系列七元内环联苯单体及聚合物的合成,电子结构与光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Synthesis, Electronical Structure and Photoelectric Properties of Series Seven-membered Heterocycre Bridged Bipnenyl Monomers and Polymers
  • 作者:张海全
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2004
  • 导师:陈欣方 ; 马於光
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
当今是以信息为核心的知识经济时代,平板显示器作为人类获取信息的重
    要界面,其作用越来越显著。有机/聚合物电致发光器件作为平板显示器的重要
    一员,由于其独特的性能,备受科学界和产业界的重视。随着有机/聚合物电致
    发光器件工业化,推动了人们对有机/聚合物发光材料研究的深入。发光材料的
    研究已经从可见光发展到宽带隙的紫外光。目前,在宽禁带半导体研究中,无
    机宽禁带半导体材料已经取得了可喜的成绩,它们在可见光全色固体显示、高
    密度存储、紫外探测及在节能照明等方面开创了广阔的应用前景。与无机材料
    相比,宽带隙的有机/聚合物发光材料的研究相对滞后,因此发展宽带隙的有机
    /聚合物发光材料可能成为各国研究人员的一个新研究热点。
     本论文设计、合成了一种可用于制备宽带隙发光材料的氧桥连七元内环联
    苯类单体,X 射线晶体学和分子力学模拟研究证明了它们具有唯一的空间构型,
    两苯环的扭曲角度为 40o。紫外吸收光谱数据表明了它们最大吸收峰介于平面分
    子芴和苯之间,苯环间 40o的扭曲并没有完全打断两苯环间的共轭,两苯环处于
    不完全共轭状态。
     氧桥连的七元内环联苯类单体可用于共轭高分子改性,它与芴通过单键连
    接的交替共聚物 PDHFSCDH 显示了高效率的紫外发光,与相应的均聚芴 PDHF
    相比,带隙增大了 0.29 eV。氧桥连七元内环联苯单体与烷氧基取代的苯乙烯通
     - i -
    
    
    中英文摘要 吉林大学博士学位论文
    过双键连接的交替共聚物 MEHSCD-PPV 也具有高的发光效率,与相应的
    MEH-PPV 相比,发射蓝移了 100nm。
     氧桥连七元内环联苯类单体的均聚物 P1, P2 无论是光致发光还是电致发光
    最大发光峰位均在 372nm 左右, 显示了较强的紫外发射。模型化合物 D1 的 X
    射线晶体学和分子力学模拟研究显示了在聚合物 P1 或 P2 的主链上存在两种不
    0同的构象,即平面构象和扭曲构象,低能量的平面构象为发射的中心。在同一
    聚合物主链上,激子不能从高能量的扭曲片断迁移到低能量的平面片断,但是
    分子间这种迁移能够实现。聚合物 P1 或 P2 这种特征的宏观表现为;稀溶液时,
    发光强度强烈依赖于激发波长,固态时,发光强度对激发波长的依赖性明显减
    弱。模型化合物 D1 的 X 射线晶体学也表明了存在一种特殊的氢键,这种特殊
    的氢键及其构筑的网状结构是中心联苯平面构象的驱动力。本论文还合成、研
    究了与 P1 结构相似的扭曲聚合物 P3,它显示了与 P1 相同的空间结构特征和光
    物理性质。
     本论文设计一种特殊结构的单体,由它构筑的聚合物、齐聚物是一类宽带隙
    有机/聚合物发光材料,以此为发光层制备了有机/聚合物电致发光器件。并首次
    在室温条件下观察到了紫外发射的有机/聚合物器件的电致发光,这为新型宽带
    隙发光材料及器件开发和应用研究提供了必要的依据。
Up to date, Flat Panel Displays (FPDs) are playing important roles for mankind
    to get information and their effects are significant. Organic and polymer
    light-emitting devices (OLEDs and PLEDs), the novel members of FPDs, have
    attracted great attentions of the science fienld and industry for their excellent
    performance. Industrialization of OLEDs and PLEDs drove the searching of new and
    good-performanced organic and polymer light-emitting materials. The investigation
    of light-emitting materials already expand to ultraviolet light-emitting form visible
    light. Now, in the research of wide–bandgap semiconductor, inorganic
    semiconducting materials had obtained outstanding success. They have wide
    application foreground in visible light solid display, high-density storage, ultraviolet
    detect and economy energy illuminance fields. Though the research on
    organic/polymer luminescence materials with wide– bandgap is lag compared with
    inorganic materials, wide–bandgap organic /polymer materials will become the
    research focus in the world.
     In this paper, the monomers of seven-membered heterocycre bridged biphenyl
    were designed and synthesized and researched by X-ray crystallography and
    molecular force field simulation, which proved that the monomers had only stable
    space conformation and the twisted angle of the monomer is about 40o. The
    absorption data n indicated that maximal absorption peak is between planar fluorene
    molecule’s absorption peak and benzene’s. The twisted angle of the two benzenes
    only partly break the conjugation of biphenyl.
    The seven-membered heterocycre bridged biphenyl can be applied to modify the
    conjugated polymer. Alternating copolymer (PDHFSCDH) consisted of fluorene and
    seven-membered heterocycre bridged biphenyl showed high-efficient UV
    light-emitting, and its bandgap increased 0.29 eV comparing with polyfuorene with
     - iii -
    
    
    中英文摘要 吉林大学博士学位论文
    C6 substituents at C-9(PDHF). Alternating copolymer (MEHSCD-PPV) composed of
    seven-membered heterocycre bridged biphenyl and m-phenylene vinylene exhibited
    high-efficient blue light-emitting, and its absoption and emission peaks blue shift
    100nm compared with MEH-PPV.
     The homopolymers (P1 and P2) parepared from the seven-membered
    heterocycre bridged biphenyl monomer exhibited both UV photoluminescence and
    UV elctroluminescence. The X-ray crystallography and molecule model calculation
    investigation of model compound D1 of polymer ( P1) presences two different
    conformation in one polymer chain (planar and twisted conformation). Here, planar
    biphenyl conformation with low energy is the emitting center. The less
    communication between two segments is likely corresponding to the effect of
    emission spectra of solution strongly depended on the excitation energy. The
    intrachain migration of the excitons may be limited by broken conjugation in PMP
    due to the local twisting and meta-link sites in PMP chain. In the solid film, the less
    dependence of the emission intensity on excitation wavelength indicates the presence
    of direct interchain exciton energy transfer between two energy species. And the
    X-ray crystallography investigation of model compound D1 also exhibited a
    presence of peculiar hydrogen bonding, which is the driving force to form planar
    conformation. The twisted polymer P3 with similar structure was also studied. It
    exhibited the same conformation character and photoluminescence property. The
    research on electroluminescence devices indicated that itsEL emission is peaked at
    456nm.
     In this paper a series of monomers with novel structure were designed, and the
    polymers and oligmers have wide-bandgap emission were synthesizedand the
    devices based on them were invested . It is the first time that organic/polymer UV
    light-emitting electroluminescence was observed at room temperature, which can be
     - iv -
引文
[1] Beroanose A., M. Comte., P. Vouauc, J.Chim. Phys.,1953,50,64
    [2] Beroanose A., Vouaux P.,J.Chim. Phys.,1953,50,261
    [3] Beroanose A.J.Chim. Phys.,1955,52,396
    [4] Beroanose A., Vouaux P.,J.Chim. Phys.,1955,52,509
    [ 5] E.Gurnee, R. Fernandez, US Patent 3172862,1965
    [6] Kampas. F.G.,Gouterman. M.chem.Phys. Lett.1977 48 233.
    [7] Tang.C.w., A anSlyke S.A. Appl. Phys.Lett,51(8). 916
    [8]Burroughes. J. H.,Bradley D.D.c.,Brown A.R.,et al Nature,1990,347
    [9] Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
    [10] Olshansky, R.et al..IEEE,Quant.Electr., 1987,23,1410
    [11] Maricot, S. et al.. IEEE, Phutanics, Technul, Lett.,1992,11, 1248.
     [12] Gilman, H.; Chapman, D. R. J. Organomet. Chem. 1966, 5, 392
    [13] Trefonas, P.; West, R.; Miller, R. D.; Hofer, D. J. Polym. Sci., Polym. Lett. Ed.
    1983, 21, 823.
    [14] Gilman, H.; Atwell, W. H.; Schweke, G. L. J. Organomet. Chem. 1964, 2, 369.
    [15] Harrah, L. A.; Zeigler, J. M. Macromolecules 1987,20, 601.
    [16] Zeigler, J. M.; Harrah, L. A.; Johnson, A. W. Proc. SPIE 1985, 539, 166.
    [17] Todesco, R. V.; Basheer, R. J. Polym. Sci., Polym. Chem. Ed. 1986,24, 1943.
    [18] Todesco, R. V.; Kamat, P. V. Macromolecules 1986, 19, 196.
    [19] Bock, H.; Ensslin, W. Angew. Chem., Int. Ed. Engl. 1971,10, 404.
    [20] Klingensmith, K. A.; Downing, J. W.; Miller, R. D.; Michl, J. J. Am. Chem.
    SOC. 1986, 108, 7438.
    [21] Michl, J.; Downing, J. W.; Karatsu, T.; McKinley, A. J.; Poggi, G.; Wallraff,
    G. M.; Sooriyakumaran, R.; Miller, R. D. Pure Appl. Clzem. 1988, 60, 959.
    [22] Kim, Y. R.; Lee, M.; Thorne, J. R. G.; Hochstrasser, R. M.; Zeigler, J. M.
    Chem. Phys. Lett. 1988, 145, 75.
    [23] Thorne, J. R. G.; Hochstrasser, R. M.; Zeigler, J. M. J. Phys. Chem. 1988, 92,
    4275.
    
    
    [24] Kido, J.; Nagai, K.;Okamoto, Y.; Skotbeim, T. Appl. Phys.Lett. 1991, 59,
    2760.
    [25] Suzuki, H.; Meyer, H.; Simmere, J.; Yang, J.; Haarer, D. Adv. Mater.1993,
    5,743.
    [26] Hoshino, S.; Suzuki, H.; Fujili, M.; Morita, M; mATsumoto, N. Synth. Met.
    1997, 89,221.
    [27] Chien, H. Y.; Satoshi ,H.; Seiji, T.; Hiroyuki , S.; Michiya, F.; Nobuo, M.
    Appl. Phys. Lett. 1997, 23, 3326.
    [28] Hoshino, S.; Furukawa, K.; Ebata, K.; beryl, L.; Suzuki, H. J.Appl. PHYS.
    2000, 88, 3408.
    [29] Yoshino, K.; Fujii, A.; Nakayama, H.; Lee, S.; Naka, A.; Ishikawa, M. J.
    Appl. Phys. 1999, 85, 414.
    [30] Musfeldt, J. L.; Reynolds, J. R.; Tanner, D. B.; Ruiz, J. P.; Wang, J. P. and
    Pomerantz, M. Polym. Sci., Part B: Polym. Phys. 1994, 32, 2395.
    [31] Mikroyannidis, J. A. Macromol. Chem. Phys. 2001, 202, 2367.
    [32] Ding, L. M.; Karasz, F. E.; Lin, Y.; Pang, Y.; Liao L. Macromolecules 2003,
    36, 7301.
    [33] Yang, N. C.; Park, H. Y.; Suh,D.H. J. Poly. Sci. Part A; Poly. Chem, 2003, 41,
    674.
    [34] H?uBler, M.; Lam, J. W. Y.; Zheng, R. G.; Peng, H.; Luo, J, D.;Chen, J,W.;
    Law, C. C.W.; Tang, B. Z. C.R. Chimie 2003, 6, 833.
    [35] Noriyoshi, M.; Mamoru, M.; Yoshiki, C. Macromolecules 1999, 32, 4467.
    [36] Sumio, M.; Yuji, K. J. Mater. Chem., 2002, 12, 2245.
    [37] Milliaras, G.G., Herrema, J.K., Wildeman, J., Wieringa, R .H., Gill, R. E.,
    Lampoura, S. S., Hadziioannou,G. Adv. Mater. 1993, 5, 721.
    [38] Yang, Z., Karasz, F.E., Geisw, H. J. Macromolecules 1993,26, 6570.
    [39]Zyung, T., Hwang, D-H., Kang, I-N., Shim, H-K., Hwang, W-Y., Kim,
    J-J.Chem. Mater. 1995,7,1499.
    [40] Ryu, M-K., Lee, J-H., Lee, S-M., Kim, H-K.,Zyung, T. Polym.
    Mater.Sci.Eng.1996, 75, 408.
    
    
    [41] Kim, Y., Kwon, S., Yoo, D., Rubner, M.F., Wrighton, M.s.Chem. Mater.1997,
    9, 2699
    [42] Gowri, R., Mandal, D., Shivkumar, B.,Bamakrishnan, S. Macromolecules
    1998,31,1819.
    [43] Hay, M.; Klavetter, F. L. J. Am. Chem. Soc. 1995, 117, 7112.
    [44] Baigent, D. R., Holmes, A. B., Moratti, S.c., Friend, R.H., Synth.Met,
    1996,80,119.
    [45] Berggren, M., Inganas, O., Gustafsson, G., Rasmusson, J., Andersson, M. R.,
    Hjertberg, T., Wennerstrom , O. Nature, 1994,372,444.
    [46] Andersson, M, R., Berggren, M., Inganas, O., Gustafsson, G.,
    Gustafssoncarlberg, J.C., Selse. D., Hjertberg, T., Wennerstrom, O.
    Macromolecules, 1995, 28,7552.
    [47] Miyazaki, Y., Yamamoto, T. Chem. Lett.1994, 41.
    [48] Musfeldt, J. L., Reynold, J.R., Tanner, D.B.,Ruiz, J.P.,Wang, J ., Pomerzntz,
    M. J.Polym. Sci., Part B: Polym . Phys.1994, 32, 2395.
    [49] Kang, B. S., Seo, M-L., Jun, Y.S., Lee, C.K., Shin, S. C. Chem. Commun.
    1996,1167.
    [50] Kang, B. S., Kim, D. H., LIM, S.M., Kim, J., Seo, M-L., Bark, K-M., Shim,
    S . C. Macromolecules 1997, 30, 7196.
    [51] Cho, H.N., Kim, D.Y., Kim, Y. C., Lee, J. Y., Kim. C.Y., Adv. Mater. 1997, 9,
    326.
    [52] Pang, Y., Li, J., Hu, B., Karesz, F. E. Macromilecules 1998,31,6370.
    [53] Yang, Z.; Sokolik, I.; Karasz, F. E. Macromolecules 1993, 26, 1188.
    [54] Pang.Y., Liao, L., Ding, L., Karasz, F. E.Macromolecules 2001, 34,7300.
    [55] Gill, R. G., Malliaras, G. G.,Wildeman, J., Hadziioznnou, G. Adv. Mater.
    1994,6,32.
    [56] Bastiansen. O., Fernholt. L., Cyvin. B. N., Cyvin. S. J., Samdal. S.,
    Almenningen. A., J. Mol. Struct. 1985, 128, 59.
    [57] Samdal. S., Bastiansen. O., J. Mol. Struct. 1985, 128, 115.
    [58] Suzuki, H. Bull. Chem. Soc. Jpn. 32 1959 1340.
    
    
    [59] Trotter, J.Acta, Crystallogr., 1961, 14, 1135.
    [60]Robertson, G.B., Nature.1961, 593
    [61] Hargreaves, A., Rizvi, S. H. Acta, Crystallogr., 1962, 15, 365.
    [62] Kreyenschmidt, M.; Uckert, F.; Mullen, K. Macromolecules. 1995, 28, 4577.
    [63]. Beaven, G.H.; Muriel, D.; Lesslir, M. S. and Turner, E. F. J. Chem. Soc. 1952,
     854.
    [65] Hewgill F. R.; Hewitt, D. G.. J. Chem. Soc. 1965, 15.
    [66] Yoder, C. M. S.; Zuckerman, J. J. J. Heterocyl Chem. 1977, 4, 166
    [67] Diels, O.; Bibergeil, A. Ber. 1902, 35, 306.
    [68] Ping Lu, Haiquan Zhang, Yan Zheng, Yuguang Ma, Guo Zhang, Xinfang Chen,
    Jiacong Shen. Synth. Meta. 2003, 135, 205.
    [69] Ping Lu, Haiquan Zhang, Fangzhong Shen, Yuguang Ma, Xinfang Chen
    Macro. Chem. Phys.2003,10,1002.
    [70] Fukuda, M.; Sawada, K.; Morita, S.; Yoshino, K. Synth. Met. 1991, 41, 855.
    [71] Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
    [72] Feng He, Haiqua Zhang, Lin He, Yan Zheng, Guo Zhang, Yugaung Ma, Jiacong
    Shen. Synth. Met. 2003, 135, 209.
    [73] Colon, I.; Kelsey, D. R. J. Org. Chem. 1986, 51, 2627.
    [74] Stamm, M.; Hocker, J. J.Phys. coll..C3 (Suppl.6), 1983, 44, 667.
    [75] Stamm, M.; Fink, F.; Ticke, B. Mol. Cryst. Lig. Cryst. 1985, 118, 281.
    [76] Baudour, J. L.; Delugeard, Y.; Cailleau, H. Acta. Crystallogr., Set. B.1976, 32,
     150.
    [77] Bree, A.; Edelson, M.; Chem. Phys. Lett, 1977, 46, 500.
    [78] Ramdas, S.; Thomas, J. M. J. Chem. Soc..Faraday, Trans.2, 1976, 72, 1251.
    [79] Graham, E. M.; Miskowski, V. M.; Perry, J. W.; Couler, D .R.; Stiegman, A.
     E.; Schaefer, W. P.; Marsh, R. E. J.Am.Chem.Soc., 1989, 111, 8771.
    [80] Rizvi, S. H. Acta Crystallogr. 1962, 15, 365. [81] Jeffrey, G. A. J. Mol. Struct.
    
    
    1999, 293, 485.
    [81] Jeffrey, G. A. J. Mol. Struct. 1999, 293, 485.
    [82] Fraser, G. T.; Lovas, F. J.; Suenram, R. D.; Nelson, D. D.; Klemperer, W. J.
    Chem. Phys. 1986, 84, 5983.
    [83] Caminati, W.; Melandri, S.; Moreschini, P.; Favero, P. G. Angew. Chem., Int.
    Ed. 1999, 38, 2924.
    [84] Hobza, P.; Havlas, Z. Chem. ReV. 2000, 100, 4253.
    [85] Tahar, R.; Ban, T.; Ohya, Y.; Takahashi,Y. J. Appl. Phys. 1998, 83, 2631.
    [86] Kim, J.; Granstrom, M.; Friend, R.; Johansson, N.; Salaneck, W. Daik, R.
    Feast, W. J. Appl. Phys. 1998, 84, 6859.
    [87] Milliron, D.; Hill, I.; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87,
    572.
    [88] Fujii, A.; Yoshida, Y, M.; Ohmori, Y.; Yoshino, K.; Jpn. J. Appl. Phys., Part
    1996, 135, 3914.
    [89] Suzuki, H.J. Lmini.1997, 72-74, 1015.
    [90] Qiu, C. F.; Wang, L. D.; Chen, H. Y.; Wong, M.; Kwok, H. S. Appl. Phys. Lett.
     2001, 79, 2276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700