纳米镁碳复合储氢材料制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以纳米镁碳复合储氢材料为研究起点,分别添加活性金属镍和二氧化钛粉末,来改善其吸放氢性能。材料经透射电镜(TEM)、选区电子衍射(SAED),X射线衍射(XRD)、差式扫描量热分析仪(DSC)以及自行设计的排水法放氢装置等分析手段表征。文章着重研究了添加物对材料可磨性、粒度大小、储氢密度、吸放氢性能的影响,在此基础上探讨了纳米镁碳复合储氢材料的吸放氢机理。
     对镍粉不同添加量制备的纳米镁碳复合储氢材料60Mg30CxNi(x=0,1,4,7,10)进行分析表征得出:在镁粉、微晶碳粉中添加小粒径的镍粉进行氢化反应球磨,有利于制备出粒径较小、放氢温度较低的纳米镁碳复合储氢材料;且材料的放氢温度随着镍粉添加量的增加而降低,其中材料60Mg30C10Ni的初始放氢温度为223.9℃;材料的放氢量也受镍粉添加量的影响,在低温下随着镍粉添加量的增加,放氢量呈递增趋势;在高温下随着镍粉添加量的增加而减少。
     向镁粉、微晶碳粉中添加纳米二氧化钛粉末进行氢化反应球磨,当二氧化钛添加量超过20wt.%时,球磨过程中材料容易粘附于罐底,不利于制备出粒径较小的材料;当添加量在0~20%范围内时,随添加量的增加,材料储氢密度相应的增加;当添加量在20~50%时,随着添加量的增加,材料储氢密度降低;其中以材料50Mg30C20TiO_2的储氢密度最高可达3.94wt.%。
     对制备的材料进行机理分析得出,镍颗粒对于氢气的离解、吸附具有积极作用,从而提高了镁颗粒与氢气反应的速度及效率:二氧化钛在储氢材料中作用主要有催化离解氢气分子及物理吸附氢气分子。
In this dissertation,the powder of nickel/titanium dioxide was added during reaction milling under hydrogen atmosphere,in order to improve nanometer Mg/C composite hydrogen storage materials'(NMCCM) hydriding/dehydriding performance.The NMCCM was tested by transmission electron microscope(TEM), selected area electron diffraction(SAED),powder X-ray diffraction(XRD), differential scanning calorimeter(DSC) as well as self-devised drainage.The effect of powder added on grindability,size,hydrogen storage capacity and hydriding/dehydriding properties are emphatically researched.On this base,the hydriding/dehydriding mechanism of NMCCM was studied.
     It was found that adding nickel powder to magnesium powder and crystallite carbon powder durning reaction milling under hydrogen is benefit for preparing NMCCM which is small size and have lower dehydriding temperature.The results showed that dehydriding temperature decreases as the contents of adding nickel increases,NMCCM 60Mg30C10Ni have the lowest dehydriding temperature which is 223.9℃.The results showed that dehydriding volume of NMCCM is dominated by the contents of adding nickel.As the contents of nickel increases,dehydriding volume enhances at low temperature,however,the reverse happens at high temperature.
     It was found that adding titanium dioxide powder to the powder of magnesium and crystallite carbon durning reaction milling under hydrogen atmosphere is bad for preparing small size NMCCM,when the contents exceed 20wt.%.As the contents increases but less than 20wt.%,the dehydriding volume of NMCCM becomes larger, when contents exceed 20wt.%,the reverse applies.
     The result showed adding nickel was benefit for separating,adsorbing hydrogen. So the hydriding raction was accelerated.Efficiency of reaction between magnesium grain and hydrogen was enhanced;separating and adsorbing hydrogen is the main function of titanium dioxide in the course of preparing NMCCM.
引文
1.墨伟,孙洪亮,张海昌等.纳米镁储氢材料吸放氢动力学性能的研究进展.电化学,2006,12(1):9-15.
    2.L.Zaluski,A.Zaluska,J.O.Strom-Olsen.Nanocrystalline metal hydrides[J].Alloys Compd.,1997,253-254:70-79.
    3.V.G.Gryaznov,A.M.Kaprelov,A.E.Romanov.Size effect of dislocation stability in small particles and microcrystallites[J].Scri Metal,1989,8(23):1443-1448.
    4.R.Kirchheim,T.Mutschele,W.Kieninger et al.Hydrogen in amorphous and nanocrystalline metals[J].Mater Sci Eng,1988,99:457-462.
    5.H.Fujii,S.Orimo,K.Ikeda.Cooperative hydriding properties in a nanostructured Mg_2Ni-H system[J].Alloys Compd.,1997,(80-83):253-254.
    6.L.Zaluski,A.Zaluska,P.Tessier,et al.Hydrogen Absorption in Nanocrystalline Mg_2Ni Formed by Mechanical Alloying[J].Alloys Compd.,1995,217:245-249.
    7.房文斌,张文丛,于振兴等.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响[J].稀有金属材料与工程,2005,34:1017-1020.
    8.大角泰章.金属氢化物的性质与应用[M].吴永宽,苗艳秋译.北京:化学工业出版社,1990.
    9.S.H.Lee,C.S.Choi.Chemical activation of high sulfur petroleum cokes by alkali metal compounds[J].Fuel pro Technol.,2000,64:141-153.
    10.C.Marin,Miguel A,A,Merino,et al.Macroporous activaled carbon from a bituminous coal[J].Fuel,1996,75(8):966-970.
    11.詹亮,李开喜,朱星明等.超级活性炭储氢性能研究[J].材料科学与工程,2002,1:31-34.
    12.V.A.Lidholobov,V.B.Fenelonov,L.G.OKKel,et al.New Carbon-Carbonaceous Composites and Adsoption[J].React Kinet Catal Lett,1995,54(2):381-411.
    13.A.C.Dillon,K.M.Jones,T.A.Bekkedahl,et al.Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997,386:377-411.
    14.C.P.Chambers,R.Terry,et al.Hydrogen Storage in Graphite Nanofibers[J].Physical Chemi Bo,1998,102(22):4253-4256.
    15.毛宗强,徐才录,阎军等.碳纳米纤维储氢性能初步研究[J].新型炭材料,2000,15(1):64-67.
    16.范月英,刘敏,廖彬,等.纳米炭纤维的储氢性能初控[J].材料研究学报,1999,13(3):230-233.
    17.Y.Y.Fan,B.Liao,M.Liu,et al.Hydrogen uptake in vapor-grown carbon nanofibers[J].Carbon,1999,37:1649-1652.
    18.白朔,侯鹏翔,范月英,等.一种新型储氢材料—纳米炭纤维的制备及其储氢特性[J].材料研究学报,2001,15(1):77-82.
    19.C.Liu,H.T.Cong,F.Li,et al.Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharg method[J].Carbon,1999,37:1865-1868.
    20.C.Liu,Y.Y.Fan,M.Liu,et al.Hydrogen storage in single-walled carbon nanotubes at room temperature[J].Science,1999,286:1127-1129.
    21.周理,孙艳,苏伟,等.纳米碳管储能的化学原理与储存容量研究[J].化学进展,2005,17(4):660-665.
    22.钱存富,杜昊,王洪祥.LaNi_5型储氢材料最大储氢量的讨论[J].稀有金属材料与工程,2000,29(1):25-27.
    23.袁满雪,韩剑文,赖城明.LaNi_5储氢材料中储氢状态的理论研究[J].南开大学学报,1998,31(1):84-90.
    24.唐睿,柳永宁,郭生武,等.非化学计量LaNi5型储氢合金的性能[J].材料研究学报,2002,16(4):395-399.
    25.徐艳辉,陈长聘。Ni-MH二次电池负极用储氢合金的研究进展[J].材料科学与工程,2002,20(1):97-103.
    26.X.G.Yang,Y.Q.Lei,W.K.Zhang,et al.Effect of alloying with Ti,V,Mn on the electrochemical properties of Zr-Cr-Ni based Laves phase metal hydride electrodes[J].Alloys Compd.,1996,243(1-2):151-155.
    27.D.M.Kim,S.M.Lee,K.J.Jang,et al.The electrode characteristics of over-stoichiometric ZrMn_(0.5)V_(0.5)Ni_(1.4+y)(y=0.0,0.2,0.4 and 0.6) alloys with C15Laves phase structure[J].Alloys Compd.,1998,268(1-2):241-247.
    28.J.J.Reilly.H.R.Wiswall.Reaction of hydrogen with alloys of magnesium and copper[J].Inorg.Chem.,1967,6(12):2220-2223.
    29.J.J.Reilly.H.Ro Wiswall.Reaction of hydrogen with alloys of Magnesium and nickel and the formation of Mg_2NiH_4[J].Inorg.Chem.,1968,7(11):2254-2256.
    30.房文斌,张文丛,于振兴等.镁基储氢材料的研究进展[J].中国有色金属学报,2002,12(5):853-862.
    31.H.Imamura,T.Takahashi,R.Galleguillos,et al.Less-Common metals[J].1983,89:251-256.
    32.W.H.Liu,H.Q.Wu,Y.Q.Lei,et al.Electrochemical characteristics of amorphous Mg_(0.9)M_(0.1)Ni(M=Ni,Ti,Zr,Co and Si) ternary alloys prepared by mechanical alloying[J].Alloys Compd.,1997,252:234-237.
    33.M.Morinaga,H.Yukawa.Nature of chemical bond phase stability of hydrogen storage compounds[J].Mater.Sci.Eng.A,2002,329-331:268-275.
    34.H.Yukawa,T.Matsumura,M.Morinaga.Chemical bond state and hydride stability of hydrogen storage alloys[J].Alloys Compd.,1999,(293-295):227-230.
    35.迟洪忠,陈长聘,李弘波,等.镁基储氢材料研究进展[J].材料工程,2002,(8):44-47.
    36.胡子龙.贮氢材料[M].北京:化学工业出版社,2002.
    37.G..Liang,J.Hout,S.Boily,Hydrogen storage properties of nanocrystalline Mg_(1.9)Ti_(0.1)Ni made by mechanical alloying[J].Alloys Compd.,1999,282:286-290.
    38.Y Tsushio,H.Enoki,E.Akiba,Hydrogenation properties of MgNi_(0.86)MI_(0.03)(M1=Cr,Fe,Co,Mn) alloys[J].Alloy Compd.,1998,281:301-305.
    39.王尔德等.镁基储氢材料的研究进展[J].粉末冶金技术,2003,1(21):31-36.
    40.刘宾虹.复合贮氢材料技术研究[D].杭州:浙江大学,1991.
    41.M.Bououdina,Z.X.Guo.,Comparative study of mechanical alloying of(Mg+Al)and(Mg+AI+Ni) mixtures for hydrogen storage[J].Alloys Compd.,2002,336:222-231.
    42.A.Zaluska.,L.Zaluski,J.O.Strum-Olsen.Structure,catalysis and atomic reactions on the nano-scale:a systematic approach to metal hydrides for hydrogen storage[J].Appl.Phys.,2001,72:157-165.
    43.J.F.Nachman.On Metal-Hydrogen Systems[J].Pergamon Press,1982:577-620.
    44. D. Lupu, A. Biris, R. V. Bucur, et al. Metal-Hydrogen System[J]. Alloys Compd.1982: 437-473.
    
    45. J. J. Reilly, R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and copper[J]. Inorg. Chem, 1967, 6 (12): 2220-2223.
    
    46. A. Seiler, L. Schlapbach, T. V. Waldkirch, et al. Surface analysis of Mg_2Ni-Mg Mg_2Ni and Mg_2Cu[JJ. Less-Common Met., 1980, 73:193-199.
    
    47. Y. Tsushio, P. Tessier, H. Enoki, et al. Hydrogenation properties of Mg_(1-x)Ml_xCu_2(Ml=La and Nd) with larger interstitial sites than MgCu_2[J]. Alloys Compd., 1998, 280: 262-264.
    
    48. H. Y. Shao, Y. T. Wang, H. R.Xu, et al. Preparation and hydrogen storage properties of nanostructured Mg_2Cu alloy[J]. Solid State Chem., 2005,178: 2211-2217.
    
    49. J. Huot, S. Boily, E.Akiba, R.Schulz. Direct synthesis of Mg_2FeH_6 by mechanical alloying[J]. Alloys Compd., 1998,280: 306-309.
    
    50. F. C Gennari, F. J. Castro, J. J. Andrade. Synthesis of Mg_2FeH_6 by reactive mechanical alloying formation and decomposition properties[J], Alloys Compd.,2002,339: 261-267.
    
    51. J. L. Bobet, E. Akiba, B. Darriet. Effect of substitution of Fe and Ni for Co in the synthesis of Mg_2Co compound using the mechanical alloying method[J]. Alloys Compd., 2000, 297:192-198.
    
    52. J. L. Bobet, E. Akiba, B. Darriet. Study of Mg-M (M= Co, Ni and Fe) mixture elaborated by reactive mechanical alloying: hydrogen sorption properties[J].Hydrogen Energy, 2001, 26: 493-501.
    
    53. H. Imamura, Y. Shirou, T. Akimoto, et al. Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties[J]. Alloys and Compd., 1999, 293-295:564-568.
    
    54. H. Imamura, S. Masazumi, S. Yoshihisa. Hydrogenation behavior of propyne on supported Eu-Pd and Yb-Pd bimetallic catalysts with anomalous hydrogen uptake[J].Alloys and Compd., 2000, 303-304: 514-519.
    
    55. H Imamura, N Sakasai, T Fujinaga. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials[J].Alloys and Compd.,1997,253-254:34-37.
    56.H.Y.Shao,Y.T Wang,H.R.Xu,et al.Preparation and hydrogen storage properties of nanostructured Mg_2Cu alloy[J].Solid State Chem,2005,178:2211-2217.
    57.G.Liang,J.Huot,S.Baily,et al.Hyrogen storage in mechanically milled Mg-LaNi_5and MgH_2-LaNi_5 composite[J].Alloys and Compd.,2000,297:261-265.
    58.A.Zaluska,L Zaluski,J.O.Strom-Olsen.Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg_2Ni[J].Alloys and Compd,1999,289:197-206.
    59.王平,张海峰,丁炳哲,等.Mg-50%(ZrFe_(1.4)Cr_(0.6))复合材料的氢化性能[J].金属学报,2000,36(8):893-896.
    60.W.Oelerich,T.Klassen,R.Bormann.Metal oxides as catalysts for improved hydrogen sorption in nanocry stalline Mg-based materials[J].Alloys Compd,2001,315:237-242.
    61.J.S.Benjamin.Dispersion strengthened superalloys by mechanical alloying[J].Met Trans,1995,10(1):2943-2951.
    62.Hiroki Sakaguchi,Tomoyoshi Suenobu,Kiyoaki Moriuchi,et al.The local structure around hydrogen atoms in a hydrogenated amorphous LaNi_(5.0) film studied by neutron diffraction[J].Alloys and Compd.,1995,7:212-217.
    63.C.Suryanarayana.Mechanical alloying and milling[J].Pro Mater Sci,2001,46:171-184.
    64.K.S.Arvind,A.K.Singh,O.N.Srivastava.On the synthesis of the Mg_2Ni alloy by mechanical alloying[J].Alloys and Compd.,1995,227:63-68.
    65.Au Ming,F.Pourarian,et al.TiMn_2-based alloys as high hydrogen storage materials[J].Alloys and compd.,1995,223:53-57.
    66.D.L.Sun,E.Hirotoshi,G,.Franz et al.New approach for synthesizing Mg-based alloys.1999,285:279-283.
    67.P.H.Given,et al.Study on the host/guest model of coal[J].Fuel,1986,65:155-158.
    68.姜瑶瑶.储氢碳材料的制备、结构及性能的研究[D].青岛:山东科技大学,2007.
    69.Sh.G.Zhang,YasutkaaHare,Seijirosuda,et al.Physicochemical and electrochemical hydriding-dehydriding charaeteristics of amorphous MgNix(x=1.0,1.5,2.0)alloys PrePared by mechanical alloying[J].Solid State Eleertochem.2001,5:23-28.
    70.N.Cui,P.He,J.L.Luo.Magnesium-based hydrogen storage materials modified by mechanical alloying[J].Acta Materialia,1999,14(47):3737-3743.
    71.J.L.Bobet,E.Akiba,Y.Nakamura,B.barrier.Study of Mg-M(M=Co,Ni and Fe)mixture elaborated by reactive mechanical alloying-hydrogen sorption properties[J].Hydrogen Engergy,2000,25:987-996.
    72.P.Tessier,E.Akiba,Decomposition of nickel-doped magnesium hydride prepared by reactive mechanical alloying[J].Alloys Compd.,2000,302:215-217.
    73.S.Doppiu,P.Solsona,T.Spassov,et al.Thermodynamic properties and absorption-desorption kinetics of Mg_(87)Ni_(10)Al_3 alloy synthesized by reactive ball milling under H_2 atmosphere[J].Alloys and Compd.,2005,404-406:27-30.
    74.胡卫东.非金属矿物材料[M].北京:化学工业出版社,2006.
    75.L.Schlapbach,A.Zuttel,Hydrogen-storage materials for mobile application,Nature,2001,414:353-358.
    76.C.M.Stander,et al.Kinetics of decomposition of magnesium hydride[J].Inorg and Nucl Chem,1977,39(2):221-223.
    77.M,H,Mintz,Z.Gavra,Z.Hadari.Kinetic study of the reaction between hydrogen and magnesium,catalyzed by addition of indium[J].Inorg Nucl Chem,1978,40:765-770.
    78.M.Y.Song,J.P.Manaud,13.Darriet.Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt.%Ni[J].Alloys and Compd.,1999,282:243-247.
    79.M.Martin,C.Gommel,C.Borkhart,E.Fromm.Adsorption and desorption kinetics of hydrogen storage alloys[J].Alloys and Compd.,1996,238:193-201.
    80.F.Zeppelin,H.Reule,M.Hirscher.Hydrogen desorption kinetics of nanostructured MgH_2 composite materials[J].Alloys and Compd.,2002,330:723-726.
    81.J.Huot,G Liang,S Boily,V A Neste,R Schulz.Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J].Alloys and Compd.,1999,293:495-500.
    82.G.Krasko.Structural properties of BCC and FCC iron:LMTO-ASA-Stoner calculations[J].Solid State Coms,1989,70(12):1099-1103
    83.Z.Luz,J.Genossar,P.S.Rudman.Identification of the diffusing atom in MgH_2[J].Less Common Metals,1980,73(1):113-118.
    84.A.Krozer,B.Kasemo.Hydrogen Uptake by Pd-coated Mg:Absorption Decomposition Isotherms and Uptake Kinetics[J].Less-Common Metals,1990,160:323-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700