热轧圆钢表面缺陷视觉在线检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧圆钢表面缺陷检测技术是提高企业产品竞争力、改进生产工艺的关键技术之一,而传统的表面缺陷无损检测技术难以适应高速热轧圆钢生产线需求,为了能够实时在线检测表面缺陷,基于机器视觉的表面缺陷检测技术应运而生,该技术检测速度快、准确率高,而且能够重现产品表面质量情况,因此很多公司企业投入巨资对其进行研究。目前,基于机器视觉的热轧圆钢表面缺陷检测技术在欧美发展的较为成熟,并且已有相关检测系统投入运行,而国内在这方面的研究刚处于起步阶段,与国外差距较大,这在一定程度上影响了我国热轧圆钢产品的市场竞争力,因而此项技术急需发展研究。
     首先,开展硬件系统研究。设计了热轧圆钢表面缺陷检测系统总体方案,对相机的个数选择进行了分析,设计了光照系统;根据纵向分辨率检测要求选择了相机的类型和具体型号,根据横向分辨率要求确定了镜头的焦距,并选择出合适的镜头型号,比较了不同光源的特点,选择了适合本课题的光源类型,通过景深的计算验证了所选择硬件的正确性;介绍了图像采集装置,并进行了图像采集实验,分析了各个参数对图像采集的影响,列举了不同类型的圆钢表面图像;分析了热轧圆钢表面图像成像结果,总结了影响圆钢表面成像的三个因素;最后对采集的圆钢表面原始图像特征进行了定性和定量分析。
     其次,提出了改进的局部边界搜索算法用于进行圆钢图像的提取,去除了采集的原始图像中存在的无用背景信息,仅保留了圆钢图像信息,减少了图像处理数据,避免了圆钢边界被误检为缺陷的情况;分析了圆钢表面图像中存在的噪声类型,建立了图像退化模型和噪声模型,得出图像中存在的噪声主要为高斯噪声;比较了不同滤波算法对圆钢表面图像的降噪效果,得出最适合本课题的滤波方法;利用理想低通滤波器进行噪声滤除,比较了矩形滤波器和圆形滤波器的降噪效果,最终确定了矩形滤波器滤波算法。
     然后,分析了凹坑缺陷在图像中的表现特征,得出利用列像素检测凹坑缺陷更为有效;提出基于三角函数和韦伯对比度的凹坑检测改进算法,讨论了图像灰度值的修正方法、正弦核函数周期的选择以及阈值的选取问题,得到了较好的检测效果,但是算法受凹坑缺陷尺寸大小限制;提出了基于下包络韦伯对比度的凹坑缺陷检测算法,介绍了韦伯定律及其在视觉中的应用,引入了下包络、韦伯对比度和下包络韦伯对比度的概念,然后详细阐述了具体的检测算法,仿真实验结果表明该算法对于热轧圆钢表面凹坑缺陷具有非常高的检出率并且不受缺陷尺寸大小的影响。
     提出基于局部环形对比度的热轧圆钢表面缺陷实时检测算法,该算法可以检测热轧圆钢表面产生的凹坑、刮伤和耳子等常见缺陷,并且具有较高的检出率和低误检率。首先分析这些缺陷在图像中表现出的共同特征,即缺陷所在处与局部背景图像之间存在较大的灰度对比度,这是该算法的检测依据,然后引入了局部环形背景和局部环形对比度的概念,并且利用已有的图像数据得出检测阈值与局部环形背景灰度均值之间的关系,使得阈值具有自适应性,检测结果更为准确,最后详细介绍了算法的具体实施过程,并且进行实验仿真,实时性测试实验表明该算法能够保证热轧圆钢表面缺陷的在线检测。
     最后,为了测试所研究检测算法在真实热轧圆钢现场的应用效果,对前面提出的缺陷检测算法进行了编程实现,嵌入到线阵相机里检验效果。介绍了软件系统的整体框架和程序界面,分析了进行相机二次开发所做的主要内容;为了验证算法的有效性,即嵌入到相机的检测算法实时检测效果是否与实验室仿真结果一致,首先在车间磨床上进行了离线测试,即将一段圆钢成品放置于磨床上,使其来回纵向运动模拟圆钢轧制时的情形,测试结果表明二次开发后的线阵相机检测结果与算法在实验室的仿真结果一致,因此算法可行,并且讨论了不同光强对于图像采集质量的影响;然后将该系统应用于热轧圆钢现场进行在线测试,结果表明所研制的表面缺陷检测系统可以有效的检出圆钢轧制过程中产生的常见缺陷,并且实时性较好,可以进行工业化应用。
The detection technology for hot rolled steel bar surface defects is one of the key technologies to increase product competence and improve production process. However, traditional non-destructive testing technology for surface defects is hard to satisfy the requirement of high speed detection for hot steel bar. In order to detect surface defects on-line, the detection technology of surface defects based on machine vision appeared. This technology has high speed detection and accuracy. Besides, it can reappear the situation of production surface quality. So many companies make a huge investment to research this technology. So far, the detection technology for hot rolled steel bar surface defects based on machine vision is well-established in developed countries, and they have had relative detection system being in use. However, the research in this field of our country just started and has large gaps with developed country. This affects the market competitiveness of our country's hot steel bar product to some degree. So the develop and research of this technology is in urgent need.
     Firstly, the hardware system was researched. The whole layout scheme for steel bar surface defects detection was designed. The selection of camera number was analysized. Then the light system was designed. According to the longitudinal resolution requirement, the type and specific model of camera was selected. The focus of lens was calculated according to the lateral resolution and the specific model was selected. Afterwards, we compared the characteristics of different light sources and chose appropriate light source type. The calculation of depth of field verified that the selected hardwares were correct. Then the imaging equipment was introduced and imaging experiment was carried out. The parameters'effect to imaging was analized. Then different types of steel bar surface images were listed. Besides, the imaging result of hot rolled steel bar surface images was analyzed. We concluded three factors of affecting the imaging of steel bar surface. Lastly, the characteristics of steel bar surface images were analized qualitatively and quantitatively.
     To extract steel bar surface image, we proposed modified local border search algorithm. This removes useless background information existed in original images and retains steel bar information. It reduces image processing data and avoids the steel bar border being considered to defects. We analyzed the type of noise in steel bar surface images and built image degradation model. The noise in images is mainly gauss noise. The denoise effect of different filter algorithm was compared, and we obtained the most appropriate method for this project. The ideal low pass filter was used to denoise. Through the denoise effect comparision of rectangle filter and circular filter, we concluded that the rectangle filter was the best.
     Afterwards, the characteristic of pits in images is analyzed and we obtained that it's more effective to use column pixels of images. We proposed a detection algorithm for pit defects based on trigonometric function and Weber contrast. Then the modified method for gray level of image, the cycle selection of sine kernel function and threshold selection were discussed. The detection result is good, but the algorithm is limited to the size of pit defects, so a pits defects detection algorithm based on lower envelope Weber contrast (LEWC) was proposed. Then the Weber's law and its application were introduced. Besides, we led into the concept of lower envelope Weber contrast and introduced detailed detection algorithm. The simulation experiments indicated that this algorithm is very effective to detect surface pits defects of hot rolled steel bar and it is not affected by the size of defects.
     A hot rolled steel bar surface defects detection algorithm based on local annular contrast (LAC) was proposed. This algorithm can detect some common defects occurred on hot rolled steel bar. such as pits, scratches and overfills. Firstly, the common characteristic of these defects was analyzed. That is there is big gray level contrast between the defects and local background image. This is the foundation of the algorithm. Then the concepts of local annular background and local annular contrast were introduced, and the relationship between detection threshold and gray mean value of local annular background was obtained. This make the threshold adaptable and the detection result more accurate. Finally, the detailed algorithm process was introduced and we did experiment simulation. The real time test indicated that the algorithm can guarantee the on-line surface defects detection for hot rolled steel bar.
     At last, In order to test the effect of the proposed algorithm in actual hot rolling line, we programmed the defects detection algorithm and put it into the linear camera. The overall frame and interface of the software system were introduced. The main contents for the camera re-development were analized. To verify the effect of the algorithm, we did off-line test on grinder to judge whether the detection results with the algorithm in camera and experiment simulation are the same. One piece of steel bar product was put on grinder and made do cyclic ground motion to simulate the steel bar rolled on hot rolling line. The result indicated that the effect of the algorithm in camera was the same with the experiment simulation, so the algorithm is workable. The effect of different light strength to the quality of images was discussed. Then the detection system was put on hot rolling line to make on-line test. The outcome demonstrated that the surface defects detection system could detect the usual defects produced on steel bar. Besides, the reali-time was good, and it can be employed in industrial application.
引文
[1]Yilmaz M. Failures During the Production and Usage of Steel Wires[J]. Journal of Materials Processing Technology.2006,171 (2):232-239.
    [2]Huang H, Gutchess D, Chang TS. Imaging-Based in-Line Surface Defect Inspection for Bar Rolling[C]. The Iron & Steel Technology Conference and Exposition Nashville, TN, USA,2004. 1-12.
    [3]Vazdirvanidis A, Pantazopoulos G, Louvaris A. Failure Analysis of a Hardened and Tempered Structural Steel (42crmo4) Bar for Automotive Applications[J]. Engineering Failure Analysis. 2009(16):1033-1038.
    [4]Kim H Y, Kwon H C, Lee H W, et al. Processing Map Approach for Surface Defect Prediction in the Hot Bar Rolling[J]. Journal of Materials Processing Technology.2008,205 (1-3):70-80.
    [5]John W, Morris. Method and Apparatus for Real Time Defect Inspection of Metal at Elevated Temperature. United States,5654977,1997-08-05.
    [6]Choi S H, Bae H M, Hwang H W, et al. Device and Method for Optically Detecting Surface Defect of Round Wire Rod. United States, US20100246974 A1,2010-09-30.
    [7]Chang T S, Gutchess D, Huang H. Apparatus and Method for Detecting Surface Defects on a Workpiece Such as a Rolled/Drawn Metal Bar. United States, US20080063426A1,2008-03-13.
    [8]张洪涛.钢板表面缺陷在线视觉检测系统关键技术研究[D].天津大学博士论文,2008:1-3.
    [9]Newman T S, Jain A K. A Survey of Automated Visual Inspection[J]. Computer Vision and Image Understanding.1995,61 (2):231-262.
    [10]刘贵民,马丽丽.无损检测技术[M].北京:国防工业出版社,2010.
    [11]郑金鑫,万志敏,杜星文,等.超声波对金属材料性能影响实验研究[J].实验力学.1998,13(4):492-496.
    [12]Sichaib M, Djelouah H, Nour A. Study of Shear Ultrasonic Waves Propagating in Materials under Static Uniaxial Loadings[J]. Strain.2011,47 (s2):134-143.
    [13]董祥林,陈金荣,简小刚.磁场对金属摩擦磨损影响的研究及展望[J].材料科学与工程.2000,18(1):116-120.
    [14]于秀丽,上官宝,张永振.直流磁场下正火45钢干滑动摩擦磨损实验研究[J].机械制造. 2010,48(548):76-78.
    [15]Paulmier D, Zaidi H, Bedri R. Steel Surface Modifications in Magnetized Sliding Contact[J]. Surface and Coatings Technology.1995,76-77:583-588.
    [16]Hayati S, Balaram J, Seraji H, et al. Remote Surface Inspection System[C]. IEEE International Conference on Robotics and Automation,1993.875-882.
    [17]Tang B, Kong J Y, Wang X D, et al. Surface Inspection System of Steel Strip Based on Machine Vision[C]. First International Workshop on Database Technology and Applications, Wuhan, Hubei, China,2009.359-362.
    [18]Changhyun P, SangChul W. An Automated Web Surface Inspection for Hot Wire Rod Using Undecimated Wavelet Transform and Support Vector Machine[C].35th Annual Conference of the IEEE Industrial Electronics Society, Porto, Portugal,2009.IEEE Computer Society,2009: 2411-2415.
    [19]Bradshaw M. The Application of Machine Vision to the Automated Inspection of Knitted Fabrics[J]. Mechatronics.1995,5 (2-3):233-243.
    [20]Zheng H, Kong L X, Nahavandi S. Automatic Inspection of Metallic Surface Defects Using Genetic Algorithms[J]. Journal of Materials Processing Technology.2002,125-126:427-433.
    [21]Guifang W, Hoonsung K, Seyoung J, et al. Design of Online Surface Inspection System of Hot Rolled Strips[C]. IEEE International Conference on Automation and Logistics,2008. 2291-2295.
    [22]Rodri S, Alvarez I, Garcia R, et al. Analysis of Block Matching Algorithms for the Application of Image Mosaicing to Online Surface Inspection of Steel Products[C]. IEEE International Conference on Imaging Systems and Techniques,2010.214-219.
    [23]Pernkopf F, O'Leary P. Image Acquisition Techniques for Automatic Visual Inspection of Metallic Surfaces[J]. NDT & E International.2003,36 (8):609-617.
    [24]Ceracki P, Reizig H J, Rudolphi U, et al. On-Line Surface Inspection of Hot Rolled Strip[J]. MPT International.2000(4):1-4.
    [25]Batchelor B, Hill D, Hodgson H. Automated Visual Inspection[M]. IFS/North-Holland, Amsterdam,1985.
    [26]Wang Y, Sun Y, Lv P, et al. Detection of Line Weld Defects Based on Multiple Thresholds and Support Vector MachinefJ]. NDT & E International.2008,41 (7):517-524.
    [27]Tolba A S, Khan H A, Raafat H M. Automated Visual Inspection of Flat Surface Products Using Feature Fusion[C]. IEEE International Symposium on Signal Processing and Information Technology,2009.160-165.
    [28]Han Y, Shi P. An Adaptive Level-Selecting Wavelet Transform for Texture Defect Detection[J]. Image and Vision Computing.2007,25:1239-1248.
    [29]尹玲.棒材超声波自动探伤系统的研制[D].重庆大学硕士论文,2006:2-4.
    [30]杨辰龙,周晓军,吴瑞明.棒材缺陷超声自动检测系统的研制[J].机床与液压.2005(9):112-113.
    [31]Vermani G. Damage Detection in Reinforcing Steel Bars Using Ultrasonic Wave Propagation [D]. Thapar University Master Thesis,2008:36-43.
    [32]Lundberg S E, Eriksson C. Ultra High Speed Rolling of Stainless Steel Wire Rod by Means of Interstand Tensions[J]. BHM.2005,150 (1):5-11.
    [33]ONO T, OOYAMA O. Advanced High Precision of Bar Inspection and Conditioning[J]. NIPPON STEEL TECHNICAL REPORT.2007(96):39-44.
    [34]林俊明.漏磁检测技术及发展现状研究[J].无损探伤.2006,30(1):1-6.
    [35]汪友生,徐小平,沈兰荪.铁磁材料的漏磁检测[J].电子测量与仪器学报.2000,14(3):45-48.
    [36]Pautz J F, Abend K. Automated Magnetic Particle Testing[J]. Materials Evaluation.1996,54 (9): 1004-1008.
    [37]美国无损学会.美国无损检测手册——渗透卷[M].上海:世界图书出版公司,1995.
    [38]Atas M, Yardimci Y, Temizel A. A New Approach to Aflatoxin Detection in Chili Pepper by Machine Vision[J]. Computers and Electronics in Agriculture.2012,87 (1):129-141.
    [39]Ko B C, Cheong K H, Nam J Y. Fire Detection Based on Vision Sensor and Support Vector Machines[J]. Fire Safety Journal.2009,44 (3):322-329.
    [40]Story D, Kacira M, Kubota C, et al. Lettuce Calcium Deficiency Detection with Machine Vision Computed Plant Features in Controlled Environments[J]. Computers and Electronics in Agriculture.2010,74 (2):238-243.
    [41]Malamas En, Petrakis Egm, Zervakis M, et al. A Survey on Industrial Vision Systems, Applications and Tools[J]. Image and Vision Computing.2003,21 (2):171-188.
    [42]Kopparapu S K. Lighting Design for Machine Vision Application[J]. Image and Vision Computing.2006,24 (7):720-726.
    [43]张广军.机器视觉[M].北京:科学出版社,2005.
    [44]Lin C, Jui T H, TzuChi W, et al. High Speed and High Accuracy Inspection of in-Tray Laser Ic Marking Using Line Scan CCD with a New Calibration Model[J]. Optics & Laser Technology. 2011,43(1):218-225.
    [45]Vacharanukul K, Mekid S. In-Process Dimensional Inspection Sensors[J]. Measurement.2005, 38 (3):204-218.
    [46]Yoneyama S, Morimoto Y, Fujigaki M, et al. Scanning Moire and Spatial-Offset Phase-Stepping for Surface Inspection of Structures[J]. Optics and Lasers in Engineering.2005,43 (6): 659-670.
    [47]鲍凯,王俊涛,吴东流.新兴的无损检测技术—红外热波成像检测[J].无损检测.2006,28(8):393-397.
    [48]Sugimoto T, Kawaguchi T. Development of a Surface Defect Inspection System Using Radiant Light from Steel Products in a Hot Rolling Line[J]. IEEE Transactions on Instrumentation and Measurement.1998,47 (2):409-416.
    [49]徐长航,陈国明,谢静.红外图像处理技术在金属表面缺陷检测中的应用[J].制造业自动化.2009,31(10):51-54.
    [50]胡亮.基于线阵CCD钢板表面缺陷在线检测系统的研究[J].计量学报.2005,26(3):
    [51]张子恕.影像式线棒材在线表面检测系统[J].轧钢.2009,26(3):46-48.
    [52]张海安.带钢表面缺陷的实时检测及分割定位研究[D].东北大学硕士论文,2006:10-12.
    [53]徐科,徐金梧,鹿守理,等.冷轧带钢表面自动监测系统的研究[J].钢铁.2000,35(10):63-66.
    [54](美)冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2005.9.
    [55]Guifang W, Haichao Z, Xiuming S, et al. A Bran-New Feature Extraction Method and Its Application to Surface Defect Recognition of Hot Rolled Strips[C]. IEEE International Conference on Automation and Logistics,2007.2069-2074.
    [56]Chun-Hung L, Ja-Ling W. Automatic Facial Feature Extraction by Genetic Algorithms[J]. IEEE Transactions on Image Processing.1999,8 (6):834-845.
    [57]Yazdchi M R, Mahyari A G, Nazeri A. Detection and Classification of Surface Defects of Cold Rolling Mill Steel Using Morphology and Neural Network[C]. International Conference on Computational Intelligence for Modelling Control & Automation,2008.1071-1076.
    [58]Christen R, Bergamini A. Automatic Flaw Detection in Nde Signals Using a Panel of Neural Networks[J]. NDT and E International.2006,39 (7):547-553.
    [59]Zhang J S, Li M X. Classification of De-Bond in Multi-Layered Steel-Rubber Adhesive Structure with Character of Dct Spectra by Artificial Neural Networks[J]. Acta Acustica.2001, 26 (4):349-354.
    [60]Pernkopf F. Detection of Surface Defects on Raw Steel Blocks Using Bayesian Network Classifiers[J]. Pattern Analysis and Applications.2004,7 (3):333-342.
    [61]Agarwal K, Shivpuri R, Zhu Y, et al. Process Knowledge Based Multi-Class Support Vector Classification (Pk-Msvm) Approach for Surface Defects in Hot Rolling[J]. Expert Systems with Applications.2011,38 (6):7251-7262.
    [62]Borselli A, Colla V, Vannucci M, et al. A Fuzzy Inference System Applied to Defect Detection in Flat Steel Production[C]. IEEE International Conference on Fuzzy Systems,2010.1-6.
    [63]Caleb-Solly P, Smith J E. Adaptive Surface Inspection Via Interactive Evolution[J]. Image and Vision Computing.2007,25 (7):1058-1072.
    [64]Wang Y M, Kang Y H, Wu X J. Application of Stft and Hos to Analyse Magnetostrictively Generated Pulse-Echo Signals of a Steel Pipe Defect[J]. NDT and E International.2006,39 (4): 289-292.
    [65]Wu X, Xu K, Xu J. Application of Undecimated Wavelet Transform to Surface Defect Detection of Hot Rolled Steel Plates[C]. Congress on Image and Signal Processing,2008.528-532.
    [66]Chen P, Yang Y, Chang L. Automated Bridge Coating Defect Recognition Using Adaptive Ellipse Approach[J]. Automation in Construction.2009,18 (5):632-643.
    [67]Kim S C, Kang T J. Automated Defect Detection System Using Wavelet Packet Frame and Gaussian Mixture Model [J]. J. Opt. Soc. Am. A.2006,23:2690-2691.
    [68]Sangwook L, LuhMaan C, Miroslaw S. Automated Recognition of Surface Defects Using Digital Color Image Processing[J]. Automation in Construction.2006,15 (4):540-549.
    [69]Tsai D M, Huang T Y. Automated Surface Inspection for Statistical Textures[J]. Image and Vision Computing.2003,21 (4):307-323.
    [70]Pil Y J, SungHoo C, JongWook K, et al. Automatic Detection of Cracks in Raw Steel Block Using Gabor Filter Optimized by Univariate Dynamic Encoding Algorithm for Searches (Udeas)[J]. NDT & E International.2009,42 (5):389-397.
    [71]DerBaau P, SsuHan C. Automatic Surface Inspection for Directional Textures Using Nonnegative Matrix Factorization[J]. The International Journal of Advanced Manufacturing Technology.2010,48 (5):671-689.
    [72]Keun O J, Giho J, Semin O, et al. Bridge Inspection Robot System with Machine Vision[J]. Automation in Construction.2009,18 (7):929-941.
    [73]R dSR, P CL, S SMH, et al. Pattern Recognition of Weld Defects Detected by Radiographic Test[J]. NDT & E International.2004,37 (6):461-470.
    [74]Siegmann P, MartinezAnton J C, E.Bernabeu. Static and Dynamic Detection of Axial Surface Defects on Metallic Wires by Conical Triple Laser Reflection[J]. Optics and Lasers in Engineering.2004,42 (2):203-218.
    [75]Jia H B, Murphey Y L, Shi J J, et al. An Intelligent Real-Time Vision System for Surface Defect Detection[C]. Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, United kingdom,2004.Institute of Electrical and Electronics Engineers Inc,2004: 239-242.
    [76]Yun J P, Park Y, Seo B, et al. Development of Real-Time Defect Detection Algorithm for High-Speed Steel Bar in Coil(Bic)[C]. SICE-ICASE International Joint Conference, Bexco, Busan, Korea,2006.2495-2498.
    [77]Li J, Shi J J, Chang T S. On-Line Seam Detection in Rolling Processes Using Snake Projection and Discrete Wavelet Transform[J]. Journal of Manufacturing Science and Engineering.2007, 129 (5):926-933.
    [78]Choi S H, Yun J P, Seo B, et al. Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil[C]. Proceedings of World Academy of Science, Engineering and Technology, Venice, Italy,2007.66-70.
    [79]Yun J P, Choi S H, Seo B, et al. Real-Time Vision-Based Defect Inspection for High-Speed Steel Products[J]. Optical Engineering.2008,47 (7):077204/1-8.
    [80]Liu Y C, Hsu Y L, Sun Y N, et al. A Computer Vision System for Automatic Steel Surface Inspection[C]. Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, TaiChung, Taiwan,2010.1667-1670.
    [81]Yun J P, Jeon Y J, Choi Dc, et al. Real-Time Defect Detection of Steel Wire Rods Using Wavelet Filters Optimized by Univariate Dynamic Encoding Algorithm for Searches[J]. J. Opt. Soc. Am. A.2012,29 (5):797-807.
    [82]Maenpaa T, Turtinen M, Pietikainen M. Real-Time Surface Inspection by Texture[J]. Real-Time Imaging.2003,9 (5):289-296.
    [83]Liu W, Yan Y, Li J, et al. Automated on-Line Fast Detection for Surface Defect of Steel Strip Based on Multivariate Discriminant Function[C]. Second International Symposium on Intelligent Information Technology Application,2008.493-497.
    [84]Yang S, He Y, Wang Z, et al. A Method of Steel Strip Image Segmentation Based on Local Gray Information[C]. IEEE International Conference on Industrial Technology,2008.1-4.
    [85]Cong J, Yan Y, Zhang H, et al. Real-Time Surface Defects Inspection of Steel Strip Based on Difference Image[C]. International Symposium on Photoelectronic Detection and Imaging, Beijing, China,2007.SPIE,2007:1-9.
    [86]何永辉,王康健,石桂芬.基于机器视觉的高速带钢孔洞检测系统[J].应用光学.2007,28(3):345-349.
    [87]胡亮.线阵CCD实现钢板表面缺陷在线检测关键技术及其应用研究[D].天津大学博士论文,2005:8-13.
    [88]李炜.基于机器视觉的带钢表面缺陷检测系统[J].华中科技大学学报(自然科学版).2003,31(2):72-74.
    [89]王伟娜.带钢表面缺陷的快速检测方法研究[D].东北大学硕士论文,2006:40-45.
    [90]Pratt W K. Digital Image Processing[M]. New York:Wiley—Interscience,1978.
    [91]艾矫健,飞李,朱立新,等.一种基于线扫描技术的带钢表面检测系统[J].首钢科技.2007(5):50-54.
    [92]Berg Fvd, Denys M, Duysters S, et al. Conditions for through-Process Analysis of Product Surface in Steel Manufacture[J]. The International Journal of Advanced Manufacturing Technology.2006,30 (9):988-994.
    [93]罗忠,周剑春,欧阳建明.提高圆钢表面质量初探[J].湘钢科技.2003(4):15-16.
    [94]袁建路,李文兴,牛士珍,等.40cr棒材表面纵裂缺陷的研究[J].钢铁.2006,41(4):36-39.
    [95]李凯.减少热轧小型圆钢划痕缺陷的途径和措施[J].轧钢.2002,19(4):10-12.
    [96]徐芗明.热轧小圆钢耳子缺陷磨修工艺改进与实践[J].宝钢技术.2006(4):30-32.
    [97]贾云得.机器视觉[M].北京:科学出版社,2000.
    [98]李建美.标牌压印字符图像获取与处理中的关键技术研究[D].山东大学博士论文,2008:15-16.
    [99]张建川.红钢棒材表面缺陷图像采集与检测系统研究[D].山东大学博士论文,2012:19-28.
    [100]Helmers H, Schellenberg M. Cmos Vs. CCD Sensors in Speckle Interferometry[J]. Optics& Laser Technology.2003,35 (8):587-595.
    [101]Tabet M. Double Sampling Techniques for Cmos Image Sensors[D]. University of Waterloo Doctor Thesis,2002:13-19.
    [102]Stefanov K D. CCD Developments for Particle Colliders[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment.2006,565 (1):157-164.
    [103]Van Silfhout R G, Kachatkou A S. Fibre-Optic Coupling to High-Resolution CCD and Cmos Image Sensors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.2008,597 (2-3):266-269.
    [104]Magnan P. Detection of Visible Photons in CCD and Cmos:A Comparative View[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment.2003,504 (1-3):199-212.
    [105]Spiegel J V, Sevenhans J, Theuwissen A, et al. Study of Different Sensor Types for High Resolution Linear CCD-Imagers[J]. Sensors and Actuators.1984,6(1):51-64.
    [106]徐晓秋,秦玉芳,黄劫.线阵CCD图像特点及识别算法适应性研究[J].半导体光电.2006,27(2):196-199.
    [107]刘九庆,汤晓华,陈健.基于线阵CCD植物微根系图像监测分析系统[J].林业科学.2005,41(3):121-124.
    [108]危立娜,宫爱玲,程鹏.一种基于面阵CCD实时测量汞灯谱线波长的方法[J].激光杂志.2008,29(3):32-33.
    [109]王玉红,封维忠,王芳.基于面阵CCD的运动物体瞬时位置的研究[J].传感器技术.2008(20):186-188.
    [110]Zhang J C, Li W B, Lu C H. Design of Automatic Detection Device for Steel Bar Surface Defects[J]. Advanced Materials Research.2012,532-533:390-393.
    [111]周志敏,纪爱华.LED照明技术与工程应用[M].北京:中国电力出版社,2010.
    [112]卡意莱斯,马斯登.光源与照明[M].上海:复旦大学出版社,1992.
    [113]徐科,周茂贵,徐金梧,等.基于线型激光的热轧带钢表面在线检测系统[J].北京科技大学学报.2008,30(1):77-81.
    [114]胡亮,段发阶,丁克勤.钢板表面缺陷检测光学系统的设计[J].传感技术学报.2005,18(4):726-728.
    [115]Peng T, Zhao J, Li D. Theoretical Analysis of Hot-Image Effect in a High-Power Laser System with Cascaded Nonlinear Medium[J]. Optics and Lasers in Engineering.2011,49 (7): 972-978.
    [116]Li X, Lu C, Zhang J, et al. An Image Acquisition Method for Raised Characters Based on Laser Vision Technology [J]. Optics and Lasers in Engineering.2013,51 (2):148-158.
    [117]Golnabi H. Precise CCD Image Analysis for Planar Laser-Induced Fluorescence Experiments[J]. Optics & Laser Technology.2006,38 (3):152-161.
    [118]Banerjee S, Mukhopadhyay S, Rondoni L. Multi-Image Encryption Based on Synchronization of Chaotic Lasers and Iris Authentication[J]. Optics and Lasers in Engineering.2012,50 (7): 950-957.
    [119]Lu X Y, Hua T C, Wang Y P. Thermal Analysis of High Power Led Package with Heat Pipe Heat Sink[J]. Microelectronics Journal.2011,42 (11):1257-1262.
    [120]Krejcar O, Frischer R. Smart Intelligent Control of Current Source for High Power Led Diodes[J]. Microelectronics Journal.2013,44 (4):307-314.
    [121]Ahn J H. Implementation of an Led Tile Controller for High-Quality Image Display[J]. Displays.2013,34(1):17-26.
    [122]徐科,杨朝霖,周鹏,等.基于激光线光源的钢轨表面缺陷三维检测方法[J].机械工程学报.2010,46(8):1-5.
    [123]胜寒.影响景深的三个因素[J].老年教育(书画艺术).2011(4):64-65.
    [124]Johnson D.“超焦距摄影”让景深最大化[J].微电脑世界.2011(4):88-89.
    [125]Madder.让景深为我所用[J].影像视觉.2011(1):58-60.
    [126]徐赤,王志平,凌永祥,等.基于智能视觉系统的饮料瓶缺陷检测技术[J].自动化与仪器仪表.2011(5):163-167.
    [127]连瑞梅.简单光反射模型(Phong模型)的导出[J].科技广场.2007,9:254-256.
    [128]李长乐.冷轧带钢表面缺陷图像检测关键技术的研究[D].哈尔滨工业大学博士论文,2009:31-32.
    [129]Lin D, Lei C, Hung S. Computer-Aided Kidney Segmentation on Abdominal Ct Images[J]. IEEE Transactions on Information Technology in Biomedicine.2006,10 (1):59-65.
    [130]Weihong C, Zequn G, Zhiyi Z. An Improved Region Growing Algorithm for Image Segmentation[C]. International Conference on Computer Science and Software Engineering, 2008.93-96
    [131]Reynolds R G, Rolnick S R. Learning the Parameters for a Gradient-Based Approach to Image Segmentation Using Cultural Algorithms[C]. First International Symposium on Neural and Biological Systems,1995.240-247.
    [132]Yufei C, Zhicheng W, Weidong Z, et al. Liver Segmentation from Ct Images Based on Region Growing Method[C].3rd International Conference on Bioinformatics and Biomedical Engineering,2009.1-4.
    [133]Ozturk A, Arslan A. Texture Segmentation with Seeded Region Growing in Feature Space by Integrating Boundary Information[C]. IEEE 14th Conference on Signal Processing and Communications Applications 2006.1-4.
    [134]Udupa J K, Samarasekera S. Fuzzy Connectedness and Object Definition:Theory, Algorithms, and Applications in Image Segmentation[J]. Graphical Models and Image Processing.1996, 58 (3):246-261.
    [135]Ziou D, Tabbone S. Edge Detection Techniques-an Overview[J]. International Journal of Pattern Recognition and Image Analysis.1998,8:537-559.
    [136]Wu G F, Xu K, Xu J W. Local Border Search Algorithm and Its Application[J]. Computer applications.2005,25 (2):326-328.
    [137]Zhang H C, Wu G F, Sun X M, et al. A New Fast Border Search Algorithm and Its Expansion[C]. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China,2007.1886-1890.
    [138]Gonzalez R C, Woods R E. Digital Image Processing[M]. BEIJING:Publishing House of Electronics Industry,2011.
    [139]佟首峰,阮锦,郝志航.CCD图像传感器降噪技术的研究[J].光线精密工程.2000,8(2):140-145.
    [140]朱美华.改善数字图像质量的滤波方法研究[J].常州工学院学报.2006,19(6):31-34.
    [141]于亚军,谢可夫.改进型中值滤波和形态学组合降噪方法[J].计算机与现代化.2007,138(2):41-42.
    [142]陈木生.一种新的基于小波变换的图像去噪方法[J].光学技术.2006,32(5):796-798.
    [143]汤勃,孔建益,王兴东.带钢表面缺陷图像的小波阈值降噪研究[J].武汉科技大学学报.2010,33(1):38-42.
    [144]陈兵旗,孙明.Visual C++实用图像处理专业教程[M].北京:清华大学出版社,2004.
    [145]柳树,于忠党.一种改进的开关中值滤波算法[J].微计算机应用.2009,30(12):1-6.
    [146]Spurbeck M S, Schreier P J. Causal Wiener Filter Banks for Periodically Correlated Time Series[J]. Signal Processing.2007,87 (6):1179-1187.
    [147]Tang L, Wang H, Qi B. A New Fuzzy Logic Image De-Noising Algorithm Based on Gradient Detection[C]. Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007.103-107.
    [148]Adams M D, Xu D. Optimal Design of High-Performance Separable Wavelet Filter Banks for Image Coding[J]. Signal Processing.2010,90 (1):180-196.
    [149]飞思科技产品研发中心.Matlab 6.5%辅助小波分析与应用[M].北京:电子工业出版社,2003.
    [150]林玉荣,王强.基于一维经验模态分解的图像细节提取方法[J].吉林大学学报(工学版).2011,41(6):1766-1770.
    [151]Li C, Bovik A C, Wu X. Blind Image Quality Assessment Using a General Regression Neural Network[J]. IEEE Transactions on Neural Networks.2011,22 (5):793-799.
    [152]Han H S, Kim D O, Member S, et al. Structural Information-Based Image Quality Assessment Using Lu Factorization[J]. IEEE Transactions on Consumer Electronics.2009,55 (1): 165-171.
    [153]Narwaria M, Lin W. Objective Image Quality Assessment Based on Support Vector Regression[J]. IEEE Transactions on Neural Networks.2010,21 (3):515-519.
    [154]李会方,俞卞章.基于小波的多重分形图像去噪新算法[J].光学精密工程.2004,12(3):305-310.
    [155]金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的sar图像去噪[J].计算机学报.2007,30(3):491-497.
    [156]AK J. Fundamentals of Digital Signal Processing[M]. Englewood Cliffs, NJ:Prentice-Hall, 1989.
    [157]Shi W, Liu XM, Lu S F. An Estimation Approach of Wave Speed in Real Traffic Flow[J]. Chinese Journal of Theoretical and Applied Mechanics.2011,43 (5):850-855.
    [158]Chen J, Shan S G, Zhao G Y, et al. A Robust Descriptor Based on Weber's Law[C]. Proceedings of the IEEE conference on computer vision and pattern recognition,2008.
    [159]Shen J. On the Foundations of Vision Modeling I. Weber's Law and Weberized Tv Restoration[J]. Physica D:Nonlinear Phenomena.2003,175:241-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700