抑黄曲霉毒素的Hitwh-B05菌株有效成分的分离纯化与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素是一类由真菌代谢产生的有毒化合物,存在于土壤及花生、玉米等农作物中,不但对环境造成污染,人或动物若食用了受黄曲霉毒素污染的食品或饲料后会导致机体病变甚至死亡。因此,如何快速有效的抑制黄曲霉毒素对农作物、人畜及环境的污染是急需解决的问题,也是国内外学者研究的热点。本研究采用微生物源天然产物中具有抑黄曲霉毒素活性的物质作用于易感染农产品,提高农产品的防霉抑毒能力,从污染源头有效阻止霉菌侵染,减少毒素产生,为减少化学防腐剂对环境和人体的危害起到重要作用。
     以本实验室分离获得的具有自主知识产权的枯草芽孢杆菌新菌株Hitwh-B05为主要研究对象,对其代谢产生的抑黄曲霉毒素有效成分的发酵条件进行优化;从多角度建立抑黄曲霉毒素有效成分的分离方法;对分离得到的抑黄曲霉毒素有效成分进行鉴定;初步探讨其抑制黄曲霉毒素产生的机制。本研究在国内率先采用tip culture方法研究枯草芽孢杆菌Hitwh-B05的抑黄曲霉毒素能力,其代谢产生的抑黄曲霉毒素有效成分能够有效抑制寄生曲霉菌丝生长及黄曲霉毒素合成途径中第一个稳定、且呈现橘红色的前体物质—NorsolorinicAcid(NA)的产生,进而抑制了黄曲霉毒素的产生,并且对黄曲霉毒素的抑制具有广谱性。Tip culture方法特点是直观,操作简单,实验周期短,能够进行定量分析,研究结果更准确可靠。与以往使用的产黄曲霉毒素菌株相比,无毒害作用,减少了对实验人员的危害和对环境的污染。
     利用统计学方法优化了Hitwh-B05菌株抑黄曲霉毒素有效成分产生的条件,使其产量得到显著提高。抑黄曲霉毒素有效成分产生的适宜条件为温度35℃、培养时间6d、培养基初始pH值为6.00,培养基配方为硫酸锰0.04g/L、酵母粉10g/L、牛肉膏12g/L、葡萄糖40g/L、大豆蛋白胨10g/L、硫酸镁4g/L、磷酸氢二钾4g/L。使用优化培养基获得的Hitwh-B05菌株发酵上清液对NA积累的抑制率是优化前的GY液体培养基的2.98倍,对菌丝体生长的抑制率是优化前的GY液体培养基的5.21倍,菌株代谢产生的脂肽产量是优化前的GY液体培养基的2.16倍。
     大孔树脂富集法可作为实际生产应用中快速有效的分离枯草芽孢杆菌Hitwh-B05代谢产生的抑黄曲霉毒素有效成分的方法。筛选出大孔弱极性树脂DM130能够吸附大量抑黄曲霉毒素有效成分且不易吸收色素杂质,有效成分总回收率达到69.43%,色素去除率在96%以上。
     通过分子生物学手段鉴定Hitwh-B05菌株含有的脂肽编码基因合成的脂肽包括bacillomycin、bacilysin、ericin、fengycin、mersacidin、mycosubntilin、iturinA、surfactin和sublancin,表明Hitwh-B05菌株在适宜的条件下可产生的脂肽种类比较广泛。MALDI/TOF/MS分析Hitwh-B05菌株发酵上清液分离得到的抑黄曲霉毒素有效成分主要为脂肽类物质iturin A、bacillomycin D、surfactin和fengycin A。结果表明枯草芽孢杆菌Hitwh-B05产生的脂肽种类比较广泛,国内外相关研究报道中,通过MALDI/TOF/MS方法在同一菌株中同时检测到4种不同种类的脂肽鲜有报道,多数仅检测到了1~3种脂肽。
     Hitwh-B05菌株分离得到的抑黄曲霉毒素有效成分抗寄生曲霉侵染花生能力显著高于常用的化学合成防腐剂双乙酸钠(SDA),具有较大的应用潜力,为开发具有我国自主知识产权的、并能够有效抑制黄曲霉毒素合成的生物新农药提供理论和技术支持,使我国农产品的利用更加优质可靠。在抑黄曲霉毒素有效成分作用下,寄生曲霉孢子延迟萌发,菌丝体出现较多分节,干瘪、表面粗糙、失水严重,并且断裂成碎片。原因可能是在抑黄曲霉毒素有效成分作用下,寄生曲霉细胞膜中的磷脂双分子层产生孔隙,细胞膜结构被破坏而破裂,细胞无法正常吸收营养物质,导致菌丝体断裂,影响黄曲霉毒素合成。
Aflatoxins were a type of toxic compounds produced by fungus. They werefound in soil, peanuts, corn and other crops, not only causing pollution to theenvironment, but also causing the body disease of human or animal and even death.Therefore, it was a pressing problem about how to fast and effective inhibitaflatoxin pollution on crops, persons, livestock and the environment, as well asresearching hotspot of scholars at home and abroad. In this study, theantiaflatoxigenic effective components in microbial natural products were used toeffect on agricultural products, improving the ability of agricultural productsagainst mold and aflatoxin, which effectively prevented fungal infection andreduced the productin of aflatoxins, and played an important role in order to reducechemical preservative on the environment and human health.
     The Bacillus subtilis Hitwh-B05strain used in this study was isolated in thislaboratory and was a new Bacillus subtilis strain with independent intellectualproperty rights. The fermentation conditions of antiaflatoxigenic effctivecomponents were opmized. The separation methods were established from variousangles for the antiaflatoxigenic effective components. The antiaflatoxigeniceffective components separated were identified. The inhibitive mechanism wasdicussed. The tip culture method used in this study was the first time in China todetect the antiaflatoxigenic abilities of effective components produced byHitwh-B05. Its supernatant could inhibit the growth of Aspergillus parasiticus andthe production of Norsolorinic Acid (NA)—the first stable intermediate product ofaflatoxin, and then inhibited the production of aflatoxins. The inhibition had broadspectrum to aflatoxins. The merit of this method was direct-viewing, easy operating,short experiment period, could be controlled by quantificationally analyzing and theresults were more accurate and reliable. The Aspergillus parasiticus mutant strainused in this study was nonhazardous and reducing the harm of experiment personneland environmental pollution compared with the aflatoxigenic strain.
     The activities of antiaflatoxigenic effective components were obviouslyincreased through opmizing fermention conditions. The felicity conditions ofantiaflatoxigenic effective components produced were as follows:35℃,6d,pH6.00,MnSO40.04g/L, yeast powder10g/L, beef extract12g/L, glucose40g/L, soyapeptone10g/L, MgSO44g/L and K2HPO44g/L. Comparing the effects of optimalmedium and GY under the same condition, we found that the inhibitory rate of NAaccumulation using optimal medium was2.98-fold to using GY medium, and5.21-fold to the inhibitory rate of mycelia growth. The lipopeptides were2.16-fold to GY liquid medium.
     Macroporous resin enrichment method was the best method of separated theantiaflatoxigenic effective components from Bacillus subtilis Hitwh-B05in actualproduction application. Macroporous resins DM130could absorb amount ofantiaflatoxigenic effective components, but was not that easy to absorb pigmentimpurities. The recovery rate of peptide could reach69.43%, while the averageremove rate of pigment could reach above96%.
     By the detection of molecular biological techniques, lipopeptides bacillomycin,bacilysin, ericin, fengycin, mersacidin, mycosubntilin, iturin A, surfactin andsublancin were found in the fermentation broth of Hitwh-B05, which indicated thatthe lipopeptides produced by Hitwh-B05were with wide ranges. Analized byMALDI/TOF/MS showed that the type of antiaflatoxigenic effective componentswere lipopeptides: iturin A, bacillomycin D, surfactin and fengycin A. The types oflipopeptides were more than other majority Bacillus subtilis had been reported.There were fewer reports at home and abroad about four different types oflipopipties detected in one strain, and most of them were only detected one to threetypes of lipopeptides.
     The mould proof and inhibitory ability of active substances separated fromHitwh-B05on the inhibition of Aspergillus parasiticus infected peanuts was muchhigher than the commonly used chemical synthetic preservatives sodium diacetate,the substances had great applictional potential, applying theoretical and techinicalsupports for the developing of the new biological pesticides with China'sindependent intellectual property rights and inhibitory ability to aflatoxin synthesis,making the use of agricultural products in China more reliable and superior. TheAspergillus parasiticus spores germination time was delayed under the treatment ofantiaflatoxigenic effective components. The mycelia were dry, surface was rough,fluid loss seriously and some had broken into pieces. This demonstrated that underthe treatment of antiaflatoxigenic effective components, the plasma membrane ofthe Aspergillus parasiticus cells form pores and the struture of plasma membranewas damaged, leading to the disability of absorbing the nutrient substances normally,and influenced the synthesis of aflatoxin.
引文
[1]徐进,罗雪云.黄曲霉毒素生物合成的分子生物学[J].卫生研究.2003,32(6):628-632.
    [2] Joseph G S, Jayaprakasha G K, Selvi A T, et al. Antiaflatoxigenic andAntioxidant activities of Garcinia Extracts[J]. International Jorunal of FoodMicrobiology.2005,101:153-160.
    [3]马良,李培武,张文, et al.食用油中黄曲霉毒素B1免疫亲和检测技术研究[J].中国油脂.2007,32(4):72-76.
    [4] Dorner J W, Cole R J. Effect of Application of Nontoxigenic Strains ofAspergillus flavus and A. parasiticus on Subsequent Aflatoxincontaminationof Peanuts in Storage[J]. Journal of Stored Products Research.2002,38(4):329-339.
    [5]计成.饲料中霉菌毒素生物降解的研究进展[J].中国农业科学.2012,45(1):153-158.
    [6]张复宏,郭蕊,张吉国, et al.中国花生出口贸易发展态势评析[J].农业科技管理.2008,27(2):9-12.
    [7]俊胡,刘正坪,杨海清.向日葵菌核病生防细菌的初步筛选[J].北京农学院学报.2005,20(2):34-36.
    [8] Ding X, Li P, Bai Y, et al. Aflatoxin B1in Post-harvest Peanuts and DietaryRisk in China[J]. Food Control.2012,23:143-148.
    [9]苏志明.警惕黄曲霉毒素的危害[J].中国质量技术监督.2006,3:44-45.
    [10] Sudhakar P, Latha P, Sreenivasulu Y, et al. Inhibition of Aspergillus flavusColonization and Aflatoxin (AfB1) in Peanut by Methyleugenol[J]. IndianJournal of Experimental Biology.2009,47:63-67.
    [11] Wogab G N, Kensler T W, Groopman J D. Present and Future Directions ofTranslation Research on Aflatoxin and Hepatocellular Carcinoma[J]. FoodAdditives and Contaminants.2012,29(2):249-257.
    [12] Essigmann J M, Croy R G, Nadzan A M, et al. Structural Identification of theMajor DNA Adduct Formed by Aflatoxin B1in Vitro[J]. Proceedings of theNational Academy of Sciences USA.1977,74(5):1870-1874.
    [13]张艺兵,鲍蕾,褚庆华.农产品中真菌毒素的检测分析[M].北京:化学工业出版社,2006:6.
    [14] Wild C P, Turner P C. The Toxicology of Aflatoxins as a Basis for PublicHealth Decisions[J]. Mutagenesis.2002,17(6):471-481.
    [15] Oliveira C A d, Germano P M. Aflatoxins: Current Concepts on Mechanismsof Toxicity and their Involvement in the Etiology of HepatocellularCarcinoma[J]. Rev Saude Publica.1997,31(4):417-424.
    [16] Massey T E, Smith G B, Tam A S. Mechanisms of Aflatoxin B1LungTumorigenesis[J]. Experimental Lung Research.2000,26(8):673-683.
    [17] Dorner J W, Cole R J, Connick W J, et al. Evaluation of Biological ControlFormulation to Reduce Aflatoxin Contamination in Peanuts[J]. BiologicalControl.2003,26:318-324.
    [18] Prakash B, Singh P, Mishra P K, et al. Safety Assessment of Zanthoxylumalatum Roxb. Essential Oil, its Antifungal Antiaflatoxin, Antioxidant Activityand Efficacy as Antimicrobial in Preservation of Piper nigrum L. Fruits[J].International Journal of Food Microbiology.2012,153:183-191.
    [19] Bankole S A. Effect of Essemtial Oils From Two Nigerian Medicinal Plants(Azadirachta Indica and Morinda Lucida) on Growth and Aflatoxin B1Production in Maize by a Toxigenic Aspergillus flavus[J]. Letters in AppliedMicrobiology.1997,24:190-192.
    [20] Shukla R, Singh P, Prakash B, et al. Antifungal, Aflatoxin Inhibition andAntioxidant Activity of Callistemon lanceolatus(Sm.)Sweet Essential Oil andits Major Component1,8-Cineole against Fungal Isolates from ChickpeaSeeds[J]. Food Control.2012,25:27-33.
    [21] Vargas-Arispuro I, Reyes-Báez R, Rivera-Casta eda G, et al. AntifimgalLignans From the Creosotebush(Larrea tridentata)[J]. Industrial Crops andProducts.2005,22:101-107.
    [22] Motomura M, Toyomasu T, Mizuno K, et al. Purification and Characterizationof an Aflatoxin Degradation Enzyme from Pleurotus ostreatus[J].Microbiological Research.2003,158:237-242.
    [23] Zjalic S, Reverberi M, Ricelli A, et al. Trametes Versicolor: a Ppossible Toolfor Aflatoxin Control[J]. Internatinal Journal of Food Microbiology.2006,107(3):243-249.
    [24] Varga J, Péteri Z, Tábori K, et al. Degradation of Ochratoxin A and OtherMycotoxins by Rhizopus Isolates[J]. Internatinal Journal of FoodMicrobiology.2005,99(3):321-328.
    [25] Shantha T. Fungal Degradation of Aflatoxin B1[J]. Natural Toxins.1999,7(7):175-178.
    [26] Shetty G, Weng C C, Porter K L, et al. Spermatogonial Differentiation inJuvenile Spermatogonial Depletion (jsd) Mice with Androgen Receptor orFollicle-Stimulating Hormone Mutations[J]. Endocrinology.2006,147(7):3563–3570.
    [27] Molnar O, Schatzmayr G, Fuchs E, et al. Trichosporon mycotoxinivorans sp.nov., a New Yeast Species Useful in Biological Detoxification of VariousMycotoxins[J]. Systematic Applied Microbiology.2004,27(6):661-671.
    [28] Bluma R V, Etcheverry M G. Influenc of Bacillus spp. Isolated form MaizeAgroecpsystem on Growth and Aflatoxin B1, Production by Aspergillussection Flavi [J]. Pest Management Science.2006,62:242-251.
    [29] Down P F, Vega F E, Nelsen T C, et al. Dusky Sap Beetle Mediated Dispersalof Bacillus Subtilis to Inhibit Aspergillus Flavus and Aflatoxin Production inMaize Zea Mays L[J]. Biocontrol Science Technology.1998,8:221-235.
    [30] Teniola O D, Addo P A, Brost I M, et al. Degradation of Aflatoxin B1byCell-free Extracts of Rhodococcus erythropolis and Mycobacteriumfluoranthenivorans sp. nov. DSM44556(T)[J]. International Journal of FoodMicrobiology.2005,105(2):111-117.
    [31] Alberts J F, Engelbrecht Y, Steyn P S, et al. Biological Degradation ofAflatoxin B1by Rhodococcus Erythropolis Cultures[J]. International Journalof Food Microbiology.2006,109(1-2):121-126.
    [32]李俊霞,梁志宏,关舒, et al.黄曲霉毒素B1降解菌株的筛选及鉴定[J].中国农业科学.2008,41(5):1459-1463.
    [33]徐进,王慧君,记融, et al.植物乳杆菌ATCC8014对寄生曲霉NRRL2999孢子形态及生长与产毒影响的研究[J].卫生研究.2003,32:334-338.
    [34]曹冬梅,张洪英,何成华, et al.弯曲乳酸杆菌HB02抑制黄曲霉生长及产毒[J].南京农业大学学报.2008,31(3):125-129.
    [35] Klich M A, Lax A R, Bland J M, et al. Influence of Iturin A on MycelialWeight and Aflatoxin Production by Aspergillus flavus and Aspergillusparasiticus in Shake Culture[J]. Mycopathologia.1993,123:35-38.
    [36] Celestin M, Bullerman L B. Inhibition of Aflatoxin Production of Aspergillusparasiticus NRRL2999by Bacillus pumilus[J]. Mycopathologia.1998,140:163-169.
    [37] Roy U, Batish V K, Grover S, et al. Production of Antifungal Substance byLactococcus lactic subsp. lactic CHD-28.3[J]. International Journal of FoodMicrobiology.1996,32:27-34.
    [38]畅晓渊,刘国荣,李平兰, et al. Domiati奶酪中抗黄曲霉毒素活性物质产生菌的分离鉴定及其抑菌作用[J].中国农业大学学报.2009,14(1):123-127.
    [39] Yadav V, Gupta J, Mandhan R, et al. Investigations on Anti-AspergillusProperties of Bbacterial Products[J]. Letters in Applied Microbiology.2005,41:309-314.
    [40] Munimbazi C, Bullerman L B. Isolation and Partial Characterization ofAntifungal Metabolites of Bacillus pumilus[J]..Journal of appliedmicrobiology.1998,84:959-968.
    [41] Ono M, Sakuda S, Suzuki A, et al. Aflastatin A, a Novel Inhibitor of AflatoxinProduction by Aflatosigenic Fungi[J]. Journal of Antibiotics.1997,50:111-117.
    [42] Diaz D E, Hagler W M J. Aflatoxin Binders Ⅱ: Reduction of Aflatoxin M1inMilk by Sequestering Agents of Cows Consuming Aflatoxin in Feed[J].Mycopathologia.2004,157(2):233-241.
    [43] Johnson B A, Anker H, Meleney F L. Bacitracin: a New Antibiotic Producedby a Member of the B. subtilis Group[J]. Science.1945,102:376-377.
    [44] Maget-Dana R, Peypoux F. Iturins, a Special Class of PoreformingLipopeptides: Biological and Physicochemical Properties[J]. Toxicology.1994,87:151-174.
    [45] Kleinkauf H, Dohren H. Noribosomal Biosynthesis of Peptide Antibiotics[J].European Journal of Biochemistry.1990,192:1-15.
    [46] Konz D, Doekel S, Marahiel M A. Molecular and BiochemicalCharacterization of the Protein Template Controlling Biosynthesis of theLipopeptide Lichenysin[J]. Journal of Bacteriology.1999,181:133-140.
    [47] Kluge B, Vater J, Salnikow J, et al. Studies on the Biosynthesis of Surfactin, aLipopeptide Antibiotic from Bacillus subtilis ATCC21332[J]. FEES Letters.1988,231:107-110.
    [48] Lin T P, Chen C L, Chang L K, et al. Functional and Transcriptional Analysesof a Fengycin Synthetase Gene, fenC, from Bacillus subtilis[J]. Journal ofBacteriology.1999,181:5060-5067.
    [49] Nishikiori T, Naqanawa H, Muraoka Y, et al. Umezawa H. Plipastatins: NewInhibitors of Phospholipase A2,Produced by Bacillus cereus BMG302-fF67.III. Structure elucidations of plipastatins[J]. Journal of Antibiotics (Tokyo).1986,39:755-761.
    [50] Walker J E, Abraham E P. The Structure of Bacilysin and Other Pproducts ofBacillus subtilis[J]. Qiochemical Journal.1970,118:563-570.
    [51] Hathout Y, Yen-Peng H, Victor R, et al. Kustakins: a New Class ofLlipopeptides Isolated from Bacillus thuringiensis[J]. Journal of NatturalProducts.2000,63:1492-1496.
    [52] Kugler M, Loeffler W, Rapp C, et al. Rhizocticin A, an AntifungalPhosphono-Oligopeptide of Bacillus subtilis ATCC6633: BiologicalProperties[J]. Archives of Microbiology.1990,153:276-281.
    [53] Banerjee A B, Bose S K. Biosynthesis of Mycobacllin, a New AntifungalPeptide[J]. Journal of Bacteriology.1964,87:1397-1401.
    [54] Schuller F, Benz R, Sahl H G. The Peptide Antibiotic Subtilin Acts byFormation of Voltage-dependent Multi-state Pores in Bacterial and ArtificialMembranes[J]. European Journal of Biochemistry.1989,182:181-186.
    [55] Babasaki K, Takao T, Shimobishi Y, et al. Subtilosin A, a New AntibioticPeptide Produced by Bacillus subtilis168: Isolation Structural Analysis, andBiogenesis[J]. Journal of Biochemistry.1985,98:585-603.
    [56] Ven F J V d, Hooven H W V d, Konings R N, et al. NMR Studies ofLantibiotics: the Structure of Nisin in Aqueous Solution[J]. European Journalof Biochemistry.1991,202:1181-1188.
    [57]顾真荣,吴畏,高新华, et al.枯草芽抱杆菌G3菌株的抗菌物质及其特性[J].植物病理学报.2004,34(2):166-172.
    [58] Wang S L, Lin T Y, Yen Y H, et al. Bioconversion of Shellfish Chitin Wastesfor the Production of Bacillus subtilis W-118[J]. Carbohydrate Research.2006,341:2507-2515.
    [59] Moscatelli E A, Ham E A, Rickes E L. Enzymatic Properties of ap-Glucanasefrom Bacillus subtilis[J]. The Journal of Biological Chemistry.1961,236:2858-2862.
    [60] Stover A, Driks A. Secretion, Localization, and Antibacterial Activity of TasA,a Bacillus subtilis Spore-associated Protein[J]. Journal of Bacteriology.1999,181:1664-1672.
    [61] Fiddaman P J, Rossall S. Effect of Substrate on the Production of AntifungalVolatiles from Bacillus subtilis[J]. Journal of Applied Bacteriology.1994,76:395-405.
    [62] Zhou R, Linz J E. Enzymatic Function of the Nor-1Protein in AflatoxinBiosynthesis in Aspergillus parasiticus[J]. Applied and EnvironmentalMicrobiology.1999,65:5639-5641.
    [63] Yabe K, Chihaya N, Hamamatsu S, et al. Enzymaic Conversion of Averufin toHydroxyversicolorone and Elucidation of a Novel Metabolic Grid Involved inAflatoxin Biosynthesis[J]. Applied Environmental Microbiology.2003,69:66-73.
    [64] Yabe K, Nakajima H. Enzyme Reactions and Genes in AflatoxinBisynthesis[J]. Applied Environmental Microbiology.2004,64:745-755.
    [65] Li Q W, Yan P S, Wu H Q, et al. Inhibition of Mycelia Growth andNorsolorinic Acid Accumulation of Aspergillus parasiticus by Peanut SeedEndophytic Bacteria[J]. In proceedings of the2011IEEE InternationalConference on Human Health and Biomedical Engineering (HHBE).2011:450-453.
    [66]王俊波,曹文涛.大孔树脂吸附法高通量快速提取微生物次生代谢产物[J].华中农业大学学报.2010,29(6):732-736.
    [67]穆凌霄,伏颖,赵秀香, et al.嘧肽霉素一种新的生物活性组分分离纯化研究[J].湖北农业科学.2011,50(18):3728-3732.
    [68]倪孟祥,马丽娜.海洋微生物来源的α-葡萄糖苷酶抑制剂的筛选及性质研究[J].化学与生物工程.2012,29(4):60-65.
    [69] Matsubara Y, K I. Recovery of Oligosaccharide from Steamed Soybean WasteWater in Tofu Processing by Reverse Osmosis and NanofiltrationMembrane[J]. Bioscience Biotechnology Biochemistry1996,60:421-428.
    [70] Isa M H M, Frazier R A, Jauregi P. A further Study of the Recovery andPurification of Surfactin from Fermentation Broth by Membrane Filtration[J].Separation and Purification Technology.2008,64:176-182.
    [71] Benitez L B, Velho R V, Lisboa M P, et al. Isolation and Characterization ofAntifungal Peptides Produced by Bacillus amyloliquefaciens LBM5006[J].The Journal of Microbiology.2010,48(6):791-797.
    [72] Alcaide-Hidalgo J M, Moreno-Arribas M V, Polo M C, et al. PartialCharacterization of Peptides from Red Wines. Changes During MalolacticFermentation and Ageing with Lees[J]. Food Chemistry.2008,107:622-630.
    [73] Li W L, Li S S, Zhong J, et al. A novel Antimicrobial Peptide from SkinSecretions of the Earthworm, Pheretima guillelmi (Michaelsen)[J]. Peptides.2011,32:1146-1150.
    [74] Tanaka K, Ido Y, Akita S, et al. Detection of High Mass Molecules by LaserDesorption time-of-Flight Mass Spectrometry[J]. Second Japan-China JointSymposium on Mass Spectrometry Abstract1987:185-188.
    [75] Meng C K, Mann M, Fenn J B. Proceedings of the36th Annual Conference onMass Spectrometry Allied Topics San Francisco.1988:771-772.
    [76] Liu B, Huang L L, Buchenauer H, et al. Isolation and Partial Characterizationof an Antifungal Protein from the Endophytic Bacillus subtilis strain EDR4[J].Pesticide Biochemistry and Physilology.2010,98:305-311.
    [77] Caldeira A T, Arteiro J M S, Coelho A V, et al. Combined Use of LC-ESI-MSand Antifungal Tests for Rapid Identification of Bioactive LipopoptidesProduced by Bacillus amyloliquefaciens CCMI1051[J]. Process Biochemistry.2011,46:1738-1746.
    [78] Bougatef A, Nedjar-Arroume N, Manni L, et al. Purification and Identificationof Novel Antioxidant Peptides from Enzymatic Hydrolysates of Sardinelle(Sardinella aurita) by-Products Proteins[J]. Food Chemistry.2009,118:559-565.
    [79] Deng Y, Lu Z X, Bi H, et al. Isolation and Characterization of PeptideAntibiotics LI-F04and Polymyxin B6Produced by Paenibacillus polymyxaStrain JSa-9[J]. Peptides.2011,32:1917-1923.
    [80] Tanaka K, Waki H, Ido Y, et al. Protein and Polymer Analyses up to m/z100000by Laser Ionization Time-of flight Mass Spectrometry[J]. Rapid CommunMass Spectrom.1988,2(20):151-153.
    [81] Karas M, Hillenkamp F. Laser Desorption Ionization of Proteins withMolecular Masses Exceeding10,000Daltons[J]. Analytical Chemistry1988,60(20):2299-2301.
    [82] Chung S, Kong H, Buyer J S, et al. Isolation and Partial Characterization ofBacillus subtilis ME488for Suppression of Soilborne Pathogens of Cucumberand Pepper[J]. Applied Microbial and Cell Physiology.2008,80:115-123.
    [83] C C Huang, Ano T, Shoda M. Nucleotide Sequence and Characteristics ofthe Gene, lpa-14, Responsible for Biosynthesis of the Lipopeptide AntibioticsIturin A and Surfactin from Bacillus subtilis RB14[J]. Journal of Fermentationand Bioengineering.1993,76(7):445-450.
    [84] Yatsyshyn V Y, Fedorovych D V, Sibirny A A. Medium Optimization forProduction of Flavin Moninucleotide by the Recombinant Strain of the YeastCandida Famata Using Statistical Designs[J]. Biochemical EngineeringJournal.2010,49:52-60.
    [85] Reddy L V A, Young-Jung W, Jong-Sun Y, et al. Optimization of AlkalineProtease Production by Batch Culture of Bacillus sp. RKY3ThroughPlackett-Burman and Response Surface Methodological Approaches[J].Bioresource Technology.2008,99(7):2242-2249.
    [86] He J, Zhen Q, Qiu N, et al. Medium Optimization for the Production of aNovel Bioflocculant from Halomonas sp. V3a' Using Response SurfaceMethodology[J]. Bioresource Technology.2009,100:5922-5927.
    [87] Majumder A, Singh A, Goyal A. Application of Response SurfaceMethodology for Glucan Production from Leuconostoc Dextranicum and itsStructural Characterization[J]. Carbohydrate Polymers.2009,75:150-156.
    [88] Gangadharan D, Sivaramakrishnan S, Nampoothiri K M, et al. ResponseSurface Methodology for the Optimization of Alpha Amylase Production byBacillus amyloliquefaciens[J]. Bioresource Technology.2008,99(11):4597-4602.
    [89] Jacques P, Hbid C, Destain J, et al. Optimization of Biosurfactant LipopeptideProduction from Bacillus subtilis S499by Plackett-Burman Design[J].Applied Biochemisty and Biotechnology.1999,77-79:223-233.
    [90] Gu X B, Zheng Z M, Yu H Q, et al. Optimization of Medium Constituents fora Novel Lipopeptide Production by Bacillus subtilis MO-01by a ResponseSurface Method[J]. Process Biochemistry.2005,40:3196-3201.
    [91] Ghribi D, Ellouze-Chaabouni S. Enhancement of Bacillus subtilis LipopeptideBiosurfactants Production through Optimization of Medium Composition andAdequate Control of Aeration[J]. Biotechnology Research International2011.2011:653654-653656.
    [92] Shih I, Lin C, Wu J, et al. Production of Antifungal Lipopeptide from Bacillussubtilis in Submerged Fermentation Using Shake Flask and Fermentor[J].Korean Journal of Chemical Enginerring.2009,26(6):1652-1661.
    [93]高学文,姚仕义, H P, et al.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学.2003,36(12):1496-1501.
    [94]徐娇,许文超,康占海, et al.不同树脂对瓜果腐霉代谢产物中除草活性成分的吸附分析[J].离子交换与吸附.2010,26(2):111-120.
    [95]郭书举,史大勇,李富超, et al.深海芽孢杆菌E401B03次生代谢产物分离和结构鉴定[J].海洋科学.2012,36(6):28-30.
    [96]丁小霞,李培武,周海燕, et al.黄曲霉毒素限量标准对我国居民消费安全和花生产业的影响[J].中国油料作物学报.2011,33(2):180-184.
    [97]高秀芬,荫士安,计融.中国部分地区花生中4种黄曲霉毒素污染调查[J].中国公共卫生.2011,27(5):541-545.
    [98]胡东青,庞国兴,张治宇, et al.出口花生黄曲霉毒素污染的预防与控制[J].花生学报.2011,40(1):36-38.
    [99]杨晓丽,韩克勤.双乙酸钠对霉菌抑制作用的研究[J].天津师范大学学报.2003,23(2):26-29.
    [100]曹文涛,张学俊.双乙酸钠对霉菌的抑制作用[J].贵州工业大学学报.1999,28(3):75-79.
    [101]葛明兰,沈齐英.双乙酸钠对霉菌的抑制作用[J].北京石油化工学院学报.2002,10(3):46-49.
    [102]陈华,袁成凌,蔡克周, et al.枯草芽孢杆菌JA产生的脂肽类抗生素-iturinA的纯化及电喷雾质谱鉴定[J].微生物学报.2008,48(1):116-120.
    [103]唐胜球,董小英,邹晓庭.2007[J].黑龙江畜牧兽医.微生物脂肽的研究概况,5:28-29.
    [104]Kowall M, Vater J, Kluge B, et al. Separation and Characterization ofSurfactin Isoforms Produced by Bacillus subtilis OKB105[J]. Journal ofColloid and Interface Science.1998,204:1-8.
    [105]Chitarra G S, Breeuwer P, Nout M J R, et al. An Antifungal CompoundProduced by Bacillus subtilis YM10-20Inhibits Germination of Penicilliumroqueforti Conidiospotes[J]. Journal of Applied Microbiology.2003,94:159-166.
    [106]Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D: an Iturin withAntifungal Activity Against Aspergillus flavus[J]. Journal of AppliedMicrobiology.2001,90:622-629.
    [107]Athukorala S N P, Fernando W G D, Rashid K Y. Identification of AntifungalAntibiotics of Bacillus species Isolated from Different Microhabitats UsingPolymerase Chain Reaction and MALDI-TOF Mass Spectrometry[J].Canadian Journal of Microbiology.2009,55:1021-1032.
    [108]Leenders F, Stein T H, Kablitz B, et al. Rapid Typing of Bacillus subtilisStrains by Their Secondary Metabolites Using Matrix-assisted LaserDesorption/ionization Mass Spectrometry of Intact Cells[J]. RapidCommunica in Mass Spectrometry.1999,13:943-949.
    [109]Vater J, Kablitz B, Wilde C, et al. Matrix-assisted Laser DesorptionIonization-time of Flight Mass Spectrometry of Lipopeptide Biosurfactants inShole Cells and Culture Filtrates of Bacillus subtilis C-1Isolated fromPetroleum Sludge[J]. Applied and Environmental Microbiology.2002,68(12):6210-6219.
    [110] Bie X M, Lu Z X, Lu F X. Identification of Fengycin Homologues fromBacillus subtilis with ESI-MS/CID[J]. Journal of Microbiological Methods.2009,79:272-278.
    [111] Wang J, Liu J, Wang X, et al. Application of Electrospray Ionization MassSpectrometry in Rapid Typing of Fengycin Homologues Produced by Bacillussubtilis[J]. Letters in Applied Microbiology.2004,39(1):98-102.
    [112] Akpa E, Jacques P, Wathelet B, et al. Influence of Culture Conditions onLipopeptide Production by Bacillus subtilis[J]. Applied Biochemistry andBiotechnology.2001,91-93(1-9):551-561.
    [113] Chtioui O, Dimitrov K, Gancel F, et al. Biosurfactants Production byImmobilized Cells of Bacillus subtilis ATCC21332and their Recovery byPertraction[J]. Process Biochemistry.2010,45:1795-1799.
    [114] Ongena M, Jacques P. Bacillus Lipopeptides: Versatileweapons for PlantDisease Biocontrol[J]. Trends in Microbiology.2008,16:115–125.
    [115] Deleu M, Paquot M, Nylander T. Effect of Fengycin, a Lipopeptide Produced
    by Bacillus subtilis, on Model Biomembranes[J]. Biophysical Journal.2008,
    84:2667-2679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700