用户名: 密码: 验证码:
自行式框架车液压控制系统设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业是一个运输密集型的行业,物流成本在整个生产成本中占有较大的比重。无轨运输因其投资小、占地少、机动灵活、运行畅通、效率高等优点较铁路运输对于减小物流成本具有显著的效果。发达国家的厂区物料运输多采用无轨运输,物流成本只占总成本的8%~10%,而我国仍以铁路运输为主导,物流成本占总成本的30%,因此无轨运输已经成为我国钢铁行业物料运输的发展趋势。
     自行式框架车因其可配合料篮完成各种钢铁企业厂内物料转运作业、工作效率高、载重量大、操作简单、性能优良等优点成为无轨运输的主力军。车辆优良的电液控制系统是自行式框架车在高速、大载荷的工况下长期运行的必要条件。本文以自行式框架车电液控制系统重要的两大组成部分:闭式液压驱动系统和悬架液压系统为研究对象,结合实际应用中暴露的问题,对闭式液压驱动系统和悬架液压系统的操控性、安全性和平顺性进行了深化研究,主要研究内容如下:
     (1)针对自行式框架车行驶速度快、机动性好的工作要求,设计车辆新型闭式液压驱动系统,改进设计车辆的差速与差力控制功能;为进一步提高车辆的操控性与安全性设计车辆的启动液压延时预警系统和闭式液压驱动系统的过滤装置。
     (2)为优化变量泵的排量控制,解决悬架液压系统、转向液压系统和辅助液压系统与闭式液压驱动系统功率需求间的矛盾,采用了一种新型的复合控制方式——伺服超驰控制技术,并分析该控制方式的工作原理动态特性。
     (3)为满足厂内物流运输对车身高度可调性以及四点悬架驱动同步性的要求,设计具有保压和失压保护功能的悬架电液控制系统;为克服自行式框架车悬架液压系统与转向液压系统对油源控制形式需求差异的矛盾,研制一种负载敏感液压泵的恒压变量控制装置。
     (4)针对自行式框架车四点悬架同步升降系统存在的耦合性、非线性、模型参数不确定性的特点,提出一种基于多点输出耦合的模糊PID多缸同步驱动控制策略,并通过仿真分析与实验分析验证其有效性。
     (5)针对自行式框架车额定载荷大、行驶速度快、受地面冲击大的特点,在传统自行式液压载重车定刚度液压弹簧悬架的基础上,改进设计适应自行式框架车作业要求的悬架液压系统;提出悬架液压系统顺应性的评价指标,并且在MATLAB/Simulink环境中模拟分析随机路面输入下,自行式框架车在空载与满载两种工况下,两种悬架液压系统的顺应性;最后通过现场对比实验验证改进后的悬架液压系统对于改善车辆行驶平顺性的效果。
     (6)设计基于USB7360A型数据采集卡的硬件采集系统和LabVIEW的数据采集处理软件系统,对车辆的闭式液压驱动系统、悬架液压系统和转向液压系统的关键参数进行测试,来验证理论设计的合理性。
The iron and steel industry is an intensive transportation industry. The logistics costsoccupies a higher proportion in the whole cost of production. Trackless transportation withits significant advantages such as less land occupation, flexibility, smooth operation, highefficiency can decrease effectively the cost of logistics compare with railwaytransportation. Because of that, in developed countries, the proportion of logistics costs isas low as8%~10%. But in China, the railway transportation is still the predominantmode of transport, and the proportation is up to30%. Hence, trackless transportation is thedeveloping trend in our country.
     Self-propelled carrier-vehicle has becoming one of the main trackless transportationsbecause of it can match with the basket to complete the tranfer of material, small landoccupied, high efficiency, large capacity and high performance, etc. The performance ofelectro-hydraulic control system is essential condition for the long-time operation of thevehicle in the condition of high speed and large load. In this paper, the objects of study arethe closed hydraulic driving system and suspending mechanism hydraulic system whichare the importance components in electro-hydraulic control system. Further studycombined with problems occurred on the operation, improves handling, safety, smoothoperation for the two systems are conducted. The main research contents are as follows:
     (1)According to the working requirements of high running speed and goodmaneuverability for self-propelled carrier-vehicle, a new closed hydraulic driving systemis designed, with the improved design of vehicle's differential speed and force controlfunctions. To improve the vehicles' operational safety furtherly, the vehicle's hydraulicdelay warning control system and filter devices of the closed hydraulic driving system aredesigned.
     (2)A new composite control method-servo override control technology is used tooptimize the displacement control of variable pump and to manage the contradictions ofpower requirements among the closed hydraulic driving system, steering hydraulic systemand auxiliary systems, and dynamic characteristic of the control method is analyzed.
     (3)For meeting requirements of the height could be adjusted flexibly and four pointssupporting suspending mechanism has higher synchronous precision, the electro-hydrauliccontrol system with pressure sustaining and pressure loss protection has been designed.The constant pressure variable control system based on load sensing pump has beenproposed innovatively, which manages the contradiction between suspending mechanismand steering hydraulic systems on demand difference to oil source control form.
     (4)According to the characteristics of coupled, nonlinear and uncertainty of modelparameters existed in the synchronous lifting system, a fuzzy PID multi-cylindersynchronous driving control strategy based on multi-point output coupling has been putforward, and its effectiveness is verified through simulation and experimental analysis.
     (5)Whereas the characteristics of heavy rated load, fast running speed and largeimpact of ground excitation, a new suspending mechanism hydraulic system which meetsthe operational requirements of self-propelled carrier-vehicle is designed based on thetraditional constant stiffness hydraulic spring suspending mechanism. The evaluationindex of compliance of suspending mechanism hydraulic system has been put forward,and in the MATLAB/Simulink environment the compliance has been analyzedcontrastively in the simulation of random road input with the vehicle under two workingconditions. And validate effect of the developed suspending mechanism hydraulic systemon improving vehicles' running compliance through on site contrast experiment finally.
     (6)The hardware acquisition system based on USB7360A data acquisition card andthe data processing system based on LabVIEW have been designed. Through this testdevice, the key parameters of vehicles' systems (closed hydraulic driving system,suspending hydraulic system and steering hydraulic system) have been measured tovalidate the rationality of theoretical design.
引文
[1]李苏剑.钢铁行业物流系统建设综述[J].物流技术与应用,2008,13(4):55-59.
    [2]储慕东.物流与钢铁厂总平面布置[J].钢铁设计,1989(4):75-78.
    [3]温莜婷,杨欣.钢铁企业原材料运输优化问题研究[J].商品储运与养护,2008,30(4):23-24.
    [4]况作尧.大型冶金企业铁水运输方式的现状分析与发展[J].铁道车辆,2008,46(11):29-31.
    [5]沈建国.基于SCOR的宝钢水运出厂物流系统研究[J].物流科技,2007(10):70-72.
    [6]赵静一.大型自行式液压载重车[M].北京:化学工业出版社,2010:1-35.
    [7]王智勇.900吨运梁车新型电液控制系统研究与工程实践[D].燕山大学工学博士学位论文,2007:1-15.
    [8]王艳,程俊峰,黄伟中,等.压力传感器在升降式运输车称重系统中的应用[J].传感器与微系统,2006,25(6):78-80.
    [9]王意.行走机械液压驱动技术发展大观[J].液压气动与密封,2000(2):19-28.
    [10]楼锡银.基于闭式液压系统的履带式机械驱动技术研究[J].机电产品开发与创新,2009(2):13-14.
    [11]陈晋市.轮式装载机行走系统研究[D].吉林大学博士学位论文,2012:8-11.
    [12]盛英,赵建文,仇原鹰.空气弹簧参数对减振性能的影响[J].噪声与振动控制,2006,26(3):22-25.
    [13] Cole D J. Fundamental Issues in Suspension Design for Heavy Road Vehicle[J]. Vehicle SystemDynamic,2001,35(4/5):319-360.
    [14]喻凡,黄宏成,管西强.汽车空气悬架的现状及发展趋势[J].汽车技术,2001,(8):6-10.
    [15]杜恒.大型轮式车辆油气悬架及电液伺服转向系统研究[D].浙江大学博士学位论文,2011:1-17.
    [16]宋金环,石博强,吕丛明,等.挂车液压悬架系统的结构分析与改进设计[J].专用汽车,2006(1):38-40.
    [17]周生保,苗增,赵静一,等.新型半挂车液压悬挂机构分析[J].液压与气动,2011(4):18-21.
    [18]赵军.农业机械静压传动装置的研究与应用[J].农机化研究,2000(4):99-101.
    [19] Jirawattana P. Design, Simulation, Fabrication and Testing of a Low-speed High-torque (LSHT)Pump/Motor for a Hydrostatic Vehicle [M]. USA: University of Wisconsin-Madison,2000:55-100.
    [20] Sun G F, Kleeberger M. Dynamic Responses of Hydraulic Mobile Crane with Consideration ofthe Drive System [J]. Mechanism and Machine Theory,2003(38):1489-1508.
    [21] Daniel F, Richard H, Miller D P. Turning Efficiency Prediction for Skid Steer Robots UsingSingle Wheel Testing [C].7th International Conference on Field and Service Robotics,2009(7):479-488.
    [22] Ray C B. Hydraulic Drive Systems: Solutions for Bulk Materials Handling Applications [J].Bulk Solids Handling,2009,29(7):398-401.
    [23] Paoluzzi R, Zarotti L G. The Minimum Size of Hydrostatic Transmissions for Locomotion [J].Journal of Terramechanics,2013(50):153-164.
    [24] Wang Q F, Gu L Y, Lu Y X. Research on Digital Control of Meter-In and Meter-Out IndependentRegulating for High Inertia Load. In: Proceedings of the FPST Division, The AEMEInternational Mechanical Engineering Congress, Nashville, Tennessee, USA,1999:109-114.
    [25] Sun Hui. Multi-objective Optimization for Hydraulic Hybrid Vehicle Based on AdaptiveSimulated Annealing Genetic Algorithm [J]. Engineering Applications of Artificial Intelligence,2010(23):27–33.
    [26]韩寿松,晁智强,刘相波,等.基于AMESim的液压混合动力车辆建模仿真研究[J].装甲兵工程学院学报,2012,26(4):35-28.
    [27]陈永亮,王向伟,潘高峰,等.液压支架实验台电液多轴加载系统耦合调平控制[J].煤炭选报,2011,36(10):1762-1767.
    [28] Sun Hong, Chiu G T. Motion Synchronization for Dual-Cylinder Electro Hydraulic Lift Systems[J]. IEEE/ASME Transactions on Mechatronics,2002,7(2):171-181.
    [29]倪敬,项占琴,潘晓弘,等.多缸同步提升电液系统建模和控制[J].机械工程学报,2006,42(11):81-87.
    [30] Byun J H, Choi M S. A Method of Synchronous Control System for Dual Parallel MotionStages[J]. International Journal of Precision Engineering and Manufacturing,2012,13(6):883-889.
    [31] Jeong S K, You S S. Precise Position Synchronous Control of Multi-Axis Servo System[J],Mechatronics,2008,18:129-140.
    [32] Pa P S. A Synchronous Microsystem Process Using a Dual-Cylinder Tool for the SurfaceMicrostructures from Solar Cell Silicon Wafers[J]. Microsyst Technol,2011(17):1463–1470.
    [33] Hsieh M F, Yao W S, Chiang C R. Modeling and Synchronous Control of a Single-axis StageDriven by Dual Mechanically-coupled Parallel Ball Screws[J]. International Journal ofManufacturing Technology,2007(34):933-943.
    [34] Hamed G, Rezaei S M, Abdullah A, et al. Observer-based Sliding Mode Control with AdaptivePerturbation Estimation for Micropositioning Actuators[J]. Precision Engineering,2011(35):271–281.
    [35]吴百海,邹大鹏,司振军,等.多油缸同步运行智能控制的探讨[J].机床与液压,2003(4):29-32.
    [36]董春芳,孟庆鑫.多缸电液调平系统相邻交叉耦合同步驱动[J].哈尔滨工程大学学报,2012,33(3):1-5.
    [37] Han H Y, Wang J, Huang Q X. Analysis of Unsymmetrical Valve Controlling UnsymmetricalCylinder Stability in Hydraulic Leveler[J]. Nonlinear Dyn,2012(70):1199-1203.
    [38] Stijn D B, Herman V D A, Jan A, et al. Preview Control of a Constrained Hydraulic ActiveSuspension System[C].51st IEEE Conference on Decision and Control, CDC2012, Maui, HI,United States, December10-13,2012:4400-4405.
    [39] Mehdi M F. Robust Impedance Control of a Hydraulic Suspension System[J]. InternationalJournal of Robust and Nonlinear Control,2010,20(8):858-872.
    [40] Mehdi F M, Moradi M Z. Adaptive Impedance Control of a Hydraulic Suspension System UsingParticle Swarm Optimisation[J]. Vehicle System Dynamics,2011,49(12):1951-1965.
    [41] Hussin A T M, Mat D I Z. Self-tuning PID Controller for Active Suspension System withHydraulic Actuator[C].2013IEEE Symposium on Computers and Informatics, ISCI2013,Langkawi, Malaysia, April7-9,2013:86-91.
    [42] Hussin A T M, Mat D I Z. Self-tuning PID Controller with MR Damper and Hydraulic Actuatorfor Suspension System[C].20135th International Conference on Computational Intelligence,Modelling and Simulation, CIMSim2013, Seoul, Korea, September24-26,2013:119-124.
    [43] Dahunsi O A, Pedro J O, Nyandoro O T. System Identification and Neural Network BasedPID Control of Servo-Hydraulic Vehicle Suspension System[J]. SAIEE Africa Research Journal,2010,101(3):93-105.
    [44] Gardulski J, Konieczny L. Application of Simulation Researches in Diagnostic’s of VehicleHydropneumatic Suspension[J]. Transport Problems,2007,2(1):13-21.
    [45] Ali M, Abd E T. Twin Accumulator Semi Active Suspension System with Preview Control[J].Journal of Low Frequency Noise, Vibration and Active Control,2007,26(4):283-293.
    [46]魏建华,杜恒,方向,等.基于ADAMS/Simulink/AMESim的油气悬架道路友好性分析[J].农业机械学报,2010,41(10):11-17.
    [47]刘凤国,王晓燕,封士彩.连通式油气悬挂车辆三种行驶状况下数学模型的建立[J].机械制造与设计,2006(3):36-40.
    [48]杨杰,陈思忠,吴志成,等.油气悬架可控刚度阻尼设计与实验[J].农业机械学报,2008,39(10):20-24.
    [49] Cho J R, Lee H W, Yoo W S. Study on Damping Characteristics of Hydropneumatic SuspensionUnit of Tracked Vehicle[J]. Journal of Mechanical Science and Technology,2004,18(2):262-271.
    [50] Yang Bo, Chen Sizhong, Wu Zhicheng, et al. Development of a Twin-accumulatorHydro-pneumatic Suspension[J]. Shanghai Jiaotong Univ.(Sci.),2010,15(2):183-187.
    [51]赵静一,耿冠杰,陈逢雷,等.80T连采设备快速搬运车的故障诊断及系统优化[J].液压与气动,2010(2):49-52.
    [52] Hot H, Ahn K K. Design and Control of a Closed-loop Hydraulic Energy-regenerative System[J].Automation in Construction,2012(22):444–458.
    [53] Cao Zhongyi, Liu Ruiguo, Wu Wanrong, et al. Analysis on Engine Stall Issue of ClosedHydraulic System[J]. Advanced Materials Research,2012,482-484:35-38.
    [54]姚怀新.车辆液压驱动系统的控制原理及参数匹配[J].中国公路学报,2002,15(3):115-118.
    [55]姚怀新.工程机械底盘及其液压传动理论行走机械液压传动与控制[M].北京:人民交通出版社,2001.12:63-68.
    [56]王永奇,王鹏程,李建军.推土机变量泵—变量马达传动系统效率研究[J].矿山机械,2004(6):39-40.
    [57]姚怀新.工程车辆液压动力学与控制原理[M].北京:人民交通出版社,2006.10:140-145.
    [58]张殿平.超驰控制与自动调节运行安全[J].广东电力,2002,15(4):48-50.
    [59]姚金环.分散控制系统中的超驰控制[J].华东电力,2000(3):53-54.
    [60]刘健. A4V变量泵伺服变量原理及实验研究[J].矿山机械,2007(10):128-130.
    [61]吴根茂,邱秀敏,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006:271-272.
    [62]李玉琳.液压元件与系统设计[M].北京:北京航空航天大学出版社,1991:83-97.
    [63]李侃,赵静一.重型平板车液压系统与发动机功率匹配研究[J].中国机械工程,2009,20(6):745-749.
    [64]梁浩新,赵静一,郭锐.关于100t重型平板运输车悬挂液压系统的改进[J].液压与气动,2008(10):36-38.
    [65]赵静一,王智勇,覃艳明,等. TLC900型运梁车液压驱动系统与发动机功率匹配研究[J].中国机械工程,2007,18(7):878-881.
    [66] Byun J H, Choi M S. A Method of Synchronous Control System for Dual Parallel MotionStages[J]. International Journal of Precision Engineering And Manufacturing,2012,13(6):883-889.
    [67]博世力士乐.博世力士乐重工业液压产品样本[S].2007.
    [68]王金利,芮丰,罗庆吉,等.20MN液压支架实验台同步控制系统的设计[J].液压与气动,2008(10):40-43.
    [69]梁浩新,赵静一,郭锐.关于100t重型平板运输车悬挂液压系统的改进.液压与气动,2008(10):36-38.
    [70] Tu D C T, Kyoung K A. Nonlinear PID Control to Improve the Control Performance of AxesPneumatic Artificial Muscle Manipulator Using Neural Network[J]. Mechatronics,2006,16(9):577-587.
    [71]倪敬,项占琴,潘晓弘,等.多缸同步提升电液系统建模和控制[J].机械工程学报,2006,42(11):81-87.
    [72]吴百海,邹大鹏,司振军,等.多油缸同步运行智能控制的探讨[J].机床与液压,2003(4):29-32.
    [73]董春芳,孟庆鑫.多缸电液调平系统相邻交叉耦合同步驱动[J].哈尔滨工程大学学报,2012,33(3):1-5.
    [74]陈永亮,王向伟,潘高峰,等.液压支架实验台电液多轴加载系统耦合调平控制[J].煤炭选报,2011,36(10):1762-1767.
    [75]赵静一,王智勇,覃艳明,等. TLC900型运梁车电液转向控制系统的仿真与实验分析[J].机械工程学报,2007,43(9):65-68.
    [76] Yang Biao, Peng Jin hui, Li Wei. Acid-pickling Pates and Strips Speed Control System ByMicrowave Heating Based on Self-adaptive Fuzzy PID Algorithm[J]. Cent South Univ,2012(19):2179-2186.
    [77] Toshio Y, Itaru T. Active Suspension Control of a One-wheel Car Model Using Single Input RuleModules Fuzzy Reasoning and a Disturbance Observer[J]. Journal of Zhejiang UniversityScience,2005,6(4):252-256.
    [78]肖奇军,李胜勇.模糊自整定PID控制器设计以及MATLAB仿真分析[J].计算机仿真,2005,22(9):242-244.
    [79] Kovacic Z, Bogdan S.模糊控制器控制理论与应用[M].胡玉玲,张立权,刘艳军,等译.北京:机械工业出版社,2010:24-53.
    [80]张小宇.基于AMESim的液压控制系统建模及仿真[J].煤矿机械,2011,32(2):71-73.
    [81] Lin Tianliang, Wang Qingfeng, Hu Baozan, et al. Research on the Energy Regeneration Systemsfor Hybrid Hydraulic Excavators[J]. Automation in Construction,2010(19):1016-1026.
    [82] Rossetti A, Macor A. Multi-objective Optimization of Hydro-mechanical Power SplitTransmissions[J]. Mechanism and Machine Theory,2013(62):112-128.
    [83] Boukari A F, Carmona J C, Moraru G, et al. Piezo-actuators modeling for smart applications[J].Mechatronics,2011(21):339-349.
    [84]李剑锋,汪建兵,林建军,等.机电系统联合仿真与集成优化案例解析[M].北京:电子工业出版社,2010:137-147.
    [85]吴涛,过学迅.重型越野车辆油气悬架的设计[J].专用汽车,2000(1):8-11.
    [86]蔡祥文,谷正气,李伟平,等.基于平顺性的油气悬架参数动态分析与优化[J].现代制造工程,2011(6):53-57.
    [87] Eslaminasab N. Development of a Semi-active Intelligent Suspension System for HeavyVehicles [D]. A Thesis Presented to the University of Waterloo in Fulfillment of the ThesisRequirement for the Degree of Doctor of Philosophy in Mechanical Engineering,2008:37-45.
    [88]杨波,陈思忠,王勋,等.双气室油气悬架特性研究[J].机械工程学报,2009,45(5):276-280.
    [89]韩军堂,杨杰,马家林.基于油气悬架的越野车辆三级阻尼可调技术研究[J].科学技术与工程,2010,10(14):3360-3364.
    [90]肖启瑞,石本改,唐拥林,等.城市客运车辆双蓄能器式油气减振器特性建模与仿真[J].2013,41(3):137-140.
    [91]王书镇,王明德.双气室油气悬挂原理及特性计算[J].兵工学报,1984(1):27-34.
    [92]杨杰,陈思忠,吴志成,等.油气悬架可控刚度阻尼设计与实验[J].农业机械学报,2008,39(10):20-24.
    [93]刘从臻,郭伟俊,王芬娥,等.八自由度车辆模型传递函数研究[J].甘肃农业大学学报,2006,41(3):113-117.
    [94] Borner M, Straky H, Thomas W, et al. Model Based Fault Detection of Vehicle Suspension andHydraulic Brake Systems[J]. Mechatronics,2002(12):999-1010.
    [95] Novikov V V, Smolyanov O V. Vibrational Protection Provided by Automobile Suspensions withBoth Hydraulic and Inertial–Frictional Shock Absorbers[J]. Russian Engineering Research,2009,29(1):68-70.
    [96]叶小华,岑豫皖,赵韩,等.金杰基于液压弹簧刚度的阀控非对称缸建模仿真[J].中国机械工程,2011,22(1):23-27.
    [97]李浪,王海涛,龚烈航.皮囊式蓄能器吸收压力脉动的参数分析与实验[J].液压与气动,2012(7):3-6.
    [98]权凌霄,孔祥东,高英杰,等.不考虑进口特性的蓄能器吸收冲击理论及实验[J].机械工程学报,2007,43(9):28-32.
    [99]刘杰,王海军.胶轮车油气悬架系统刚度特性分析[J].矿山机械,2009,37(13):44-47.
    [100]仝军令,李威,傅双玲.油气弹簧主要参数对悬架系统性能的影响分析[J].系统仿真学报,2008,20(9):2271-2274.
    [101]刘杰,陈永峰.胶轮车油气悬架系统阻尼特性分析[J].煤炭科学技术,2010,38(6):84-88.
    [102] Rae J, Lee H W, Yoo W S. Study on Damping Characteristics of Hydropneumatic SuspensionUnit of Tracked Vehicle[J]. KSME International Journal,2004,18(2):262-271.
    [103]候典清,龚国芳,施虎.盾构推进系统突变载荷顺应特性研究[J].浙江大学学报(工学版),2013,47(2):1-6.
    [104]施虎.盾构掘进系统电液控制技术及其模拟实验研究[D].浙江大学博士学位论文.2012:125-130.
    [105]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报,2005,36(12):29-31.
    [106]冯金芝,李君,郑松林,等.车辆四轮随机输入模型研究[J].上海理工大学学报,2010,32(3):205-208.
    [107]尹志新,李端芳,唐萌,等.基于MATLAB的时域路面不平度仿真研究[J].装备制造技术,2010(4):43-44.
    [108]宋志安,曹连民,黄靖,等. MATLAB/Simulink与液压控制系统仿真[M].北京:国防工业出版社,2012:30-53.
    [109]魏建华,杜恒,方向,等.基于ADAMS/Simulink/AMESim的油气悬架道路友好性分析[J].农业机械学报,2010,41(10):11-17.
    [110]张海平.测试是液压的灵魂[J].液压气动与密封,2010(6):1-5.
    [111]元万荣.滑移装载机闭式行走系统研究[D].长春:吉林大学硕士学位论文,2012:57-64.
    [112]陈梅,王健.基于OpenGL的惠斯通电桥的模拟实现[J].电子测量技术,2011,(1):66-68.
    [113]李达,魏学哲. LabVIEW数据采集系统的设计与实现[J].中国仪器仪表,2007(1):49-52.
    [114]孟武胜,朱剑波,黄鸿.基于LabVIEW数据采集系统的设计[J].虚拟仪器技术,2008,31(11):63-65.
    [115]谢国善,熊鹏俊.基于LabVIEW的虚拟仪器设计研究[J].船舰电子工程,2010,30(10):126-128.
    [116]付少杰,陈立新. LabVIEW在动态参数虚拟仪器设计中的应用[J].仪器仪表与分析监测,2007(2):21-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700