基于CAD/CAE集成技术的开放式参数化结构形状优化设计平台
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以有限元为代表的数值计算方法是解决工业装备结构分析与设计等众多工程问题中具有广泛共性的科学计算问题的重要手段。为保证我国自主创新能力、集成创新竞争能力和维护国家安全,必须发展自主知识产权的CAE软件从而避免形成CAE软件核心技术受制于人的局面。本文的主要工作就是基于这一背景,实现CAE的结构有限元分析、优化设计技术与专业的CAD软件工具的集成开发。从产品设计的角度来说,一方面借助于专业的CAD软件推广结构优化设计技术在现代化工业生产中的应用,解决结构优化设计技术的理论研究与实际应用差距较大的问题。对于多学科结构优化设计来说,不同学科的分析计算对结构的几何模型和有限元模型都有不同的要求,通过系统集成,专业的集成建模工具将能够满足多学科结构优化设计的需求。另一方面,利用结构有限元分析与优化设计技术为工程和设计人员提供一个实用的、设计分析集成的工具,帮助他们在产品的概念设计阶段更好、更全面地了解产品的结构性能,从而提高设计效率。从结构优化的角度来说,参数化造型技术能够提供更直观、更便捷的几何模型形状描述和修改手段。
     目前大部分现有CAD/CAE集成研究生要是各系统在外部相互集成,彼此通过系统外的数据传递进行通讯。这类集成方法较容易实现,但是效率较低。本文工作的主要内容是基于造型数据库和高级开发语言的集成手段,将结构优化和分析功能嵌入到CAD系统中,结合CAD中的参数化实体造型功能,研究开发基于参数化实体造型技术的开放式结构参数化形状优化设计平台POSHAPE。经过不断的完善,POSHAPE作为一个通用的结构形状优化设计平台已经可以实现三维实体结构、空间壳体结构以及材料设计等问题的优化设计。在整个系统中,集成是程序的核心内容,主要体现在以下几个方面:1)将处理不同物理问题的分析功能与结构形状优化设计集成到一起,协助更深入地了解结构形状与结构各物理响应之间的内在关系;2)通过基于边界描述树(BoundaryRepresentation Tree,简称为B-Rep树)的实体几何模型描述方法,将有限元分析模型与几何模型的建模过程集成在一起,实现了模型之间的一体化,借助于CAD系统的参数化实体造型技术,提出参数化的有限元建模方法;3)基于B-Rep树和参数化技术,提出了空间壳体结构的几何曲面模型和三维实体几何模型之间的建模集成,籍此实现了壳体结构有限元模型的参数化建模方法;4)将参数化结构形状优化设计方法用于复合材料设计,提出了一种基于单胞形状优化设计的复合材料设计方法。
     本文各章节内容安排如下:
     第一章,围绕结构优化设计,首先讲述结构优化研究的主要内容和它们之间的相互关系,其中着重介绍结构形状优化设计的特点和发展历史。其次,分析结构形状优化设计存在的问题和导致问题的主要原因,本文的研究工作正是基于这些问题,开发了参数化结构形状优化设计平台POSHAPE。参数化技术是实现结构参数化优化设计的关键,在这里将对该技术进行简要介绍。接下来,介绍复合材料设计的研究现状。最后,对本文工作的研究意义和框架进行概述。
     第二章,本文方法是基于CAD/CAE集成开发实现的,在第二部分将主要对CAD/CAE集成技术的研究现状进行详细论述。参数化特征造型技术是实现参数化有限元方法的基本条件,首先对其进行介绍。CAD与CAE系统之间的数据传递方式和集成框架分别是实现CAD/CAE集成的关键内容,其次将列出现有的不同技术手段并对它们分别进行讨论和对比。最后介绍CAD/CAE集成实现结构优化优化的关键技术,包括网格剖分算法、灵敏度分析、优化算法。
     第三章,主要介绍参数化结构形状优化设计平台POSHAPE,重点放在整个平台的集成开发过程;由几何造型数据结构和集成平台的数据库出发,介绍参数化有限元模型与几何模型之间的建模集成。此外,还给出了结构参数化形状优化设计平台POSHAPE的系统集成框架以及在此平台上建立的通用优化模型。对于该系统中存在的问题也将一并说明。
     第四章,POSHAPE可以对工程中常见的、复杂三维机械零件进行参数化结构形状优化设计。本章介绍三维实体结构参数化形状优化设计的实现方法。通过若干工程实例验证本文方法的实效。
     第五章,对于空间壳体结构的参数化和形状优化设计,传统的方法大都是基于自由曲面建模技术。对比传统方法,详细介绍本文提出的基于参数化实体造型技术的参数化曲面建模方法,以及此类参数化形状优化设计的实现方法。通过若干算例,验证本文方法的可行性、有效性。
     第六章,除了实体和壳体结构形状优化设计,POSHAPE还可以用于复合材料设计。对于周期性复合材料单胞结构,通过参数化形状优化设计手段可以获取具有指定材料属性的复合材料。这里将介绍通过形状优化方法实现指定材料属性的复合材料设计过程。针对两相的蜂窝型骨架单胞结构和空心结构,给出了数值算例。
     第七章,对前文工作进行总结和展望。作为通用的参数化结构形状优化设计平台,POSHAPE不仅可以进行三维实体结构、壳体结构和复合材料单胞结构形状的优化设计,系统还有良好的可扩展性。在这部分将对系统现有的功能进行总结,并对以后的发展方向和可行进行论述。
     附录A中列出了参数化结构形状优化设计平台POSHAPE的主要操作和命令。
     本文相关工作同时隶属于大连理工大学和法国兰斯大学联合培养博士计划,并于2006年12月通过法国兰斯大学的博士学位论文答辩。
As an application of Computer Aided Engineering (CAE), structure shape design optimization aims to find the optimum shape of a domain which minimizes or maximizes the given criterions. The problem has been well studied with its theory and algorithms for decades; however its application into manufacturing and engineering industry is still far from what have been achieved in research works. Commercial software for structural shape optimization is still under development.
     Some major barriers are not well overcome which may limit using of structure shape design optimization into engineering applications. They are: 1) lack of general and well-suited structure shape description method, which is extremely important for the design variables definition; 2) for the sake of computation of design sensitivity, modification of structure shape is greatly constrained because in the analytical sensitivity analysis, the variance magnitude of design variables are limited; 3) the optimized results are not always applicable and may not be accepted by designers or engineers because the results may often include some unreasonable shape modifications.
     Computer Aided Design (CAD) has played important role in modern manufacture industry and high-tech development. It provides powerful computer-based tools which assist engineers, architects and other design professionals in their design activities. Designers almost can hardly set up 3D models and 2D drawings of physical components without CAD tools. CAD tools are widely used throughout the engineering process from conceptual design and layout of products, through strength and dynamic analysis of assemblies to definition of manufacturing methods of components.
     Integrated CAE with CAD will popularize the application of CAE into application and CAD/CAE concurrent engineering has gained more and more attentions within development of Manufacturing Industry and Information Technology. CAE techniques such as structural design optimization can help to improve product quality, decrease developing expense and shorten developing period.
     The research in the dissertation is to benefit structural shape optimization from CAD parametric geometry modeling by means of integration. From the viewpoint of product design, structural shape optimization can be more applicable into modern Manufacturing and Engineering Industry through integrated within CAD tools. At the same time, structural shape optimization can help engineer/designer be aware of the structure performance according to its shape and make better design. From the viewpoint of structure shape optimization, parametric geometry modeling techniques in CAD provide parameterized shape description and control method for structural shape optimization which is more effective and intuitional. For multi-disciplinary structural design optimization, parametric geometry modeling within professional CAD tool may be the most fitful method which can feed different requests on modeling from different disciplinary.
     The main content in the research is developing an open platform of parameterized shape optimization based-on CAD/CAE integration technique. Through integration, structural analysis and design optimization are seamless combined with parametric geometry modeling and embed into the CAD system. POSHAPE can provide parameterized shape optimization method for 3D solid structure, spatial shell structure and cell structure of composite material. To realize such a general method, integration is the most essential part. In this platform, integration is realized includes: 1) Integrating structure analysis tool of different disciplinary with structure shape optimization. Structure response from different disciplinary will be studied according structure shape. 2) Integrating finite element modeling with parametric geometry modeling through Boundary Representative Tree (simplified as: B-Rep) used in solid modeling. Finite element model is parameterized to be dynamic regenerated during optimization design steps. 3) Parametric solid modeling is extended to realize parameterized surface modeling under integration between surface model definition and solid model. Parameterized finite element modeling of shell structure is also achieved which is similar to that of solid structure.
     The research work will be introduced with the following chapters.
     In chapter 1, the background, classification and history of structure design optimization is introduced. The problems arise in application of structural shape optimization into engineering is discussed. Parametric design technique is described which is the basic theory of the present research. The research works on composite material design is also given in this chapter. The main work within this research is outlined at last.
     In chapter 2, present research on CAD/CAE integration will be summarized firstly. The reason to integrating CAE into CAD system will be given subsequently. Parametric feature modeling is precondition to the integration and will be outlined nextly. Then available data transfer methods and architectures of CAD/CAE integration system are listed and compared. Lastly, some of important techniques used for structure shape optimization are listed.
     In chapter 3, development of the platform is described, which includes developing environment and realization of parametric finite element modeling. Some problems exits in the platform are also given.
     In chapter 4, implementation of parameterized shape optimization for 3D solid structure is illustrated. Numerical examples came from engineering will testify the effectiveness of the present method.
     In chapter 5, parameterized surface modeling and parameterized finite element modeling for shell structure based on parametric solid model is introduced. Them implementation of parameterized shape optimization for spatial shell structure is illustrated. Numerical examples are given to show the effectiveness of the present method.
     In chapter 6, parameterized shape optimization method is extended to composite material design. For composite material with periodical cell structure, the material property can be improved by means optimization the shape of cell structure. Homogenization method for computing the composite material property is present. Implementation of parameterized shape optimization for cell structure is outlined.
     In the last chapter, the main contributions of the dissertation are summarized and the further works are suggested.
     In appendix A, functionality and system command of POSHAPE are listed.
     The research work is part of co-direction of doctorate thesis project between Universite de Reims Champagne Ardenne and Dalian University of Technology. The Ph.D. dissertation presentation was held on Dec. 2006 and accessed the doctor degree of Universite de Reims Champagne Ardenne.
引文
[1]程耿东.工程结构优化设计基础.北京:水利电力出版社.1984
    [2]顾元宪.计算机辅助设计及其软件设计方法.北京:科学普及出版社.1992
    [3]Eschenauer H A,Olhoff N.Topology optimization of continuum structures:A review.Applied Mechanics Reviews.2001,54(4):331-390.
    [4]Bakhtiary N.A new approach for sizing,shape and topology optimization.1996 SAE International Congress and Exposition.Detroit,Michigan USA.Feb.26-29.
    [5]Haflka R T,Grandhi RV.Structural shape optimization - a survey.Computer Methods in Applied Mechanics and Engineering,1986,57:91-106.
    [6]Ding Y L.Shape optimization of structures:a literature survey.Computer Methods in Applied Mechanics and Engineering,1986,24(6):985-1004.
    [7]Samareh J A.A novel shape parameterization approach.AIAA.NASA/TM-1999-209116.
    [8]Imam M H.Three-dimensional shape optimization.International Journal of Numerical Method in Engineering,1982,18:661-673.
    [9]Bennett J A.Botkin M.E.Structural shape optimization with geometric description and adaptive mesh refinement.AIAA,1985,23(3):458-464.
    [10]Kim N H,Chang Y M.Eulerian shape design sensitivity analysis and optimization with a fixed grid.Computer Methods in Applied Mechanics and Engineering,2005,194:3291-3314.
    [11]Li Q,Steveo G P,Querin O M et al.Shape and topology design for heat conduction by evolutionary structural optimization.Int.J of Heat and Mass Transfer,1999,42:3361-3371.
    [12]王资源.黄力平等.参数化、变量化技术的发展与研究.广西民族学院学报(自然科学版),1999,5(2):116-118.
    [13]Monedero J.Parametric design:a review and some experiences.Automation in Construction,2000,9:369-377.
    [14]Chang K H,Silva J.Capturing design intents for CAD-based multidisciplinary design optimization.Proceeding of the 4th World Congress of Structural and Muitiidisciplinary Optimization,Dalian,China.2001:408-409.
    [15]陈德人.参数化设计模型与方法.浙江大学学报(自然科学版),1995,29(2):170-182.
    [16]Sigmund O,Torquato S.Design of materials with extreme thermal expansion using a three-phase topology optimization method.Journal of the mechanics and physics of solids,1997,45(6):1037-1067.
    [17]Kikuchi N,Nishiwaki S,et al.Design optimization method for compliant mechanisms and materials microstructure.Computer methods in applied mechanics and engineering,1998,151:401-417.
    [18]Fish J,Ghouali A.Multisale analytical sensitivity analysis for composite materials.International journal for numerical methods in engineering,2001,50:1501-1520.
    [19]Rodrigues H,Guedes J M,Bendsoe M P.Hierarchical optimization of material and structure.Structural and multidisciplinary optimization,2002,24:1-10.
    [20]Yuan Z,Wu C C.Homogenization-based topology design for pure torsion of composite shafts.ACTA mechanica sinica,2003,19(3):241-246.
    [21]Chen B C,Silva E,Kikhchi N.Advances in computational design and optimization with application to MEMS.International journal for numerical methods in engineering,2001,52:23-62.
    [22]刘书田,郑新广,程耿东.特定弹性性能材料的细观结构设计优化.复合材料学报,2001,18(2):124-127.
    [23]刘书田,曹先凡.零膨胀材料设计与模拟验证.复合材料学报,2005,22(1):126-132.
    [24]Barbarosie C.Shape optimization of periodic structures.Computational mechanics,2003,30:235-246.
    [25]Kaminski M.Sensitivity analysis of homogenized characteristics for some elastic composites.Computer methods in applied mechanics and engineering,2003,192:1973-2005.
    [26]Zhu F,Chen K Z,Feng X A.Development of a CAD modeling system for components made of multi heterogeneous materials.Materials&Design,2005,26:113-126.
    [27]Lee K.著.袁清珂等译.CAD/CAM/CAE系统原理.北京:电子工业出版社.2006.
    [28]谭建荣,陆国栋等著.CAD方法与技术.北京:科学出版社.2005.
    [29]孙家广编著.计算机辅助设计技术基础.北京:清华大学出版社.2000.
    [30]Daniel T.Banach.MDT 4中文版应用技术.2001.北京:机械工业出版社.
    [31]张冶,洪雪等编著.Unigraphics NX 参数化设计实体教程.北京:清华大学出版社.2003.
    [32]MDT 6.0 User's Help.Autodesk.
    [33]戴磊.参数化有限元建模及动态修改:(硕士学位论文).大连:大连理工大学,2000.
    [34]隋晓峰.基于几何造型的参数化有限元建模和曲面网格生成方法及实现:(硕士学位论文).大连:大连理工大学,2002.
    [35]杜秀云.考虑结构非线性特征的参数化形状优化方法:(硕士学位论文).大连:大连理工大学,2003.
    [36]Samareh J A.Geometry and grid/mesh generation issues for CFD and CSM shape optimization.Optimization and Engineering,2005,6(1):21-32.
    [37]纪福森,吴铁鹰等.参数化CAD/CAE集成与应用.机电工程技术,2006,35(6):86-88.
    [38]Chung T.T.,Lee C.C.,et al.Optimum design of a 1×2 mechanical optical switch.Structure Multidisciplinary Optimization,2006,31(3):229-240.
    [39]Ledermann C,Hanske C,et al.Associative parametric CAE methods in the aircraft pre-design.Aerospace Science and Technology,2005,9(7):641-651.
    [40]黄高文.基于CAD/CAE集成的面天线参数化有限元建模:(硕士学位论文).西安:西安电子科技大学.2005.
    [41]陈伟,何飞等.基于结构参数化的有限元分析方法.机械科学与技术.2003.22(6):948-950.
    [42]关振群,杜秀云,张洪武等,考虑结构非线性特征的参数化形状优化方法.机械强度,2003,25(4),420-425.
    [43]宋超.非结构化自适应有限元网格生成的AFT方法:(博士学位论文).大连:大连理工大学.2004.
    [44]Rickettd R E,Zienkiewicz OC.New directions in optimum structural design.John Wiley & Sons,1984:139-166.
    [45]顾元宪,程耿东.有限元-优化-CAD集成一体的微机软件系统MCADS.计算结构力学及其应用,1990,7(1):71-81.
    [46]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用.计算结构力学及其应用,1993.10(3):321-335.
    [47]Altair Computing.OptiStruct User's Guide.
    [48]MaeNeal Schwendler Corporation.MSC/NASTRAN Design Sensitivity andOptimization,Version 68.1994.
    [50]赵国忠,顾元宪等.不同截面梁构件的刚度和稳定性优化设计.工程力学,2002,19(3):44-49.
    [51]顾元宪,赵国忠等.复合材料层合板屈曲稳定性优化设计及其灵敏度计算方法.复合材料学报,2002,19(4):81-85.
    [52]赵国忠,高剑等.基于分层设计变量的复合材料层合板优化设计及灵敏度分析.工程力学,2003,20(2):60-65.
    [53]顾元宪,赵红兵等.热-应力耦合结构灵敏度分析方法.力学学报,2001,33(5):686-691.
    [54]顾元宪,亢战等.卫星承力筒复合材料结构的优化设计.宇航学报,2003,24(1):88-91.
    [55]Gu Y X,Zhang H Wet al.New generation software of structural analysis and design optimization -JIFEX.Int.J.Struct.Eng.Mech,1999,7(6):589-599.
    [56]王剑,刘敬辉等.新型铁道双层集装箱运输车的车体结构优化.铁道机车车辆,2004,24(2):30-33.
    [57]赵国忠,顾元宪等.压电智能桁架的灵敏度分析与优化设计.固体力学学报,2002,23(2):150-158.
    [58]Mattheck C.Design and Growth Rule for Biological Structures and their Application in Engineering.Fatigue Fract Eng Mater Struct,1990,13(5):535-550.
    [59]Baumgartner A,Harzheim L et al.SKO(Soft Kill Option):TheBiological Way to Find an Optimum Structure Topology.Int.J.Fatigue,1990,14(6):387-393.
    [60]Harzheim L,Graf G.Optimization of Engineering Components with the SKOMethod.Proceedings of the Ninth International Conference on Vehicle StructuralMechanics and CAE,1995 April 4.-6.,Troy Michigan:235-243.
    [61]Harzheim L,Graf G.Shape200:A Program to Create Basis Vectors for Shape Optimization Using Solution 200 of MSC/NASTRAN.Proceedings of the X InternationalConference on Vehicle Structural Mechanics and CAE,April 8.-10.1997.Troy Michigan.
    [62]Rasna Corporation.Structure and Thermal User's Guide,Release.1994.
    [63]Townsend J C,Samareh J A.Integration of a CAD system into an MDO framework.NASA/TM-1998-207672.
    [64]Hardee E,Chang K Het al.A CAD-based design parameterization for shape optimization of elastic solids.Advances in Engineering Software,1999,30:185-199.
    [65]李晓春,李晗编著.MDT 6.0三维造型技术与实例精解.北京:清华大学出版社.2003.
    [66]Autodesk Inc.ObjeetARX Developer's Guide.USA:1997,3.
    [67]江思敏,曹默等.AutoCAD2000开发工具.北京:人民邮电出版社.1999.1.
    [68]宋延行,王川等.ObjeetARX实用指南.北京:人民邮电出版社,1999.1.
    [69]宋超.任意三维实体四面体单元网格自动剖分方法及程序实现:(硕士学位论文).大连:大连理工大学.2001.
    [70]Botkin M E.Shape design modeling using fully automatic three dimension mesh generation.Finite Element in Analysis and Design,1991,10:165-181.
    [71]Gu Y X,Zhang H W,et al.New generation software of structural analysis and design optimization-JIFEX.Structural Engineering and Mechanics,1999,7(6):589-599.
    [72]钟万勰.一个多用途的结构分析程序JIGFEX.大连理工大学学报,1977,16(3):19-42,16(4):14-35.
    [73]钟万勰.计算结构力学微机程序设计.北京:水利水电出版社,1986.
    [74]顾元宪.计算机辅助结构优化设计的研究与MCADS系统的开发:(博士学位论文).大连:大连理工大学,1988.
    [75]Chang K H,Bryant Ⅰ Ⅴ.Concurrent design and manufacturing of aircraft torque tubes.Journal of Materials Processing Technology,2004,150:151-162.
    [76]Marcin K.Homogenized properties of periodic n-component composites.International Journal of Engineering Science,2000,38:405-427.
    [77]Sanchez-Palencia E.Non-homogenous media and vibration theory.Lect Notes Phys,1980,16(1):127-128.
    [78]Ghosh S,Lee K,Moorthy S.Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method.Intemational journal of solids and structures,1995,32(1):27-62.
    [79]Oden J T,Vemaganti K.Adaptive hierarchical modeling of heterogeneous structures.Physica D,1999,133:404-415.
    [80]Oden J T,Vemaganti K,Moes N.Hierarchical modeling of heterogeneous solids.Computer methods in applied mechanics and engineering,1999,172:3-25.
    [81]Terada K,Hod M,et al.Simulation of the multi-scale convergence in computational homogenization approaches.International journal of solids and structures,2000,37:2285-2311.
    [82]Terada K,Kikuchi N.A class of general algorithms for multi-scale analyses of heterogeneous media.Computer methods in applied mechanics and engineering,2001,190:5427-5464.
    [83]Kouznetsova V,Geers M,et al.Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme.International journal for numerical methods in engineering,2002,54:1235-1260.
    [84]Cao L Q,Cui J Z,et al.Multiscale finite element method for subdivided periodic eleastic tructures of composite materials.Journal of computational mathematics,2001,19(2):205-212.
    [85]曹礼群.材料物性的多尺度关联与数值模拟.世界科技研究与发展,2002,24(6):23-30.
    [86]刘书田.复合材料热弹性分析及优化设计:(博士学位论文).大连:大连理工大学.1996.
    [87]Polisevski D.Optimal quasi-periodic design for a heat transfer problem.International Jjournal of Engineering Science.2000.38(2):267-274.
    [88]顾元宪,赵国忠等.组合结构屈曲稳定性优化设计与灵敏度分析.宇航学报,2000,21(3):127-132.
    [89]Parametric Technology Corporation.Pro/MECHANICA Design Study Reference.Release 17.1996.
    [90]关振群,顾元宪等.三维CAD/CAE一体化的参数化动态有限元建模.计算机集成制造系统-CIMS,2003,9(12):1112-1119.
    [91] Samareh J A. Geometry and Grid/Mesh Generation Issues for CFD and CSM Shape Optimization. Optimization and Engineering, 2005,6:21-32.
    
    [92] Samareh J A. Status and Future of Geometry Modeling and Grid Generation for Design and Optimization. Journal of Aircraft, 1999,36(7):97-104.
    
    [93] Samareh J A. Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization. A1AA Journal, 2001,39(5):877-884.
    
    [94] Pedersen P, Laursen C L. Design for minimum stress concentration by finite elements and linear programming, J. Structural Mech, 1983,10(4):375-391.
    
    [95] Prasad B, Emerson J F. Optimal structural remodeling of multi-objective systems. Computers & Structures, 1984,18(4): 619-628.
    
    [96] Zienkiewicz O C, Campbell J S. Shape optimization and sequential linear programming, in: Gallagher R.H. and Zienkiewicz O.C., eds. Optimal Structrual Design, New York: Wiley. 1973.
    
    [97] Kodiyalam S, Kumar V, et al. Constructive solid geometry approach to three-dimensional structural shape optimization. AIAA, 1992,30(5):1408-1415.
    
    [98] Shephard M S. Approaches to the automatic generation and control of finite element meshes. Applied Mechanics Review, 1988,41 (4): 169-184.
    
    [99] Rasmussen J. Development of the interactive structural shape optimization system CAOS: (Ph.D. Thesis). Danish: Aalborg University. 1989.
    
    [100] Rasmussen J. The structural optimization system CAOS. Structural Optimization, 1990,2:109-115.
    
    [101] Olhoff N, Bendsoe M P et al. On CAD-integrated structural topology and design optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89:259-279.
    
    [102] Lund E. Finite element based design sensitivity analysis and optimization: (Ph.D. Thesis). Danish: Aalborg University. 1994.
    
    [103] Choi K K, Chang K H. A study of design velocity field computation for shape optimal design. Finite Elements in Analysis and Design, 1994,15:317-341.
    
    [104] Finnigan P M, Kela A, et al. Geometry as a basis for finite element automation. Engineering Computers, 1989,5:147:160.
    
    [105] Kegl M. Shape optimal design of structures: an efficient shape representation concept. Int. J. Numer. Meth. Engng, 2000,49:1571-1588.
    
    [106] Braibant V, Fleury C. Shape optimal design using B-splines. Computer Methods in Applied Mechanics and Engineering, 1984,44:247-267.
    
    [107] Falk A, Barthold F J, et al. A hierarchical design concept for shape optimization based on the interaction of CAGD and FEM. Structural Optimization, 1999,18(22-23): 12-23.
    
    [108] Samareh J A. Multidisciplinary aerodynamic-structure shape optimization using deformation (MASSOUD). AIAA paper. 2000. Sept. 2000-4911.
    
    [109] Belegundu A D, Rajan S D. A shape optimization approach based on natural design variables and shape functions. Computer Methods in Applied Mechanics and Engineering, 1988,66:87-106.
    
    [110] Kodiyalam S, Vanderplaats G N, et al. Structural shape optimization with MSC/NASTRAN. Computer & Structures, 1991,40(4):821-829.
    
    [111] Yang R J. Shape sensitivity analysis and optimization using NASTRAN. .Mechanics of Structure and Machine, 1991, 19(3). 281-300.
    [112]Lindby T,Santos J L T.Shape optimization of three-dimensional shell structures with the shape parametrization of a CAD system.Structural Optimization,1999,18:126-133.
    [113]Yang R J,Botkin M E.A Modular Approach for Three-Dimensional Shape Optimization of Structures.AIAA Journal,1986,25(3):492-497.
    [114]Gates A A,Accorsi M L.Automatic shape optimization of three-dimensional shell structures with large shape changes.Computers & Strctures,1993,49(1):167-178.
    [115]Botkin M E,Bennett J A.Shape optimization of three-dimensional folded-plate structures.AIAA,1985,23(11):1804-1810.
    [116]Lindby T,Santos J L T.2-D and 3-D shape optimization using mesh velocities to integrate analytical sensitivities with associative CAD.Structural Optimization,1997,13:213-222.
    [117]Michell G M.The Limits of Economy of Materiala in Frame Structures.Philosophical Magazine,Series 6,1904,8(47):589-597.
    [118]Hillyard R C,Braid I C.Analysis of dimensions and tolerances in computer-aided mechanical design.CAD,1978,10(3):161-166.
    [119]Light R,Gossard D C.Variational geometry:a new method for modifying part geometry for finite element analysis.Computer and Structures.1983.7:903-909.
    [120]杜家政,隋允康等.基于MSC PCL的三心底结构形状优化设计.计算机辅助工程.2006.9(增刊).15:450-451.
    [121]Cheng G D.Introduction to Structural Optimization Theory,Methods and Solutions.Technical University of Denmark.1992.
    [122]Gabbert U,Wehner P.The product data model as a pool for CAD-FEA data.Engineering and Computers,1998,14:115-122.
    [123]Betting B,Bapat V.Integrating multiple information representations in a single CAD/CAM/CAE environment.Engineering with Computers,2006,22:11-23.
    [124]Samareh J A.Novel multidisciplinary shape parameterization approach.Journal of Aircraft,2001,38(6):1015-1024.
    [125]Pickett R M,Rubinstein M F,Nelson R B.Automated structural synthesis using a reduced number of design coordinate.AIAA Journal,1973,11(4):494-498.
    [126]Hicks R M,Henne P A.Wing design by numerical optimization.Journal of Aircraft,1978,15(7):407-412.
    [127]Bloor M I G,Wilson M J.Efficient parameterization of generic aircraft geometry.Journal of Aircraft,1995,32(6):1269-1275.
    [128]Norato J,Haber R,Tortorelli D,Bendsoe M P.A geometry projection method for shape optimization.International Journal for Numerical Methods in Engineering,2004,60:2289-2312.
    [128]Behrooz H,Ernest H.Homogenization and structural topology optimization:theory,protice and software.Springer.1999.Great Britain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700