系分析[D].扬州大学博士学位论文, 2007.
    [121] Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wild conservation management: applications in Alpine ibex Capra ibex ( ibex )[J]. Mol Ecol. 2002, 11: 421-436.
    [122] Triantafyllidis A, Krieg F, Cottin C, et al. genetic structure and phylogeography of European catfish Silurus glanis populations[J]. Mol Ecol. 2002, 11: 1039-1055.
    [123]包文斌,束婧婷,许盛海,等.样本量和性比对微卫星分析中群体遗传多样性指标的影响[J].中国畜牧杂志. 2007, 43(1): 6-9.
    [124]闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J].动物学报. 2004, 50(2): 279-290.
    [125]吴信生,陈国宏,王德前,等.利用微卫星技术分析中国部分地方鸡种的遗传结构[J].遗传学报. 2004, 31(1): 43-50.
    [126]孙桂荣,朱庆,李亮.丝羽乌骨鸡群体遗传结构的微卫星标记分析[J].中国畜牧杂志. 2004, 40(9): 3-5.
    [127]孟祥军,朱庆,张明亚,等.丝羽乌骨鸡微卫星标记多重PCR体系的建立与初步应用[J].遗传. 2008, 30(4): 521-526.
    [128]汤青萍,陈宽维,李慧芳,等.应用微卫星标记对12个中国地方乌骨鸡品种遗传多样性的研究[J].畜牧兽医学报. 2005, 36(8): 755-760.
    [129]张学余,陈国宏,韩威,等. 7个地方鸡品种间遗传分化和聚类分析[J].云南农业大学学报. 2008, 23(2): 225-229.
    [130]王得前,陈国宏,吴信生,等.运用微卫星技术分析中国地方鸡品种的亲缘关系[J].扬州大学学报. 2003, 24(2): 1-6.
    [131] Kong H S, Oh J D, Lee J H, et al. Genetic variation and relationships of Korean native chickens and foreign breeds using 15 microsatellite markers[J]. Asian-Aust J Anim Sci. 2006, 19(11): 1546-1550.
    [132] Kaya M, Yildiz M A. Genetic diversity among Turkish native chickens, Denizli and Gerze, estimated by microsatellite markers[J]. Biochem Genet. 2008, 46(7-8): 480-491.
    [133]王金玉,陈国宏.数量遗传与动物育种[M].东南大学出版社, 2004.
    [134] Tadano R, Nishibori M, Nagasaka N, et al. Assessing genetic diversity and population structure for commercial chicken lines based on forty microsatellite analyses[J]. Poult. Sci. 2007, 86(11): 2301-2308.
    [135]曲鲁江,吴桂琴,李显耀,等.采用微卫星DNA标记分析部分地方鸡种保种场的保种效果[J].遗传学报. 2004, 31(6): 591-595.
    [136]段修军,王丽华,龚道清,等.利用微卫星标记检测金定鸭小群保种效果[J].畜牧兽医学报. 2008, 39(9): 1159-1164.
    [137]赵振华,黎寿丰,吴兆林,等.不同保种方法对地方鸡种的保种效果分析[J].中国家禽. 2009, 31(14): 23-25.
    [138] Weir B S, Cockerham C C. Estimation F-statistics for the analysis of population structure[J]. Evolution. 1984, 38(6): 1358-1370.
    [139]张立凡,连林生,闭兴明,等.茶花鸡种群遗传结构分析及其保种措施的探讨[J].畜牧与兽医. 2006, 38(11): 10-13.
    [140] Bellinge R H S, Liberles D A, Iaschi S P, et al. Myostatin and its implications on animal breeding: a review[J]. Anim Genet. 2005, 40(36): 1-6.
    [141]胡兰,王娜,胡锐,等.大骨鸡MSTN基因的表达检测[J].中国家禽学报. 2003, 7(1): 46-48.
    [142] Feldman B J, Streeper R S, Farese R V, et al. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects[J]. Proc Natl Acad Sci USA. 2006, 103(42): 15675-15680.
    [143]顾志良,卢祥云,朱大海,等.鹅肌肉生长抑制素基因5′调控区序列特征和组织表达分析[J].畜牧兽医学报. 2008, 39(11): 1606-1611.
    [144] Gill J L, Bishop S C, Mccorquodale C, et al. Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle[J]. Anim Genet. 2009, 40(1): 97-100. 143
    [145] Dunner S, Miranda M E, Amigues Y, et al. Haplotype diversity of the myostatin gene among beef cattle breeds[J]. Genet Sel Evol. 2003, 35(1): 1606-1611.
    [146]胡文平.云南地方鸡种的遗传多样性及其与中国家鸡起源的关系[J].生物多样性. 1999, 7(4): 285-290.
    [147] Eckert R L, Crish J F, Bank E B, et al. The Epidermis: Genes On-Genes Off[J]. J Invest Dermatol. 1997, 109(4): 501-509.
    [148]于政权,李彦,孟庆勇,等.利用比较基因组学方法对猪BAC DNA序列分析来研究抑肌素基因的调控[J].中国科学, 34(4): 364-375.
    [149] Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication,and G(2)/M checkpoints[J]. Genes Dev. 2002, 16(2): 245-256.
    [150]刘岭,张津校,李伟,等.荣昌猪Lipin1基因的结构分析[Z]. 2009.
    [151] Thomas P S, Kasahara H, Edmonson A M, et al. Elevated expression of Nkx-2.5 in developing myocardial conduction cells[J]. Anat Rec. 2001, 263(3): 307-313.
    [152]郭翠华,贾存灵,张微,等.辽宁绒山羊IGF-Ⅰ基因5′调控区多态性与产绒性状相关[J].生物化学与生物物理进展. 2009, 36(5): 566-573.
    [153] Andersen B, Hariri A, Pittelkow M R, et al. Characterization of Skn-1a/i POU domain factors and linkage to papillomavirus gene expression[J]. J Biol Chem. 1997, 272(25): 15905-15913.
    [154] Lisi R D, Millino C, Calabria E, et al. Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin 1 gene in vitro and in vivo[J]. J Biol Chem. 1998, 273: 25371-25380.
    [155] Segil N, Roberts S B, Heintz N, et al. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity[J]. Science. 1991, 254(5039): 1814-1816.
    [156] Yun C X, Wu G, Wang K. Members and Fuctions of the Maf Family Proteins[J]. J Mol Med. 2008, 5: 82-86.
    [157] Pan Z, Hetherington C J, Zhang D E. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte developmen[J]. J Biol Chem. 1999, 274: 23242-23248.
    [158] Marchat L A, Gomez C, Perez D G, et al. Two CCAAT/enhancer binding protein sites are cis-activator elements of the Entamoeba histolytica EhPgp1 (mdr-like) gene expression[J]. Cell Microbiol. 2002, 4(11): 725-737.
    [159] Grisolia A B, Curi R A, Delima V F, et al. Targeted nucleotide exchange in bovine myostatin gene[J]. Anim Biotechnol. 2009, 20(1): 15-27.
    [160] Karim L, Coppieters W, Grobet L, et al. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay[J]. Anim. Genet.2000, 31(6): 396-399.
    [161] Mccroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal[J]. J. Cell Biol. 2003, 162(6): 1135-1147.
    [162]顾志良,张海峰,朱大海,等.鸡Myostatin基因单核普酸多态性的群体遗传学分析[J].遗传学报. 2002, 29(7): 599-606.
    [163] Baron E E, Wenceslau A A, Alvares L E, et al. High level of polymorphism in the myostatin chicken gene[Z]. 2002.
    [164]朱智,吴登俊,徐宁迎.鸡Myostatin基因单核苷酸多态性及其对屠体性状的遗传效应分析[J].遗传. 2007, 29(5): 593-598.
    [165]戚豫,唐炬,黄丽英. DNA单链构象多态性原理初探[J].基础医学与临床. , 17(2): 142-146.
    [166]卢柏松,黄培堂.蛋白编码基因中四倍简并位点碱基转换与颠换的规律研究[J].遗传学报. 1996, 23(5): 403-408.
    [167]姜运良,李宁,杜立新,等.猪肌肉生长抑制素基因5′调控区T→A突变与生长性状的相关分析[J].遗传学报. 2002, 29(5): 413-416.
    [168]吴俊红,武艳群,赵晓枫,等. Myostatin基因5'调控区的多态与猪生长性能的关系[J].畜牧兽医学报. 2009, 40(5): 617-621.
    [169]岳敏,顾冬生,李洪涛,等.西藏小型猪MSTN基因5调控区的酶切多态性分析[J].实验动物与比较医学. 2008, 28(3): 155-159.
    [170] Casas E, Keele J W, Shackelford S D, et al. Association of the muscle hypertrophy locus with carcass traits in beef cattle[J]. J Anim Sci. 1998, 76(2): 468-473.
    [171]万秋蓓,王志跃,杨海明,等.新扬州鸡IGF-1基因5'调控区PstⅠ位点多态性与繁殖性状关系的研究[J].中国畜牧杂志. 2007, 43(21): 1-3.
    [172]姜润深,徐桂云,李俊英,等.催乳素基因5'-调控区24-bp插入/缺失变异与非就巢鸡血浆催乳素水平及产蛋性能的关系[J].中国农业大学学报. 2007, 12(3): 46-48.
    [173]吴旭,王金玉,严美姣,等. GNRHRI、GF-1基因对文昌鸡繁殖性状的遗传效应分析[J].畜牧兽医学报. 2007, 38(1): 31-35.
    [174]曹果清,李步高,石建中,等.猪PRLR基因多态性及其与产仔性能的关联分析[J].畜牧兽医学报. 2009, 40(4): 476-480.
    [175]俞亚波,刘大林,魏岳,等.京海黄鸡骨桥蛋白基因第七外显子多态性及其与生长繁殖和屠宰性状的关系[J].江苏农业科学. 2009(3): 229-231.
    [176]张伶俐,姜润深,耿照玉,等.鹅催乳素基因外显子2变异及其遗传效应[J].中国兽医学报. 2009, 29(4): 479-481.
    [177]曾华,温美燕,王谦,等.江西黄鸡开产日龄的遗传规律及对育种选择的启示[Z]. 2006.
    [178]刘琛,文杰,赵桂苹,等. A-FABP和AMPD1基因SNP位点对北京油鸡部分肉质性状的组合效应分析[J].畜牧兽医学报. 2009, 40(10): 1555-1559.
    [179]杨凤萍,李其松,戴国俊,等.京海黄鸡IGF-Ⅱ基因SNPs及其与生产性能关系研究[J].畜牧兽医学报. 2008, 39(11): 1470-1475.
    [180]洪坤月,汪峰,虞得兵,等.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J].西北农业学报. 2007, 16(5): 11-14.
    [181] Casas E, Stone R T, Keele J W, et al. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the Myostatin gene[J]. J Anim Sci. 2001, 79(4): 854-860.
    [182]李长龙.猪ADD1基因的克隆及其与肉质性状关系的研究[D].学位论文硕士学位论文, 2004.
    [183]陶勇. MC4R、POU1F1基因多态性及其与京海黄鸡生长、屠宰性状关系的研究[D].扬州大学博士学位论文, 2008.
    [184] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods. 2001, 25(4): 402-408.
    [185]陈凤花,王琳,胡丽华.实时荧光定量RTPCR内参基因的选择[J].临床检验杂志. 2005, 23(5): 393-395.
    [186]李娅,韦平,金元昌,等.实时荧光PCR检测鸡GAPDH基因方法的建立[J].中国家禽. 2008, 30(8): 37-40.
    [187]吴桂琴,郑江霞,杨宁.伴性矮小型鸡GH、GHR和IGF-1基因的表达变化[J].遗传. 2007, 29(8): 989-994.
    [188]赵小玲,轶罗,艳周,等.乌骨鸡ADFP基因表达的变化及其与脂沉积的相关性[J].中国畜牧杂志. 2009, 45(7): 1-5.
    [189]马莉,谢秀兰,岳华.鸡β-actin基因实时荧光定量PCR方法的建立[J].中国畜牧兽医. 2007, 34(2): 73-75.
    [190]李义平.传染性法氏囊病病毒对CEF细胞某些基因表达的影响和传染[D].中国农业大学博士论文, 2004.
    [191] Robert S B, Goetz F W. Differential skeletal muscle expression of Myostatin across teleost species and the isolation of multiple Myostatin isoforms[J]. FEBS Letters. 2001, 491(3): 212-216.
    [192] Ji S, Losinski R L, Cornelius S G, et al. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation[J]. Am J Physiol. 1998, 275: 1265-1273.
    [193] Ciarmela P, Wiater E, Smith S M, et al. Presence, actions, and regulation of myostatin in ratuterus and myometrial cells[J]. Endocrinology. 2009, 150(2): 906-914.
    [194] Sundaresan N R, Saxena V K, Singh R, et al. Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus)[J]. Res Vet Sci. 2008, 85(1): 86-91.
    [195]王娜,胡兰,刘梅,等.海兰鸡MSTN基因的表达检测[J].上海畜牧兽医通讯. 2005(2): 25-26.
    [196] Radaelli G, Domeneghini C, Arrighi S, et al. Localization of IGF-I, IGF-I receptor, and IGFBP-2 in developing Umbrina cirrosa(Pisces:Osteichthyes)[J]. Gen Comp Endocrinol. 2003, 130(3): 232-244.
    [197] Guernec A, Berri C, Chevalier B, et al. Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield[J]. Growth hormone & IGF research. 2003, 1(13): 8-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700