基于遗传算法的卫星星座设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,地球观测、导航和通信得到了快速发展,人们希望能够通过各种手段在任意地点提供这些服务。利用卫星平台是实现这一目标的理想选择。几乎在相同的时间,利用卫星构建全球性地球观测、导航和无线通信网络等基础设施的需求增长,导致了卫星星座理论与技术的快速发展。
     卫星星座可以定义为按照一定规则构成、协同完成特定功能的卫星集合,是多颗卫星进行协同工作的基本形式。
     传统的卫星星座设计主要关心如何用尽可能少的卫星实现全球或纬度带覆盖。由于对称性,一般使用均匀分布的圆形轨道。这也便于得到比较容易处理的分析模型。但是,对于区域覆盖或混合轨道类型,该方法往往不再适用。
     不仅如此,现在的卫星星座设计很少再把单一的地球表面覆盖作为设计目标,更多的是考虑多个参数指标。这是一个多目标优化的问题。
     遗传算法(genetic algorithm,GA)已经被用于解决复杂问题。多目标遗传算法(multiple-objective GA,MOGA)适于解决有大量变量、需要进行多目标优化设计的问题。GA已经被用于非连续覆盖的的卫星星座设计。论文在分析卫星星座设计面临的技术挑战和现有工作不足的基础上,重点研究了基于GA和MOGA的卫星星座设计问题。论文的主要贡献是:
     在充分研究已有星座模型和GA特点的基础上,建立了通用6N星座模型(N为星座中的卫星数量)。该模型将每颗卫星的6个轨道参数都作为星座模型参数,去除了已有星座模型对卫星轨道参数的限制和约束,最大限度扩充了星座模型的参数空间,包含了所有已知的卫星星座构型以及其他可能的卫星轨道参数选择。传统卫星星座设计在优化设计之前需要选择合适的卫星星座构型。对于全球或纬度带卫星通信,选择哪一种卫星星座构型仍无定论。对于区域卫星星座或基于混合轨道类型的卫星星座,已知卫星星座构型往往无法得到最优结果。对于地球观测及各类科学实验卫星星座,已知星座构型更是难以胜任。基于通用6N星座模型,卫星星座设计者能够摈弃选择星座构型的步骤,直接根据卫星星座的设计需求在所有可能的轨道参数中进行优化设计,避免了星座构型选择对星座设计的负面影响。因此,6N星座模型具有最大程度的通用性,适用于绝大部分卫星星座设计任务。
     在通用6N星座模型的基础上,论文给出了改进的基于GA的无构型约束通用卫星星座设计方法,并首次提出了将代表MOGA领先水平的快速非支配排序遗传算法(the fast nondominated sorting genetic algorithm ,NSGA-II))应用于地球观测、卫星导航、卫星通信等不同卫星星座设计的统一算法模型,为复杂的卫星星座设计提供了强有力的多目标优化设计手段。6N星座模型在具备通用性优点的同时,不可避免的带来了优化参数空间过大的问题。由于范艾伦辐射带等因素的影响,卫星轨道参数还具有不连续、不可微等特点。GA和MOGA十分胜任这种优化问题。为了满足各类不同的卫星星座设计需求,论文在统一的卫星星座算法模型中给出了相应的基本性能评价准则。这些性能评价准则不仅仅局限于地理覆盖性能,还可以是用户提出的任意和卫星轨道参数相关的系统需求。设计者在进行自己的卫星星座设计任务时,只需要根据任务需求对卫星星座性能评价准则进行适当的修改或添加,就可以得到符合自身需要的(一组)最佳地球观测、卫星导航、卫星通信星座设计结果。通用6N星座模型和基于GA/MOGA的无构型约束通用卫星星座设计统一算法模型共同构成了完整的、适应现代卫星星座设计需要的、能够直接应用的卫星星座设计方法。
     论文研究了地球观测、卫星导航、卫星通信等卫星星座的系统要求,分别给出相对应的基本系统性能评价方法。为星座的优化设计提供了重要的优化依据,保证了设计结果的可行性。
     在卫星导航、卫星侦察、卫星移动通信方面等方面,论文分别进行了星座设计,给出了比已经公开发表结果更好的卫星星座设计结果。
The development and growth of the earth observation, navigation and commu-nication during the past tens years has led to demand for and development of theseservices everywhere and over every possible medium. This includes the medium ofsatellite. During those same decades, the growth in use of satellite to provide a widely-available earth observation, navigation and wireless communications infrastructurehas led to the development of satellite applications using satellite constellation .
     A satellite constellation can be defined as a number of similar satellites, of asimilar function, designed for a certain purpose. Satellite constellation is a basalform for a group cooprating satellites.
     Traditional satellite constellation design has focused on optimizing global or zonalcoverage with a minimum number of satellites. In fact, in this case, the analysis ofthe configuration, based on circular orbits and uniform distribution of orbital planes,allows, because of the symmetry, to develop manageable analytical models. Notwith-standing, in some specific issues (i.e. regional coverage or hybrid orbit typies), eccen-tric orbits should be preferred for the coverage of restricted areas.
     Furtheremore, satellite constellation designers are rarely concerned with optimiz-ing performance with respect to a single objective such as earth coverage. Rather,multiple competing requirements drive the design.
     The genetic algorithm (GA) has been introduced as a robust technique to solvemany multivariable problems. The multiple-objective GA (MOGA) is used to solvethese problems because the multiple-objective optimal design is suited for problemswith large number of variables. MOGA for Walker satellite constellation and for zonalcoverage area is also introduced.
     Based on the analysis of the technology challenges for satellite constellation de-sign and the limitation of related work, this dissertation focuses on satellite constella-tion design optimized by GA and MOGA. The major contributions of the dissertation include:
     Considering the capabilities of GA and MOGA, the dissertation proposed ageneral 6N constellation model based on the analysis of some known constellationmodels. The general 6N constellation model parameters consist of all 6 orbitelements of every satellite. So the 6N model includes all known and unknownconstellation types. Constellation designers should select a constellation typefirst using traditional method. But the constellation designers could not seemto agree on the best approach to select the’best’constellation type for the sametask. The general 6N constellation model is foreign to constellation type, andsuits most satellite constellation design applications.
     The dissertation presented a improved satellite constellation design method basedon GA. Considering the earth observation, satellite navigation and satellite com-munication constellation design tasks, an one-up MOGA called the nondomi-nated sorting genetic algorithm 2 (NSGA-II) was used for a uniform constellationdesign algorithm model. Besides earth coverage, the uniform constellation de-sign algorithm model includes some basal system performance evaluation rulesfor earth observation, satellite navigation and satellite communication, whichcan be modified or added by constellation designer considering their own taskrequest.
     The dissertation analysed the characters of earth observation, satellite naviga-tion and satellite communication, proposed reasonable performance evaluationapproaches for vary satellite constellation systems.
     Some optimum satellite constellations, which better than the same task constel-lations in some publication, were demonstrated the the advantages of satelliteconstellation design method based on GA and MOGA for earth observation,satellite navigation and satellite communication.
引文
[1] A. C. Clarke. Extra-terrestrial relays. Wireless World, October. 1945:305–308.
    [2] E. F. Tuck, D. P. Patterson, J. R. Stuart, and M. H. Lawrence. The CallingNetwork: a global wireless communications system. International Journal ofSatellite Communications, January/February 1994, 12(1):45–61.
    [3] Bajpai Shyam N., Dittberner Gerald J., Baron Richard, Gerber Jr., and AndrewJ. A vision for a National Global Operational Environmental Satellite System(NGOESS). In Proceedings of SPIE: Geoss and Next-Generation Sensors andMissions, Goa, India, 2006. 640705.
    [4] Moccia A. and Fasano G. Analysis of spaceborne Tandem configurations forcomplementing COSMO with SAR interferometry. Eurasip Journal on AppliedSignal Processing, 2005(20):3304–3315.
    [5] Vampola A.L., Lauriente M., Huston S., and Pfitzer K. Validating the newSEE low altitude proton model. In Conference on the High Energy RadiationBackground in Space. Workshop Record. Held in conjunction with IEEE Nuclearand Space Radiation E?ects Conference (Cat. No.97TH8346), Snowmass, CO,USA, 22-23 July 1997. 17-20.
    [6] Escorial D., Tourne I.F., Reina F.J., Gonzalo J., and Garrido B. FUEGO: Adedicated constllation of small satellites to detect and monitor forest fires. ActaAstronautica, 2003, 52(May/June):765–775.
    [7] F. Kruesi. The Global Positioning System: a DOT perspective of where we areand where we are going. In Proceedings of the Institute of Navigation GPS-96,Kansas City, Missouri, September 1996. 3-6.
    [8] Massatt Paul, Fritzen Frederick, Scuro Sante, and O’Neill Krista. How constel-lation design a?ects GPS users in mountainous terrain. In Proceedings of theInstitute of Navigation - 19th International Technical Meeting of the SatelliteDivision, ION GNSS 2006, Fort Worth, TX, United States, Sep 26-29 2006.1506-1515.
    [9] J. Burjesson, J. Johansson, and F. Darin. GLONASS: experiences from the firstglobal campaign. In Radio Vetenskap och Kommunikation 1999 (RVK‘99),Karlskrona, Sweden, June 1999.
    [10] Piriz Ricardo, Martin-Peiro Belen, and Romay-Merino Miguel. The galileo con-stellation design: A systematic approach. In Proceedings of the 18th Interna-tional Technical Meeting of the Satellite Division of The Institute of Navigation,ION GNSS 2005, Long Beach, CA, United States, Sep 13-16 2005. 1296-1301.
    [11] R. J. Leopold. Low-earth orbit global cellular communications network. InProceedings of ICC’91, 1991. 1108-1111.
    [12] R. J. Leopold and A. Miller. The Iridium communications system. IEEE Po-tentials, April 1993, 12(2):6–9.
    [13] R. J. Leopold, A. Miller, and J. L. Grubb. The Iridium system: a new paradigmin personal communications. Applied Microwave and Wireless, 1993, 5(4):68–78.
    [14] R. A. Wiedeman and A. J. Viterbi. The Globalstar mobile satellite system forworldwide personal communications. In Proceedings of the International MobileSatellite Conference 1993 (IMSC‘93), Pasadena, California, 16-18 June 1993.291-296.
    [15] F. Dietrich. The Globalstar Satellite Cellular Communication System - Designand Status. In Proceedings of the 17th AIAA International CommunicationsSatellite Systems Conference (ICSSC), Yokohama, Japan, February 1998. 47-53.
    [16] Baird Thomas and Bush Wes. Odyssey system overview. In Electro Interna-tional, Conference Proceedings, Somerset, NJ, USA, Apr 30-May 2 1996. 16-25.
    [17] F. Makita and K. Smith. Design and implementation of ICO system. In Proceed-ings of the 17th AIAA International Communications Satellite Systems Confer-ence (ICSSC), Yokohama, Japan, February 1998. 57-65.
    [18] L. Ghedia, K. Smith, and G. Titzer. Satellite PCN - the ICO system. Interna-tional Journal of Satellite Communications, Special Issue: LEOs–Little andBig, July/August 1999, 17(4):273–289.
    [19] P. L. Spector and J. H. Olson et al. Application of SkyBridge LLC for author-ity to launch and operate the SkyBridge system. filing with the US FederalCommunications Commission, SkyBridge LLC, 28 February 1997.
    [20] P. Fraise, B. Coulomb, B. Monteuuis, and J. L. Soula. SkyBridge LEO satellites:optimized for broadband communications in the 21st century. In Proceedingsof 2000 IEEE Aerospace Conference, Big Sky, Montana, 18-25 March 2000.
    [21] E. J. Fitzpatrick. Spaceway system summary. Space Communications, 1995,13:7–23.
    [22] E. J. Fitzpatrick. Spaceway: Providing A?ordable and Versatile Telecommuni-cation Solutions. Pacific Telecommunications Review, 1995, 17(1).
    [23] M. A. Sturza. Architecture of the Teledesic satellite system. In Proceedings ofthe International Mobile Satellite Conference, 1995. 212-218.
    [24] J. R. Stuart. The wireless communications and small satellite revolutions: nextgeneration communications concepts. In Space Horizons Summit, Boston, 4May 1996.
    [25] D. M. Kohn. Providing global broadband Internet access using low-earth-orbitsatellites. Computer Networks and ISDN Systems, November 1997, 29(15):1763–1768.
    [26] Keller Harald and Salzwedel Horst. Comparison of the probability of visibilityof new planned mobile satellite systems (M-Star, Celestri, SkyBridge). In IEEEVehicular Technology Conference, Ottawa, Can, May 18-21 1998. 81-85.
    [27] G. E. Hardman. Engineering Orbcomm: a digital satellite communicationssystem exploiting a range of modern technologies. In Proceedings of the thirdIEE Conference on Telecommunications, Edinburgh, 1991. 251-256.
    [28] S. Mazur. A description of current and planned location strategies within theORBCOMM network. International Journal of Satellite Communications, Spe-cial Issue: LEOs–Little and Big, July/August 1999, 17(4):209–223.
    [29] Le Stradic B., Vaissiere M., Boudier N., and Bowles O. The WEST project:exploiting the Ka band spectrum to develop the Global Information Infrastruc-ture. In M+RF97 Microwave and Communications Technologies ConferenceProceedings, London, UK, 30 Sept-2 Oct. 1997. 211-215.
    [30] John E. Draim. Satellite Constellations. In 55th International AstronauticalCongress, Vancouver,Canada, 2004.
    [31] J.G. Walker. Some Circular Orbit Patterns Providing Continuous Whole EarthCoverage. Journal of the British In-terplanetary Society, 1971(24):369–384.
    [32] J.G. Walker. Continuous Whole-Earth Coverage by Circular-Orbit Satellite Pat-terns. Technical Report 77044: Royal Aircraft Establishment, 1977.
    [33] J.G. Walker. Satellite Patterns for Continuous Multiple Whole-Earth Coverage.In Maritime and Aeronautical Satellite Communication and Navigation, volume160 of IEE Conference Publication, 1978.119-122.
    [34] G.V. Mozhaev. The Problem of Continuous Earth Coverage and KinematicallyRegular Satellite Networks. Kosmicheskie Issledovaniya, 1972,10(6):833–840.
    [35] G.V. Mozhaev. The Problem of Continuous Earth Coverage and KinematicallyRegular Satellite Networks. Kosmicheskie Issledovaniya, 1972,11(1):59–69.
    [36] A.H. Ballard. Rosette Constellations for Earth Satellites. IEEE Transactionson Aerospace and Electronic Systems, 1980,16(5):656–673.
    [37] T.J. Lang. Symmetric Circular Orbit Satellite Constellations for Continu-ous Global Coverage. In AAS/AIAA Astrodynamics Specialist Conference,Kallispell, MN, 1987.487-499.
    [38] T.J. Lang. Optimal Low Earth Orbit Constellations for Continuous GlobalCoverage. In AAS/AIAA Astrodynamics Specialist Conference, Victoria, BC,1993.593-597.
    [39] Lüders R.D. Satellite Networks for Continuous Zonal Coverage. ARS Journal,1961(2).
    [40] Rider L. Analytic design of Satellite Constellations for Zonal Earth CoverageUsing Inclined Circular Orbits. JAS, 1986,34(1):31–64.
    [41] W.S. Adams and T.J. Lang. Mission Design and Implementation of SatelliteConstellations. In: chapter 1.4: International Astronautical Federation, 1998.51-62.
    [42] Draim J. Elliptical-Orbit MEO Constellations: A Cost-E?ective Approach forMulti-Satellite Systems. Space Technology, 1996,16(1):21–29.
    [43] Cefola P. Carter D. Draim J., Inciardi R. and Proulx R. Demonstration ofthe COBRA Teardrop Concept Using Two Smallsats in 8-Hour Orbits. In 15thAnnual AIAA/USU Conference on Small Satellites, Logan, Utah, 2001.
    [44] Inciardi R. Cefola P. Carter D. Proulx R. Draim, J. and D. Larsen. BeyondGEO–Using Elliptical Obit Constellations to Multiply the Space Real Estate.发表于: 52nd International Astronautical Cogress, Toulouse, France, 2001.
    [45] Barker L. and Stoen J. Sirius satellite design: The challenges of the Tundraorbit in commercial spacecraft design. Advances in the Astronautical Sciences,2001, 107:575–596.
    [46] Takahashi Hideto. Japanese regional navigation satellite system”the JRANSconcept”. In Proceedings of the 18th International Technical Meeting of theSatellite Division of The Institute of Navigation, ION GNSS 2005, Long Beach,CA, United States, 2005. 2434-2439.
    [47] Taleb Tarik, Jamalipour Abbas, Kato Nei, and Nemoto Yoshiaki. Theatre inthe Sky: A ubiquitous broadband multimediaon-demand service over a novelconstellation composed of quasi-geostationary satellites. International Journalof Satellite Communications and Networking, 2006, 24(3):215–227.
    [48] Du Yuling, Zhang Xuejun, and Huang Zhigang. Constellation designs and per-formance analysis for regional satellite navigation system in China area. InProceedings of SPIE: International Conference on Space Information Technol-ogy, Wuhan, China, 2005. 59854Z.
    [49] Wilkins M.P. Mortari D. and Bruccoleri C. The Flower Constellations. TheJournal of the Astronautical Sciences, Special Issue: The John L. Junkins As-trodynamics Symposium, 2004,52(1):107–127.
    [50] Torn A. and Zilinskas A. Global Optimization. Berlin: Springer-Verlag, 1989.
    [51]杨青.固体火箭发动机面向成本优化设计.西安:西北工业大学博士学位论文,Mar. 2003.
    [52] George E. Optimization of Satellite Constellations for Discontinuous GlobalCoverage via Genetic Algorithms. Advances in the Astronautical Sciences,1997,97(Aug):333–346.
    [53] Crossley W.A. Williams E.A. and Lang T.J. Average and Maximum RevisitTime Trade Studies for Satellite Constellations Using a Multi-Objective GeneticAlgorithm. Advances in the Astronautical Sciences, 2000,105(Jan):653.
    [54] Crossley W.A. Ely T.A. and Williams E.A. Satellite Constellation Design forZonal Coverage Using Genetic Algorithms. Advances in the Astronautical Sci-ences, 1998,99(Feb):443.
    [55] Di Gennaro M. Confessore G. and Ricciardelli S. A Genetic Algorithm to De-sign Satellite Constellations for Regional Coverage. In Operations ResearchProceedings, Springer, Berlin, 2000.35–41.
    [56] Lang T.J. A Parametric Examination of Satellite Constellations to MinimizeRevisit Time for Low Earth Orbits Using a Genetic Algorithm. Advances in theAstronautical Sciences, 2001,109(Aug):625.
    [57] Tafazolli R. Asvial M. and Evans B. G. Genetic Hybrid Satellite ConstellationDesign. In AIAA Paper 2003-2283, April 2003.
    [58] Tafazolli R. Asvial M. and Evans B. G. Non-GEO Satellite Constellation Designwith Satellite Diversity Using Genetic Algorithm. In AIAA Paper 2002-2018,May 2002.
    [59] David B.S. Matthew P.F. Satellite Constellation Design Tradeo?s UsingMultiple-Objective Evolutionary Computation. Journal of Spacecraft and Rock-ets, 2006,43(6):1404–1411.
    [60]陈磊,任萱.δ星座的分析与设计.国防科技大学学报, 1998,20(3):9–13.
    [61]王瑞,马兴瑞,李明.采用遗传算法进行区域覆盖卫星星座优化设计.宇航学报, 2002,23(3):24–28.
    [62]王瑞,马兴瑞,李明.卫星星座优化设计的分布式遗传算法.中国空间科学技术, 2003(1):38–43.
    [63]阎志伟,田菁,李汉铃.基于改进的NSGA-II算法的区域覆盖卫星星座优化.空间科学学报, 2004,24(1):43–50.
    [64]郦苏丹,朱江,李广侠.基于多目标进化算法的MEO区域通信星座优化设计.上海航天, 2005(5):42–46.
    [65]郦苏丹,朱江,李广侠.采用遗传算法的低轨区域通信星座优化设计.通信学报, 2005,26(8):122–128.
    [66]郦苏丹,朱江,李广侠.采用遗传算法的中轨区域通信星座优化设计.系统仿真学报, 2005,17(6):1366–1369.
    [67]高媛.非支配排序遗传算法(NSGA)的研究与应用.杭州:浙江大学硕士学位论文, Mar. 2006.
    [68]郑强.带精英策略的非支配排序遗传算法的研究与应用.杭州:浙江大学硕士学位论文, May. 2006.
    [69]王鲁.基于遗传算法的多目标优化算法研究.武汉:武汉理工大学硕士学位论文, Mar. 2006.
    [70]姚文俊.遗传算法及其研究进展.计算机与数字工程, 2004, 32(4):41–43.
    [71] Faser A.S. Simulation of genetic systems. Journal of Theoretical Biology,1962(2):329–346.
    [72] Holland J. Adaptation in Natural and Artificial Systems. University of MichiganPress, 1975.
    [73] DeJong A. K. An Analysis of the Behavior of a Class of Genetic AdaptiveSystems. In Ph. D. thesis, University of Michigan, 1975.
    [74] Michalewicz Z. Genetic Algorithms and Optimal Conrol Problem. In Proc. of290”IEEE Conf., On Decision and Control, 1990.1664-1666.
    [75] Davidor Y. A Naturally Occurring Niche and Species Phenomenon: The Modeland First Result. In Proc. of 4th Int. Conf. On Genetic Algorithms, MorganKaufmann, 1991.257-263.
    [76] Vose M. D. Modeling Simple Genetic Algorithms. In: Foundations of GeneticAlgoritms II: Morgan Kaufmann Publishers, 1993. 63-73.
    [77] Schwefel H. P. Evolution and Optimum Seeking. John Wiley Sons, 1995.
    [78] Patnaik L.M. Srinvivas M. Adaptive Probabilities of Crossover and Mutationin GAs. IEEE Trans. on SMC, 1994,24(4):656–667.
    [79] Nilsson N. J. Artificial Intelligence: A New Synthesis. Morgan Kaufmann and机械工业出版社, 1999.
    [80] Yun L. Kay C. T. Multi-Objective Genetic Algorithm Based Time and Fre-quency Domain Design Unification of Linear Control System. Research Report,University of Glasgow, 1995.
    [81] Goldberg. D. E. Genetic Algorithm in Search, Optimization and Machine Learn-ing. Addison-Wesley, 1989.
    [82] Koza J. R. Genetic Programming: on the Programming of Computers by Meansof Natural Selection. Cambridge, MA: MIT Press, 1992.
    [83] Fogel L. J. Fogey D. B. Special Issue on Evolutionary Computation. IEEETransactions on Neural Networks, 1994, 5(1):1–148.
    [84] Michalewicz Z. ed. Special Issue on Evolutionary Computation. Statistics andComputing, 1994, 4(2).
    [85] Ra? S. J. ed. Special Issue on Genetic Algorithms. International Journal ofComputers and Operations Research, 1995, 22(1).
    [86] Simth A. E. Gen M., Wasserman G. S. Special Issue on Genetic Algorithmsand Industrial Engineering. International Journal of Computer Industrial En-gineering, 1996, 30(4).
    [87]曹立明王小平.遗传算法–理论、应用与软件实现.西安:西安交通大学出版社,2002.3-4.
    [88]王达.遗传算法用于多目标过程优化综合的研究.山东:青岛科技大学硕士学位论文, Apr. 2005.
    [89] Peter Kampstra. Evolutionary Computing in Telecommunications. BMI Paper:Vrije Universiteit Amsterdam, Aug. 2005.
    [90]玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社, 2004.
    [91]徐瑛.遗传算法的改进及应用实现.北京:北京理工大学硕士学位论文, Jun.2003.
    [92] Deb K. Srinivas N. Multiobjective Function Optimization Using NondominatedSorting Genetic Algorithms. Evolutionary Computation, 1995, 3(2):221–248.
    [93]庄镇泉等陈国良,王煦法.遗传算法及其应用.北京:人民邮电出版社, 1997.
    [94]顾基发.决策分析--多目标决策.中国科学院系统科学研究所, 1985.
    [95] W Stadle. A Survey of Multi-criteria Optimization or the Vector MaximumProblem. Journal of Optimization Theory and Applications, 1979, 29(1):1–52.
    [96]魏权龄.多目标规划讲义.中国人民大学经济信息管理系数学研究室, 1982.
    [97] G. W. Evans. An Overview of Techniques for Solving Multi-objective Mathe-matical Programs. Management Science, 1984, 30(11):1268–1282.
    [98]胡毓达.实用多目标优化.上海科学技术出版社, 1990.
    [99]任平.优化理论中的令人满意准则.模糊数学, 1983, 5(4):111–112.
    [100]靳蕃.神经计算的满意解原理.科学, 1992, 44(4):40–43.
    [101]曹立明王小平.遗传算法.西安:西安交通大学出版社, 2002.
    [102]孙树栋周明.遗传算法原理及应用.国防工业出版社, 1996.
    [103]涂雪珠.遗传算法在多目标优化中的应用.武汉:武汉理工大学硕士学位论文,2003.
    [104]陈火旺谢涛.多目标优化与决策问题的演化算法.中国工程科学, 2002,4(2):59–68.
    [105] Scha?er J. D. Multiple objective optimization with vector evaluated genetic al-gorithms. In Genetic Algorithrrts and their Applications: Proceeding of the FirstInternational Conference on Genetic Algorithms, Lawrence Erlbaum, 1985.93-100.
    [106] Pratap. A Agarwal S. Deb, K. and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Com-putation, 2002, 6(3):181–197.
    [107] Zitzler E. Evolutionary algorithms for multiobjective optinuzation: Methodsand applications. In Ph. D. thesis, Zurich: Swiss Federal Institute of Technology(ETH), 1999.
    [108] Fleeting P. J. Fonseca C. M. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 1995, 3(1):1–16.
    [109] Rosenberg R. S. Simulation of genetic populations with biochemical. In Ph. D.thesis, University of Michigan, 1967.
    [110] Goldberg D. E. Horn J., Nafploitis N. A nicked Pareto genetic algorithm formultiobjective optimization. In Proceedings of the First Conference on Evolu-tionary Computation, Piscataway, New Jersey, 1994.82-87.
    [111]全庆一,胡健栋.卫星移动通信.北京:北京邮电大学出版社, 2000.
    [112]王秉钧,王少勇,田宝玉.现代卫星通信系统.北京:电子工业出版社, 2004.
    [113] Wilkins M. Bruccoleri C. Park, K. and D. Mortari. Uniformly DistributedFlower Constellation Design Study for Global Positioning System. In AAS04-297 of the 2004 Space Flight Mechanics Meeting Conference, Maui, Hawaii,February 9-13, 2004.
    [114] P.M. Wilkins and D. Mortari. Constellation Design via Projection of an Arbi-trary shape onto a Flower Constellation Surface. In 2004 AIAA/AAS Astrody-namics Specialist Conference, Providence, Rhode Island, August 16-19, 2004.
    [115]朱德生吴久银,甘仲民.共地面轨迹移动卫星通信星座设计.电子学报,1999,27(6):88–91.
    [116]甘仲民吴久银,李广侠.移动卫星通信星座工程设计.解放军理工大学学报,2002,3(1):31–35.
    [117] G. Pennoni and L. Bella. JOCOS: A Triply Geosynchonous Orbit for GlobalCommunications An Application Example. In Tenth International Conferenceon Digital Satellite Communications, 1995.646–652.
    [118] P. Dondl. LOOPUS Opens a Dimension in Satellite Communica-tions. Inter-national Journal of Satellite Communications, 1984,2:241–250.
    [119] Inciardi R. Cefola P. Proulx R. Draim, J. E. and D. Carter. Demonstration ofthe COBRA Teardrop Concept Using Two Smallsats in 8-hr Elliptic Orbits. In15th Annual/USU Conferece on Small Satellites, SSC01-II-3, 2001.
    [120]姜昌.区域性无源三维导航定位系统研究.遥测遥控, 1999,20(1):2–12.
    [121]尤鸣翔刘敬锋,王永澄.区域卫星导航星座的探讨.电气技术与自动化,2002(5):42–44.
    [122]车汝才林来兴,张洪华.编队飞行区域性导航卫星和位置保持.宇航学报,2004,25(1):42–44.
    [123]高长生荆武兴.亚太区域导航八星星座分析.航天控制, 2005,23(6):4–8.
    [124] Spilker J.J. et al Parkinson B.W. Global positioning system: Theory and ap-plications. In AIAA, 1996.177-208.
    [125] Al-Dhahir N Hershey J Yarlagadda R, Ali I. GPS GDOP metric. IEEE Proc.Radar, Sonar Nav., 2000, 147(5):259–264.
    [126] XIE Rongrong WANG WEI, LIU Zongyu. The reserch on GDOP of PL-aidedbeidou positoning system. China. J. Space Sci, 2005, 25(1):57–62.
    [127] Fun H Y. Sheri? R E. Mobile Satellite Communication Networks. John Wiley& Sons Ltd, 2001.104-114.
    [128] MA Yi-fei HE Jia-fu, WU Jiu-yin. A new mobile satellite communication con-stellation for Chinese area. In International Conference on CommunicationTechnology Proceedings, Beijing China: Publishing House of Electronics Indus-try, 2000.1145-1148.
    [129]戴金海.军用侦察卫星星座技术研究.发表于: Ph. D. thesis,国防科学技术大学, 2001.
    [130]杜相华刘勇,王秋刚.成像侦察卫星及其发展综述.电子对抗, 2005(6):39–43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700