分布式小卫星SAR宽域、高分辨率成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
更广阔的观测区域、更高的空间分辨率和更逼真的三维地形获取是星载SAR系统永无止境的追求。传统的单星SAR系统越来越受到很多制约,包括成本、可靠性和基线难以做长等。二十世纪九十年代中期,人们提出了一种新的天基雷达体制,即利用多颗小卫星构成超稀疏雷达阵列进行编队飞行。小卫星具有重量轻、体积小,研制周期短、成本低,发射灵活等一系列优点,而且还可以形成批量生产,因此利用小卫星组成星座的成本会低于一颗传统的大卫星,而其整体功能则远远优于一颗大卫星。
     利用多颗小卫星编队飞行在具有单航过优点的同时,能够提供多个空时自由度,可以大大提高综合孔径雷达(SAR)的性能,包括:宽域、高分辨率SAR成像,低速地面运动目标检测,多基线、单航过干涉SAR等。然而分布式小卫星雷达具有很多优点的同时也面临着问题和挑战,例如空间阵列超稀疏分布、回波信号存在距离或/和多普勒模糊以及存在多种误差源等等,必须克服这些困难才能充分发挥分布式小卫星雷达的优势。
     本论文从信号处理的角度,针对小卫星发射-小卫星接收体制,主要研究解决多普勒模糊、实现宽测绘带和高分辨率SAR成像处理的数据处理方法。包括分布式小卫星的阵列构形为沿航向线阵以及三维超大立体阵列两种情况下的地面场景重构以及误差估计问题。本论文的主要工作可以总结如下:
     1、小卫星分布式雷达沿特定的轨道超稀疏分布,这相当于在空间中形成一个多通道采样系统。而且,由于最小天线面积条件的限制,单颗小卫星的空间采样是欠采样的。为了消除距离\多普勒模糊的影响,通过联合其它小卫星来增加空间采样率,这实际上与时域多通道采样方法的基本思想是一致的。对多通道采样与信号重构方法的研究将为解决多普勒模糊提供理论基础。沿用时域多通道采样方法将宽带信号进行多通道延时采样的思路并且结合频域多通道采样方法中频带分割的基本思想,提出了一种对通道增益误差及时延误差稳健的重构完整宽带信号的新方法。该方法在频域利用自适应波束形成技术来恢复宽带信号的完整带宽。由于采用了稳健的自适应处理技术,在各通道存在误差的情况下,该方法仍然能够稳健地恢复宽带信号的完整带宽。
     2、小卫星的天线孔径较小,不满足最小天线面积约束,其接收的回波信号会存在距离/多普勒模糊。因此必须展开或抑制距离/多普勒模糊才能获得无模糊、高分辨率的SAR图像。而且,相对于上述的时域多通道采样系统,小卫星分布式SAR系统将引入更多的误差源,如三大同步误差(时间同步误差、频率同步误差和波束同步误差),基线误差、通道误差和偏航(导致各个子孔径天线非沿航向直线排列)等等。本论文对分布式SAR系统中存在的各种误差源进行分析、根据它们对多普勒模糊抑制的影响进行分类并给出相应的补偿方法;并给出了一种对补偿残留误差稳健的多普勒模糊抑制方法,该方法能提高空域导向矢量对残留误差的稳健性;最后利用一组实测的多通道机载数据验证了以上方法的有效性。
     3、如果仅仅实现SAR以及GMTI功能,则编队小卫星沿航向直线分布(具有很短的垂直航向基线)为最佳构形。由于沿航向直线分布的阵列在地形高度方向不具有分辨能力,用于自适应处理的样本不会受到地形起伏的影响。然而,这种卫星编队构形不具有地形高程测量(InSAR)功能。分布式小卫星InSAR系统不但可以获得大观测带和高方位分辨率的二维SAR图像,而且还可以获得地形高程信息。然而,在InSAR卫星编队构形(即具有长垂直航向基线)下获取大测绘带、高分辨SAR图像面临很大的挑战。其中,地面单元的阵列导向矢量随地形高度和距离的剧烈变化对于获取足够的独立同分布样本(i.i.d)进行自适应处理带了挑战性。另一个关键挑战是宽带阵的包络配准与回波信号的采样模糊耦合在一起,使得包络配准与解决模糊变得更加困难。为解决分布式小卫星InSAR系统所面临的这些问题,提出了利用该系统重构宽测绘带、高分辨率三维地形的新方法。该方法利用高分辨SAR成像技术来获取足够多的样本,然后利用空-像域联合子空间正交投影技术获得SAR图像中所有模糊分量的高度信息,根据高度信息对所有像素中的每一个模糊分量进行包络配准,最后利用自适应波束形成技术取出所有多普勒模糊分量实现宽广地面场景的高分辨率三维重构。
     4、分布式SAR系统中存在多种误差源,而偏航以及波束指向误差是影响SAR图像聚焦的主要因素。如何消除以上误差的影响进行SAR聚焦是分布式SAR系统实现宽测绘、带高分辨率SAR成像处理、GMTI以及InSAR测高的基础。从图像域出发,提出了两种新的SAR自聚焦方法,分别为基于最大全变差准则和基于DCT准则的SAR图像自聚焦算法。它们分别利用信号的最大全变差以及DCT估计相位误差系数。与其它图像域自聚焦方法相比,以上两种方法计算量较小,更易实现,并且可以通过多维搜索估计任意阶次的相位误差。
A new conceptual implementation of spaceborne synthetic aperture radar (SAR) system in which several small satellites fly in constellation forming a highly sparse array was presented in the mid-1990s. Small spaceborne system has many advantages, such as light weight, small size, short development time, low cost, flexible launch and so on. Further more it can batch produced. Consequently, forming a constellation of small satellites not only has far lower cost than a conventional spaceborne SAR system but also better performance.
     The formation flying distributed small satellites can provide multiple and long baselines in single-pass observation mode, thus greatly improving the performance of interferometric SAR (InSAR) and ground moving target indicator (GMTI). The coherent combination of several SAR images obtained from different observing angles can improve the image resolution and provide accurate geometric information. Furthermore, combining a broad illumination source with multiple small receiving antennas placed on separate formation-flying micro-satellites, we can obtain high resolution SAR images of wide areas. However, several challenging problems are also introduced by the constellation SAR regime at the same time. These problems include high sparseness of the array, range or Doppler ambiguities, many kinds of error sources and so on. These problems should be carefully considered to ensure that the advantages of the constellation can be achieved.
     In this doctoral dissertation, the approaches to reconstruct ground scean with wide swath and high resolution and the problems of error estimation are studied. The main returns of this doctoral dissertation are listed as follows:
     1. The small satellites in constellation distribute sparsely along specific orbit, which is to say that they form a multi-channle sampling system. And for a single small satellite, it is under sampling in spatial domain. Combining multiple small satellites in constellation to increase the spatial sampling rate the distributed spaceborne SAR system can restrain range or Doppler aliasing. This idea is accordant with the fundamental thought of time-domain multi-channel sampling method. The research of multi-channel sampling and its signal reconstruction method can provide the theory foundation for resolving Doppler ambiguity. Introducing the multi-channel delay sampling idea and combining the idea of frequency band segmentation in frequency multi-channel sampling method, we propose a new reconstructing method which is robust to delay error and channel gain error. The method retrieves the complete bandwidth by using adaptive beamforming thechnique in frequency domain. Due to the adoption of robust adaptive processing, the proposed method can retrieve the complete bandwidth of broad band signal robustly, even when the error exists.
     2. The minimum antenna area constraint cannot be satisfied by individual small satellite in constellation. Range and/or Doppler ambiguity will be introduced by small antenna inevitably. To obtain the SAR image with wide swath and high resolution, we must restrain Doppler aliasing firstly. Compared with time-domain multi-channel sampling system, distributed spaceborne SAR system will introduce more error sources, such as timer error, beam pointing error, frequency synchronization error, baseline error, channel error, yawing (it distorts the along track linear formation of the sub apertures) and so on. In this dissertation all kinds of errors existing in the real system is classified according to the impact on the performance of Doppler aliasing restraining, approaches to compensate the errors are proposed and a method of restraining Doppler aliasing which is robust to remanent errors is presented. Finally all the methods above are verified by using a set of airborne multi-channel measured data.
     3. Linear array along the track (or cross-track baseline is very long) is the best configuration for the distributed spaceborne SAR system, if only SAR and GMTI need to be implemented. The samples will not be affected by the terrain fluctuation in this case, because the linear array along the track does not have the ability of resolving the height of terrain. However, this type of configuration can not achieve height measurement (InSAR). Not only can constellation InSAR system achieve wide swath and high resolution two-dimensional SAR image, but also it can obtain the terrain height information. Nevertheless, highly sparse three-dimensional array brings new challenges for data processing, where the violent change of beam pattern (array steering vector) along with the height and range of the terrain make it difficult to obtain sufficient independent and identically distributed (i.i.d) samples for adaptive processing (to restrain Doppler aliasing). The envelope registration of broadband array coupling with the sampling aliasing of the echo is the other important challenge generally, which makes it more difficult to resolve Doppler ambiguity and register the envelope. To overcome these difficuties, this dissertation proposes a novel method of reconstructing wide-swath and high resolution three-dimenssional topography. The method obtains sufficient samples in high resolution SAR image domain and acquires the height information of all aliasing components in SAR image by using joint space-image subspace projection technique. According to the height information the envelope of the every aliasing component is further registered, and all aliasing components in the pixel are extracted by using adaptive beam forming technique. Finally reconstructing three-dimensional topography is finished.
     4. There are many error sources exist in the distributed spaceborne system, yawing and beam pointing error is the main factor which affect SAR focusing. It is the basis of wide-swath and high resolution SAR imaging, GMTI and InSAR to avoid the affection of the error sources above to focus the SAR data. Starting with complex phase-degraded SAR image, two novel SAR autofocus algorithms are presented in the dissertation. They estimate phase error coefficients by using the total viriation and DCT of the signal. Compared with other SAR autofocus algorithm based on image domain, these two methods above are of less computational complexity and easy to implement.
引文
[1] Iwashashi, Tsutomu Tanaka, Hirokazu, Satellite technology for environmental observation. Mitsubishi Electric Advance, 1996, 74(3): 8-10.
    [2] Linnehan, Robert, Perlovsky, Mutz, Detecting multiple slow-moving targets in SAR images. 2004 Sensor Array and Multichannel Signal Processing Workshop, 2004: 643-647.
    [3] Lo Martin W. Satellite-constellation design. Computing in Science & Engineering, 1989, 1(1): 58-66.
    [4] Folta, David, Newman, et al. Design and implementation of satellite formations and constellations. Advances in the Astronautical Sciences, 1998, 100(1): 57-70.
    [5] Paxton, Larry J, Yee, Jeng-Hwa. Use of small satellites in the NASA Earth Science Enterprise (ESE) Earth Observing System (EOS). Acta Astronautica, 2000, 46(2): 365-374.
    [6] G. W. Hill, Researches in the Lunar Theory. American Journal of Mathematics, 1978, 1(1): 5-26.
    [7] W. H. Clohessy, R. H. Wiltshire. Terminal guidance system for satellite rendevous. Journal of Aerospace Sciences, 1960, 27: 653-658.
    [8] G Canavan, D Thompson, I Bekey. Distributed Space Systems. New World Vistas, Air and Space Power for the 21st Century, United States Air Force,1996.
    [9] Burns, McLaughlin, Martin. TechSat 21: Formation design, control, and simulation. IEEE Aerospace Conference Proceedings, 2000,7: 19-25.
    [10] A Das, R Cobb, M Stallard. TechSat 21: A revolutionary concept in distributed space based sensing. Proc. AIAA Defense and Civil Space Programs Conf, Huntsville, AL, Oct. 1998: 5255-5263.
    [11] Sedwick, R J Kong, E M C Miller. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems-Applications to TechSat21. Proc. AIAA Defense and Civil Space Programs Conf. Exhibit, Huntsville, AL, Oct. 1998: 5289-5296.
    [12] Kong, Edmund M C Miller, David W. Minimum energy trajectories for Techsat 21 Earth orbiting clusters. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001: 4769-4781.
    [13] M Martin, M Stallard. Distributed satellite missions and technologies—the TechSat 21 program. Proc. AIAA Space Technology Conf.Exposition, Albuquerque, NM,Sept. 1999: 4476-4479.
    [14] M Martin, P Klupar, S Kilberg, et al. Techsat 21 and Revolutionizing Space Missions using Microsatellites. Proc. 15th AIAA Conference on Small Satellites, Utah, USA, 2001: 4139-4145.
    [15] Massonnet. The interferometric cartwheel: A constellation of passive satellites to produce radar images to be coherently combined. International Journal of Remote Sensing, 2001,22(12): 2413-2430.
    [16] Massonnet. Capabilities and limitations of the interferometric cartwheel. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 506-520.
    [17] Zink Manfred, Krieger Gerhard, Amiot Thierry. Interferometric performance of a cartwheel constellation for TerraSAR-L. European Space Agency, 2004: 269-275.
    [18] M Martin, P Klupar, S Kilberg, et al. Techsat 21 and Revolutionizing Space Missions using Microsatellites. Proc. 15th AIAA Conference on Small Satellites, Utah, USA, 2001: 4139-4145.
    [19] Ramongassie D, Phalippou L, Thouvenot E, etc. Preliminary design of the payload for the interferometric cartwheel. International Geoscience and Remote Sensing Symposium (IGARSS), 2000, 3: 1004-1006.
    [20] Mittermayer Josef, Krieger Gerhard, Moreira Alberto, et al. Interferometric performance estimation for the interferometric cartwheel in combination with a transmitting SAR-satellite. International Geoscience and Remote Sensing Symposium (IGARSS), 2001, 7: 2955-2957.
    [21] H Fiedler, G Krieger, F Jochim, et al. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry. EUSAR2002, Cologne, Germany, 2002: 29-33.
    [22] G Krieger, H Fiedler, J Mittermayer, et al. Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 87-96.
    [23] G Krieger, A Moreira. Multistatic SAR Satellite Formations: Potentials and Challenges. Proc.of IGARSS2005, Seoul, Korea, 2005: 689-694.
    [24] Schwerdt Marco, Hounam David, Brautigam Benjamin, et al. TerraSAR-X: Calibration concept of a multiple mode high resolution SAR. International Geoscience and Remote Sensing Symposium (IGARSS), 2005: 4874-4877.
    [25] Moreira Alberto, Krieger Gerhard, Hajnsek Irena, et al. TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry. International Geoscience and Remote Sensing Symposium (IGARSS), 2004: 1000-1003.
    [26]黄卫东,张育林.分布式卫星轨道构形的大气摄动分析及修正方法.宇航学报,2005, 26(5): 649-652.
    [27]黄海风,邓泳,梁甸农.基于测高精度最优值的星载分布式InSAR编队构形设计方法.国防科技大学学报, 2005, 27(4): 85-90.
    [28]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究.中国科学E辑, 2004, 34(6): 654-662.
    [29]张锦绣,曹喜滨,林晓辉.基于平均轨道要素的干涉SAR编队构形设计方法研究.宇航学报, 2006, 27(4): 670-676.
    [30]张治国,李俊峰,宝音贺西.卫星编队飞行指向跟踪姿态控制.清华大学学报(自然科学版), 2006, 46(11): 1914-1917.
    [31]林来兴.小卫星编队飞行及其轨道构成.中国空间科学技术, 2001, 2(1): 23-28.
    [32]张洪华,林来兴.卫星编队飞行相对轨道的确定.宇航学报, 2002, 33(6): 77-81.
    [33]杨维廉.近圆轨道控制的分析方法.中国空间科学技术, 2003, 5: 1-5.
    [34]孙兰,许滨,张珩.航天器稀疏编队飞行的概念及其设计方法.中国空间科学技术, 2003, 4: 23-28.
    [35] Zhenfang Li, Zheng Bao. A novel approach for wide-swath and high-resolution SAR image generation from distributed small spaceborne SAR systems[J]. Int. J. Remote Sensing, 2006, 27(5), 1015-1033.
    [36] Garnham John, Wainwright Ross, Burns Rich. Enabling research and development for flight demonstration of sparse aperture sensing. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001, 13: 4552-4561.
    [37] Marais Karen, Sedwick Raymond J. Cluster design for scanned pattern interferometric radar. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001, 7: 4654-4660.
    [38] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21-a distributed spacebased radar system. Mar. 10-17, 2001, 2: 725-732.
    [39] N A Goodman, J M Stiles. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Trans. AES, 2003, 39(3): 921-935.
    [40]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.博士学位论文,西安电子科技大学, 2006.
    [41] Wang Chenli, Niu Zheng, Gu Xiaoping, et al. Tropical forest plantation biomass estimation using RADARSAT-SAR and TM data off south china. Proceedings of SPIE-The International Society for Optical Engineering, 2005: 613-619.
    [42]文竹,周荫清,陈杰.分布式小卫星SAR回波信号精确仿真方法研究.宇航学报, 2006, 27(5): 909-914.
    [43] Xue Xiaorong, Zhao Rongchun, Zeng Qiming. A new method of SAR image speckle reduction. Proceedings of SPIE - The International Society for Optical Engineering, 2005: 34-38.
    [44]何峰,梁甸农.用星载寄生式SAR提高空间二维分辨率的信号处理.电子学报, 2005, 33(6): 1128-1131.
    [45] Ji Kefeng, Kuang Gangyao, Su Yi, et al. Simulation of SAR image of ship. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 1349-1352.
    [46]雷万明,刘光炎,黄顺吉.分布式卫星SAR的波束形成和多视处理成像.电子与信息学报, 2002, 24(11): 1620-1626.
    [47] Tan Qulin, Fu Zhou, Liu Zhengjun, et al. An experiment for high resolution airborne SAR imaging based on phase gradient autofocus. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 3322-3324.
    [48]闫鸿慧,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像.电子与信息学报, 2005, 27(6): 928-931.
    [49]穆冬.干涉合成孔径雷达成像技术研究.博士论文,南京航空航天大学, 2001.
    [50]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理.电子学报, 2003, 31(12): 1800-1803.
    [51] Han Chunming, Guo Huadong, Shao Yun, et al. A method to segment SAR images based on histogram. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 3694-3696.
    [52] Ji Kefeng, Kuang Gangyao, Su Yi, et al. Simulation of SAR image of ship. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 1349-1352.
    [53]何峰,梁甸农,董臻.适于大斜视角的星载双基地SAR波数域成像算法.电子学报, 2005, 33(6): 1011-1014.
    [54] Zhenfang Li, Hongyang Wang, Tao Su, Zheng Bao. Generation of Wide-Swath and High-Resolution SAR Images From Multichannel Small Spaceborne SAR systems. IEEE Geoscience and Remote Sensing Letters, 2006, 2(1): 82-86.
    [55] Bian Yong, Zhou Yinqing, Li Chunsheng. PHAF based on FLOS and Its applicationto the autofocus of hybrid SAR. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 4662-4665.
    [56]胡玉新,丁赤飚,吴一戎.基于ω-k算法的宽测绘带星载SAR成像处理.电子学报, 2005, 33(6): 1014-1017.
    [57] Haiyang Wang, Xiaoyu Zhang, Baiyan, et al. Line segment detection of Urban area in SAR images based on improved gray hough transform. Proceedings of SPIE-The International Society for Optical Engineering, SAR Image Analysis, Modeling, and Techniques VII, 2005: 4213-4217.
    [58]周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展.电子学报, 2003, 31(12A): 1939-1945.
    [59] Zhou Wanxing, Wu Mingya, Lu Xiangjun. Solid-state long-range surveillance radar YLC-4. CIE International Conference of Radar Proceedings, 1996: 56-59.
    [60]杨凤凤,郭汉伟.二单元DPCA在机载相控阵雷达AMTI中的应用.现代雷达, 2004, 26(3): 18-20.
    [61] Shen Mingwei, Zhu Daiyin, Zhu Zhaoda. SAR/GMTI usingΣΔ-beams based on signal subspace processing. International Geoscience and Remote Sensing Symposium (IGARSS), 25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005: 2925-2927.
    [62] Zhenfang Li, Zheng Bao, Hongyang Wang. Performance Improvement of Constellation SAR Systems Using Signal Processing Techniques. IEEE Trans on AES, 2006, 42(2): 436-452.
    [63]王彤,保铮,廖桂生.天基分布式雷达GMTI方法.电子学报, 2006, 33(3): 399-403.
    [64] Wei Song, Wang Hongyuan. High resolution DBS imaging and the moving target trajectory forming with raw SAR/GMTI data. 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet, 2004: 4251-4254.
    [65]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方法.电子与信息学报, 2005, 27(10): 1564-1568.
    [66]李真芳,保铮,王彤.分布式小卫星SAR系统地面运动目标检测方法.电子学报, 2005, 33(9): 1664-1666.
    [67]郑明洁.合成孔径雷达动目标检测和成像研究.博士论文,中国科学院电子学研究所, 2003.
    [68] Wang Yong-Liang, Bao Zheng, Peng Ying-Ning. STAP with medium PRF mode fornon-side-looking airborne radar. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 609-620.
    [69]王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及杂波特性分析.电子学报, 2001, 29(12A): 1940-1943.
    [70] Lu Yuanyao, Zhang Ping. Comparison on mitigating techniques to enhance bistatic STAP. 25th Anniversary IGARSS: IEEE International Geoscience and Remote Sensing Symposium, 2005: 1971-1974.
    [71] Zhang Liang, Bao Zheng, Liao Guisheng. A study of reduced-rank STAP. Journal of Electronics, 2000, 17(4): 289-296.
    [72]罗毅,刘国岁,苏卫民.基于杂波协方差矩阵特征向量分析STAP降维方法.电子学报, 1999, 27(12): 95-97.
    [73]赵永波,刘茂仓,张守宏.综合脉冲与孔径雷达的距离与方向耦合栅瓣现象及其克服方法.电子与信息学报, 2001, 23(4): 360-364.
    [74]陈伯孝,陈多芳,张红梅,张守宏.双/多基地综合脉冲孔径地波雷达的信道化接收技术研究.电子学报, 2006, 34(9): 1566-1570.
    [1] Lo, Martin W. Satellite-constellation design. Computing in Science & Engineering, 1989, 1(1): 58-66.
    [2] Folta, David, Newman, et al. Design and implementation of satellite formations and constellations. Advances in the Astronautical Sciences, 1998, 100(1): 57-70.
    [3] Paxton, Larry J, Yee, et al. Use of small satellites in the NASA Earth Science Enterprise (ESE) Earth Observing System (EOS). Acta Astronautica, 2000, 46(2): 365-374.
    [4] G. Canavan, D. Thompson, I. Bekey. Distributed Space Systems. New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996.
    [5] Burns, McLaughlin, Martin. TechSat 21: Formation design, control, and simulation. IEEE Aerospace Conference Proceedings, 2000, 7: 19-25.
    [6] A. Das, R. Cobb, M. Stallard. TechSat 21: A revolutionary concept in distributed space based sensing. Proc. AIAA Defense and Civil Space Programs Conf, Huntsville, AL, Oct. 1998: 5255-5263.
    [7] Sedwick, R. J. Kong, E. M. C. Miller. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems-Applications to TechSat21. Proc. AIAA Defense and Civil Space Programs Conf. Exhibit, Huntsville, AL, Oct. 1998: 5289-5296.
    [8] Kong, Edmund M. C. Miller, David W. Minimum energy trajectories for Techsat 21 Earth orbiting clusters. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001: 4769-4781.
    [9] M. Martin, M. Stallard. Distributed satellite missions and technologies-the TechSat 21 program. Proc. AIAA Space Technology Conf.Exposition, Albuquerque, NM, Sept. 1999: 4476-4479.
    [10] M. Martin, P. Klupar, S. Kilberg, et al. Techsat 21 and Revolutionizing Space Missions using Microsatellites. Proc. 15th AIAA Conference on Small Satellites, Utah, USA, 2001: 785-789.
    [11] D.Massonnet. The interferometric cartwheel:a constellation of passive satellites to produce radar images to be coherently combined. Int.J.Remote Sensing, 2001, 22: 2413-2430.
    [12] Goodman N A, Sih Chung Lin, Devindran R, et al. Processing of multiple-receiver spaceborne arrays for wide-area SAR. IEEE Transactions on Geoscience andRemote Sensing, 2002, 40(4): 841-852.
    [13] Linnehan, Robert, Perlovsky, et al. Detecting multiple slow-moving targets in SAR images. 2004 Sensor Array and Multichannel Signal Processing Workshop, 2004: 643-647.
    [14] Massonnet, The interferometric cartwheel: A constellation of passive satellites to produce radar images to be coherently combined. International Journal of Remote Sensing, 2001,22(12), pp: 2413-2430.
    [15] Massonnet. Capabilities and limitations of the interferometric cartwheel. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 506-520.
    [16] Zink Manfred, Krieger Gerhard, Amiot Thierry. Interferometric performance of a cartwheel constellation for TerraSAR-L. European Space Agency, (Special Publication) ESA SP, Proceedings of FRINGE 2003 Workshop, 2004: 269-275.
    [17] Ramongassie D, Phalippou L, Thouvenot E, et al. Preliminary design of the payload for the interferometric cartwheel. International Geoscience and Remote Sensing Symposium (IGARSS), 2000, 3: 1004-1006.
    [18] Mittermayer Josef, Krieger Gerhard, Moreira Alberto, et al. Interferometric performance estimation for the interferometric cartwheel in combination with a transmitting SAR-satellite. International Geoscience and Remote Sensing Symposium (IGARSS), 2001, 7: 2955-2957.
    [19] L J Cantafio. Space-based radar handbook. Boston: Artech House, 1989: 127-132.
    [20] H. Fiedler, G. Krieger, F. Jochim, et al. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry. EUSAR 2002, Cologne, Germany, 2002: 29-33.
    [21] G. Krieger, H. Fiedler, J. Mittermayer, et al. Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 87-96.
    [22] G. Krieger, A. Moreira. Multistatic SAR Satellite Formations: Potentials and Challenges. Proc.of IGARSS 2005, Seoul, Korea, 2005: 621-624.
    [23]刘永坦,雷达成像技术.哈尔滨:哈尔滨工业大学出版社, 1999.
    [1] Mitola J. The software radio architecture[J]. IEEE Communications Magazine, 1995, 33(5), 26~38.
    [2] Walden R H. Analog-to-digital converter survey and analysis[J]. IEEE Selected Areas in Communications, 1999, 17(4), 539~550.
    [3]周凯,李刚.高速保持放大器AD781[J].国外电子元器件,2001, (10):24-26
    [4] George T R. Ultra-wideband Radar Receiver[C]. SPIE. 1631,1992.
    [5]沈兰荪.高速数据采集系统的原理与应用[M].北京:人民邮电出版社,1995:161-177
    [6] Ramon Ntizberg. Radar Signal Processing and Adaptive Systems[M]. Boston & London: Artech House, 1999, 155~206.
    [7] Haihong Tao, Guisheng Liao, Ling Wang. Integer coded genetic algorithm design of staggered sampling MTI[C]. IEEE Int Conf. Neural Networks & Signal Processing, 2003, 558~562.
    [8] Brown J L. Multi-channel sampling of low-pass signals[J]. IEEE Trans. On Circuits Syst, 1981, 28(2), 101~106.
    [9]张永胜,黎向阳,常文革.频域多通道UWB-SAR接收机结构分析.现代雷达,2003, (10):46-48
    [10]水鹏朗.基于频带分割的超宽带雷达脉冲压缩方法.电子学报,1999,27(6):50-53
    [11]陈隽永,徐继麒.小波理论在超宽带雷达信号数据采集中的应用.系统工程与电子技术,2000,22(5): 49-96
    [12]李宛州.超高速采样技术及其在远程超宽带雷达信号处理中的应用研究.电子学报,2001,29(7):940-942
    [13] Capon J. High resolution frequency-wavenumber spectrum analysis[J]. Proceeding of IEEE, 1969, 57, 1408~1418.
    [14] Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Trans. On AES, 1974, 10, 853~863.
    [15] Feldman D D, Griffiths L J. A projection approach for robust adaptive beamforming[J]. IEEE Trans. On SP, 1994, 42(4), 867~876.
    [16] Skolnik M I. Radar Handbook[M]. New York: McGraw-Hill, 1980, 818~83
    [17] MA Lun,LIAO Guisheng,LI Zhenfang,“An approach to sample broadband radar signal with low-rate ADC using adaptive beamforming technique,”Proceedings of 2006 CIE International Conference on Radar, Oct.16-19, 2006, Shanghai, China, pp: 1-4.
    [1] L J Cantafio. Space-based radar handbook. Boston: Artech House, 1989: 127-132.
    [2]周非,范馨月,黄顺吉.基于MNMP的ScanSAR并行成像系统设计[J].电子与信息学报, 2007, 29(2), 391-396.
    [3] R. K. Moore. Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Trans. On AES, 1981, 17, 410-420.
    [4] Zhenfang Li, Zheng Bao. A novel approach for wide-swath and high-resolution SAR image generation from distributed small spaceborne SAR systems[J]. Int. J. Remote Sensing, 2006, 27(5), 1015-1033.
    [5] M. Martin, P. Klupar, S. Kilberg, et al. Techsat 21 and Revolutionizing Space Missions using Microsatellites. Proc. 15th AIAA Conference on Small Satellites, Utah, USA, 2001: 785-789.
    [6] A. Currie and M. A. Brown,“Wide-swath SAR,”IEE Proc. Inst. Elect. Eng. F. ,vol. 139, no. 2, pp. 122-135, 1992.
    [7] G. D. Callaghan and I. D. Longstaff,“Wide Swath Spaceborne SAR using a Quad Element Aray,”IEE Proceedings-Radar Sonar and Navigation, vol 146, no 3, pp. 159-165, 1999.
    [8] N. A. Goodman, S. C. Lin, D. Rajakrishna, et al. Processing of multiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Trans. On GRS, 2002, 40, 841-852.
    [9] G. Krieger, N. Gebert, A. Moreira. Unambiguous SAR signal reconstruction from nonuniform displaced phase centre sampling[J]. IEEE Letters. On GRS, 2004, 1(4), 260-264.
    [10] Zhenfang Li, Zheng Bao, Hongyang Wang, Guisheng Liao. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Trans. on AES, 2006, 42(2), 436-452.
    [11]保铮.对于分布式小卫星群天基雷达信号处理一些基本问题的思考.第九界全国雷达会议特约报告, 2004, 8: 1-5.
    [12] Zhenfang Li, Hongyang Wang, Tao Su, Zheng Bao. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems. Geoscience and Remote Sensing Letters, IEEE, 2005 , 2(1)::82-86.
    [13] Y.D.Huang. Near-field multiple sources localization by passive sensor array. IEEE Trans. AP, 1991, 39(7): 968-975.
    [14]王洪洋,廖桂生,王万林.近场源频率、波达方向和距离的联合估计方法.电波科学学报, 2004, 19(6): 717-721.
    [15] J. Capon. High resolution frequency-wavenumber spectrum analysis[J]. Proceeding of IEEE, 1969, 57, 1408-1418.
    [16] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays[J]. IEEE Trans. On AES, 1974, 10, 853-863.
    [17]马仑,李真芳,廖桂生,“一种稳健的利用分布式小卫星获取宽域、高分辨SAR图像的方法,”航空学报,vol. 28, no. 5,pp. 1190-1194,2007.
    [1] Thomas A.kenndey. A technique for specifying navigation system performance requirements in SAR motion compensation application. IEEE PLAN’90, 1990, 3. pp:118-126.
    [2] JOAO R. Moreira A New Method of Aircraft Motion Error Extraction from Radar Raw Data for Real Time Motion compensation, IEEE Trans. On GRS, 1990,Vol.28(4):620-626.
    [3]邢孟道,保铮.基于运动参数估计的SAR成像.电子学报, 200129(12A): 1824-1828
    [4]曹福祥,机载合成孔径雷达运动补偿研究,西北工业大学博士论文,1997.1.
    [5] J.L.Farrel et al. Effection of Navigation Errors In Maneuvering SAR.IEEE Trans on AES.1973(5):750-776.
    [6] J.C.Kirk Jr. Motion Compensation for SAR.IEEE Trans. On AES.1975(3): 338-348.
    [7] John N.Damoulakis et al. Analysis of Three Hierarchical Motion Compensation, IEEE Proc.of NAECON,1982:1248-1294.
    [8] David R.kirk,R.Daul Maloney. Impact of platform motion on wide angle synthetic aperture radar(SAR) image quality.The Record of the 1999 IEEE.pp:41-46.
    [9] Thomas A.kenndey. A technique for specifying navigation system performance requirements in SAR motion compensation application. IEEE PLAN’90, 1990,3. pp:118-126.
    [10] D.E.Wahl,P.H.Eichel,D.C.Ghiglia,C.V.Jakowatz,Jr. Phase gradient atutofocus—a robust tool for high resolution SAR phase correction.IEEE Trans on AES, 1994,30(3):827-834.
    [11] D.E.Wahl,C.V.Jakowatz,Jr,P.A.Thompson, D.C.Ghiglia. Autofocus-New Approach to Strip-map SAR Autofocus.Digital Signal Processing Workshop, IEEE 1994:53-56.
    [12] Douglas G.Thompson,James S.Bates,David V.Arnold, Extending the Phase Gradient Autofocus Algorithm for Low-Altitude Stripmap Mode SAR. IEEE IGARSS’99 Proceeding ,1999,1(28):36-40.
    [13] Hian Lim Chan, Tat Soon Yeo , Noniterative Quality Phase-Gradient Autofocus Algorithm for spotlight SAR Imagery.IEEE Trans on AES, 1994,30(3):827-834.
    [14]郭华东,载机雷达遥感应用试验研究,中国科学技术出版社, 1992, 11.
    [15]曹福祥,保铮,袁建平,用于SAR运动补偿DGPS/SINS组合系统研究.航空学报,2001,Vol.22(2):121-124, 2001.
    [16]丁赤飙,基于惯导系统的机载SAR运动补偿精度分析,电子信息学报,2002,Vol(1):12-18.
    [17]黄源宝,邢孟道,保铮,周峰.载机速度不稳对SAR成像的影响及补偿方法. CSAR2003, 2003, pp:323-326.
    [18] F K Li ,D N Held ,et al . Doppler parameter estimation for spaceborne synthetic aperture radar. IEEE Trans. on GRS ,1985 ,23 (1) :47 -56.
    [19] J. R. Moreira. A new method of aircraft motion error extraction from radar raw data for real time motion compensation. IEEE Trans. On GRS, 1990(4), 620-626.
    [20] Jorgen D. A new frequency domain autofocus algorithm for SAR. Proceeding of IGARSS’91, Helsinki: June, 1991, 1069-1072.
    [21] D. E. Wahl, P. H. Eichel, D. C. Chiglia, C. V. Jakowatz, Jr. Phase gradient atutofocus-a robust tool for high resolution SAR phase correction. IEEE Trans on AES, 1994, 30(3): 827-834.
    [22]武昕伟,朱兆达.一种基于最小熵准则的SAR图像自聚焦算法[J].系统工程与电子技术, 2003. 25(7): 865~869.
    [23]武昕伟,朱兆达.利用对比度最大化实现SAR图像自聚焦[J].现代雷达, 2002, 24(3): 20~22.
    [24]张澄波,综合孔径雷达—原理、系统分析与应用,科学出版社, 1989.
    [25] Stéphane Mallat.信号处理的小波导引[M].北京:机械工业出版社,2003 24~28.
    [26]胡广书.数字信号处理-理论、算法与实现[M]北京:清华大学出版社, 2002 103~109.
    [27] Rao K R, Yip P. Discrete cosine Transform: Algorithms, Advantages. Applications. New York: Academic Press,1990
    [28] M.Charfi, A.Nyeck, A.Tosser. Focusing criterion. IEEE Electronics Letters. 1991 4(July):1233~1235.
    [29]马仑,廖桂生,“一种基于最大全变差准则的SAR图像自聚焦算法,”西安电子科技大学学报(自然科学版),vol. 33, no. 2,pp. 169-172,2006.
    [30]马仑,廖桂生,“一种基于DCT的SAR图像自聚焦算法,”北京航空航天大学学报,vol. 32, no. 4,pp. 417-420,2006.
    [1] J. P. Aguttes,“The SAR Train Concept: Required Antenna Area Distributed over N Smaller Satellites, Increase of Performance by N,”in Proc. IGARSS2003, Toulouse, France, pp. 542-544, July 2003.
    [2] D. Massonnet,“The Interferometric Cartwheel: a Constellation of Passive Satellites to Produce Radar Images to be Coherently Combined,”International Journal of Remote Sensing, vol. 22, no. 12, pp. 2413-2430, 2001.
    [3] S. Ramongasie, L. Phalippou, E. Thouvenot and D. Massonnet,“Preliminary Design of the Payload for the Interferometric Carwheel,”in Proc. IGARSS2000,Honolulu, pp. 24-28, 2000.
    [4] J. Mittermayer,“Interferometric Performance Estimation for the Interferometric Cartwheel in Combination with a Transmitting SAR-Satellite,”in Proc. IGARSS2001, 2001.
    [5] H. Fiedler, G. Krieger, F. Jochim, et al,“Analysis of Bistatic Configurations for Spaceborne SAR Interferometry,”in Proc. EUSAR2002, Cologne, Germany, pp. 29-33, 2002.
    [6] G. Krieger, H. Fiedler, J. Mittermayer, K. Papathanassiou and A. Moreira,“Analysis of Multistatic Configurations for Spaceborne SAR Interferometry,”IEE Proceedings - Radar, Sonar and Navigation, vol. 150, no. 3, pp. 87-96, 2003.
    [7] Kong, Edmund M. C. Miller, David W. Minimum energy trajectories for Techsat 21 Earth orbiting clusters. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001: 4769-4781.
    [8] Zhenfang Li, Zheng Bao, Hongyang Wang, Guisheng Liao. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Trans. on AES, 2006, 42(2), 436-452.
    [9] Zhenfang Li, Zheng Bao. A novel approach for wide-swath and high-resolution SAR image generation from distributed small spaceborne SAR systems[J]. Int. J. Remote Sensing, 2006, 27(5), 1015-1033.
    [10] J. Capon. High resolution frequency-wavenumber spectrum analysis[J]. Proceeding of IEEE, 1969, 57, 1408-1418.
    [11]李真芳,保铮,“分布式小卫星SAR实现全孔径分辨率的信号处理,”电子学报, vol. 31, no. 12, pp. 1800-1803, 2003.
    [12] Zhenfang Li, Zheng Bao, Hai Li, et al. Image auto-coregistration and InSAR interferogram estimation using joint subspace projection[J]. IEEE Trans. On GRS, 2006, 44(2), 288-297.
    [13]李海,李真芳,廖桂生,保铮. INSAR干涉相位图生成的图像配准自补偿方法[J].中国科学E辑信息科学. 2006, 36(2), 191~201.
    [14] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays[J]. IEEE Trans. On AES, 1974, 10, 853-863.
    [15]马仑,李真芳,廖桂生,“一种稳健的利用分布式小卫星获取宽域、高分辨SAR图像的方法,”航空学报,vol. 28, no. 5,pp. 1190-1194,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700