金耳子实体多糖的分离纯化、结构鉴定、分子修饰和生物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金耳(Tremella aurantialba Bandoni et Zang),俗称脑耳、金木耳,是我国一种稀有的珍贵食用菌和药用菌,金耳胶质细腻,清润可口,其滋补营养价值,优于银耳、黑木耳等其他胶质菌,是“三耳”(金耳、银耳、黑木耳)中的佼佼者,具有化痰、止咳、定喘、调气、平肝阳之功效,据文献报道,金耳多糖主要具有增强免疫、降血糖、降血脂、抗肿瘤、抗血栓等作用。目前关于金耳的研究主要集中于对金耳的人工驯化、营养成分和生物活性的研究,多糖作为金耳的主要生理活性成分之一,也受到了国内外越来越多的关注,但由于过去多糖技术和分析手段的落后,金耳多糖的化学研究主要集中于对其基本的理化性质、单糖组成和连接位点的分析,多糖的药理活性研究也主要是关于粗多糖的研究,而对均一多糖的结构分析和生物活性还很少涉及。为了系统地研究金耳子实体多糖的化学结构和生物学特性,本研究对金耳子实体多糖进行了提取、分离纯化、结构鉴定、分子修饰和生物活性研究,为合理开发和利用金耳资源奠定扎实可靠的理论基础。
     1金耳子实体多糖分离纯化和理化性质的研究
     金耳子实体经乙醇脱脂和热水抽提得粗提物TAP、TAP经超滤分级得三组分TAPA、TAPB和TAPC,总得率为3.84%,其中TAPA最高,为3.67%,TAPA的多糖含量也比较高,为62.2%。TAPA经阴离子交换后得到TAPA1-TAPA5五个组分,其中TAPA1的得率在五个组分中最高为31.6%;TAPA1经Sephacryl S-500凝胶层析并经检测后得到三个均一多糖:TAPA11、TAPA21和TAPA51.三个均一多糖均为白色絮状样品,均易溶于水,温度升高溶解度升高;在常温和加温条件下均不溶于二甲亚砜。
     2金耳子实体多糖的结构鉴定
     通过单糖组成分析、甲基化分析、红外谱和NMR谱等技术,研究了金耳子实体的2种均一多糖TAPA11和TAPA21的化学结构。
     2.1 TAPA11的结构鉴定
     均一多糖TAPA11的分子量为1.35×106,单糖组成主要由甘露糖、木糖、葡萄糖醛酸组成,其摩尔比约为5:4:1,并含有少量葡萄糖、半乳糖醛酸,是一种酸性多糖;甲基化结果表明,甘露糖主要以1,3.、1,2,3-、1,2,3,4-、1,4-和1-连接;木糖主要以1,2-、1,3-、1,4-和1-连接;葡萄醛酸以1,4-连接。由NMR谱进一步分析结果表明,得出TAPA11的四个结构片段为:
     因此,TAPA11可能的结构为:
     2.2 TAPA21的结构鉴定
     均一多糖TAPA21的相对分子质量为7.6×105,单糖组成和摩尔比为Man:Xyl:GluA=3:3:1,并含有少量Glc和GalA,是一含葡萄糖醛酸的酸性多糖,结合甲基化结果和NMR图谱分析结果,表明TAPA21的一级结构主要是由以下三个片段组成:
     片段Ⅰ组成主链,是由α-(1→3)糖苷键连接的甘露聚糖组成的,Ⅱ和Ⅲ组成侧链,分别连接于主链Ⅰ的2位和4位。TAPA21的一级结构的重复单元可能如下所示:
     3均一多糖TAPA11的分子修饰的研究
     为了进一步提高均一多糖TAPA11的生物学活性及研究多糖的构效关系,对TAPA11进行了衍生化。采用氯磺酸-吡啶法制备了硫酸酯化多糖TAPA11-s,得率为65.25%,利用BaSO4浊度法测得硫酸基含量为2.88 %,取代度为0.05;并对TAPA11-s的红外光谱和核磁共振波谱进行了初步分析,结果均证实了与计算结果相吻合的低取代度;均一多糖溶解于DMSO中以吡啶、乙酸酐为酯化试剂制备了TAPA11的乙酰化多糖衍生物TAPA11-ac,得率分别为56%,乙酰基含量为5.81%,取代度为0.23;TAPA11经脱乙酰基作用制得了TAPA11的脱乙酰基衍生物TAPA11-deac,得率为75%,经测定乙酰基含量和取代度均为0,表明了通过乙酰基作用乙酰基已完全被脱去。
     4金耳子实体生物活性的研究
     分别选择了小鼠(BALB/C57)脾淋巴细胞、小鼠巨噬细胞RAW264.7、来源于大鼠肾上腺嗜铬细胞未成熟神经元的细胞系PC12,以脾淋巴细胞的增殖活性、NO的释放量和H202诱导的PC12细胞损伤修复活性三个指标考察了金耳子实体多糖及其衍生物的生物活性。
     4.1金耳多糖及其衍生物对刺激小鼠脾淋巴细胞的增殖作用作用研究
     采用不同溶剂对金耳子实体依次提取所得组分四组分TA冷水提(TAP1)、TA热水提(TAP)、TA草酸铵提(TAP2)、TA碱提(TAP3)对淋巴细胞均有一定的增殖作用,TAP2的活性最低,其他三组分的活性相当,其中TAP1、TAP的刺激增殖的作用呈现明显的浓度依赖性关系;四个组分在试验浓度下的活性均低阳性对照的活性。综合考虑四个组分的提取得率和提取工艺简化程度,选择了TAP做进一步的分离纯化的研究材料。粗多糖TAP经超滤后所得三组分中,TAPA和TAPB相比原样品TAP活性有所提高,TAPA活性提高显著,且呈一定的剂量依赖性,TAPA在高浓度时刺激淋巴细胞增殖的活性接近于阳性对照的活性。TAPA经阴离子交换层析后所得各组分中,组分TAPA1刺激淋巴细胞增殖的活性随浓度升高而活性增加,呈现浓度依赖性。TAPA1经凝胶层析分离得到的三种均一组分TAPA11、TAPA21和TAPA51中,TAPA11的体外免疫刺激活性最好,高于TAPA在相同浓度下的增殖率。三种衍生物TAPA11-s、TAPA11-ac和TAPA11-deac中,TAPA11-s免疫活性最好,在高浓度下刺激淋巴细胞增殖的活性高于阳性对照,说明TAPA11经硫酸酯化可以提高其生物活性。
     4.2金耳均一多糖TAPA11及其衍生物对小鼠巨噬细胞株RAW264.7生成NO的影响
     TAPA11对RAW264.7产生NO的量在10μg/ml时就出现明显增加,且与样品浓度呈剂量-效应依赖关系,50μg/ml时释放NO的量与阳性对照LPS(1μg/ml)相当;三种衍生物中,乙酰化衍生物TAPA11-ac作用稍明显,50μg/ml的NO的释放量达到了214%,但低于阳性对照LPS(1μg/ml)的水平(258.9%),其次是硫酸化衍生物TAPA11-s,50μg/ml的NO释放量为185.7%,脱乙酰基衍生物TAPA11-deac最差(50μg/ml的NO释放量仅为158.7%),结果表明多糖对巨噬细胞RAW264.7产生NO的影响作用有可能不仅与多糖上的取代基有关系,还可能与取代基的含量(或取代度)有关。
     4.3金耳子实体多糖及其衍生物对经H2O2诱导的PC12氧化损伤的修复活性的研究
     研究了总提取物TAP、超滤后各组分、阴离子层析交换所得各组分、凝胶层析所得的均一多糖及衍生物对经H2O2损伤的PC12的修复作用。结果表明,样品TAP、TAPA、TAPB、TAPC、TAPA1-TAPA5、TAPA11对经H2O2损伤的PC12细胞的均具有一定的修复作用;乙酰化样品TAPA11-ac的修复作用在500mg/mL时的修复率157.63%,与阳性对照NGF的修复率(166.8%)相当,可见乙酰化修饰后的样品与原样品TAPA11相比较可以明显提高经H202损伤的PC12细胞的修复活性;硫酸化样品TAPA11-s和脱乙酰基样品TAPA11-deac的修复作用明显低于原样品TAPA11和阳性对照NGF。
Tremella aurantialba Bandoni et Zang. (known as Jin'er in China), is a kind of edible and medicinal basidiomycetous fungus belonging to the family Tremellaceae. When cooked, it has tender flesh with good appearance, a delicate flavor and pleasant fragrance. It is reported that T. aurantialba exhibits a range of pharmacological properties such as enhancement of the immune system, anti-diabetic, anti-hyperlipidemic, and anti-tumor activity, and anti-thrombotic effects, etc. At present, researches on T. aurantialba have been developed, but most of them were focused on the planting method, nutritional element and biological activities. Although some researches were done on pharmacology, they were mostly on the basis of crude extracts. As an important extract, polysaccharide had attracted more and more attention in past few years. A large part of papers dealed with monosaccharide composition and few ones focused on polysaccharide structure elucidation in past decades due to analysis and technique lag. There was no more detail and useful structural data of polysaccharide provided for development of polysaccharide medicines and functional foods, as well as for expounding biological mechanism. To further develop and utilize the fugus T. aurantialba resourses, isolation, purification, structural elucidation were studied herein, combination with chemical modification and pharmacological tests.
     1 Isolation, purification and physic-chemical characterization of polysaccharides from T. aurantialba fruiting bodies
     The fruiting bodies of T. aurantialba were defatted by 95% ethanol, followed by extraction with hot water and prepared crude material TAP. Ultrafiltration and a series of chromatographic technologies was applied to isolate TAP, affording three crude polysaccharide fractions(TAPA, TAPB and TAPC) and five semi-purified polysaccharide fractions (TAPA1-TAPA5)and three homogeneous polysaccharide fractions TAPA11, TAPA21 and TAPA51. TAPA11, TAPA21 and TAPA51 were white powder samples, and they are soluble in water, but not in DMSO.
     2 Studied on structures of three homogeneous polysaccharides from T. aurantialba fruiting bodies
     The structures of TAPA11 and TAPA21 were investigated by composition analysis, methylation analysis, FT-IR, NMR spectroscopic methods (1D NMR:1H NMR,13C NMR, 2D NMR:COSY, TOCSY, HMQC, HMBC and NOESY spectra).
     2.1 Primary structure of polysaccharide TAPA11
     TAPA11, with a molecular mass of 1.35×106 Da, contained D-mannose, D-xylose and D-glucuronic acid in the ratio of ca.5:4:1, along with trace amounts of D-galacturonic acid and D-glucose. Methylation analysis detected 1-substituted,1,2-disubstituted, 1,3-disubstituted and 1,4-disubstituted xylopyranose residues, and 1-substituted, 1,3-disubstituted,1,2,3-trisubstituted and 1,2,3,4-tetrasubstituted mannopyranose residues, and 1,4-substituted GluA residues. NMR spectra analysis further showed that primary structure of polysaccharide TAPA11 included four sequences as follows:
     So, the predicted repeating primary structure of polysaccharide TAPA11was as follows:
     2.2 Primary structure of polysaccharide TAPA21
     TAPA21, with a molecular mass of 7.6×105 Da, contained D-mannose, D-xylose and D-glucuronic acid in the ratio of ca.3:3:1, along with trace amounts of D-galacturonic acid and D-glucose. Methylation analysis detected 1-substituted,1,2-disubstituted and 1,3-disubstituted xylopyranose residues, and 1,3-disubstituted,1,2,3- and 1,3,4-trisubstituted mannopyranose residues, and 1-substituted GluA residues. NMR spectra analysis further showed that primary structure of polysaccharide TAPA11 included three sequences as follows:
     So, the predicted repeating primary structure of polysaccharide TAPA21 was as follows:
     3 Chemical modification of homopolysaccharide TAPA11
     To further enhance the biological activity and be easy to investigate the relationship between structure and functions, chemical modification for fraction TAPA11, including sulfation, acetylation and deacetylation, were carried out, and derivatives TAPAll-s, TAPA11-ac and TAPA11-deac were prepared, respectively. TAPA11-s, was prepared by the chlorosulfonic acid-pyridine method. The total yield of the sulfated product was approximately 65%, and the content of sulfur was determined to be~2.88% by BaSO4 method, so the D.S. value was calculated to be 0.05. TAPA11-ac was prepared using Pyridine and Acetic anhydride as esterifying agent. The total yield of product was approximately 56%, and the content of acetyl was determined to be 5.81% and the D.S. value was calculated to be 0.23. As for TAPAll-deac, the total yield of product was approximately 75%, and the content of acetyl and the D.S. value were determined to Zero, repectively, indicating that the deacetylation was finished completely from the TAPA11.
     4 Pharmacological properties for polysaccharide fractions
     All polysaccharide fractions were tested in vitro by BALB/C57, macrophages RAW264.7 and PC 12 cell line in our research.
     4.1 Proliferation of mice spleen lymphocytes in vitro
     T. aurantialba fruiting bodies were extracted by four different solvent one by one and prepeared four different extracts (TAP1, TAP, TAP2 and TAP3). Four samples were assayed by proliferation of mice spleen lymphocytes in vitro, and the result showed that four fractions had property to promote proliferation of mouse spleen lymphocytes. TAP1, TAP and TAP3 showed a better activity compared with TAP2, and at the same time samples TAP land TAP had the property in dose-dependent manner. So TPA was selected to further be isolated and investigated. Immunobiological activity assay showed that three fractions of crude polysaccharides (TAPA, TAPB and TAPC), obtained by ultrafiltration (UF) according to different molecular weight, could significantly increase mouse splenocytes (MSLs) proliferation in vitro at variouse testing concentrations. Compared with TAP, TAPA showed markedly increased activity, does-dependently, at the concentration of 500μg/mL, the proliferation rate of MSLs was very close to that of positive control PHA (6μg/mL). The results indicated that UF can play some effect to isolate some fractions which have a better property to stimulate the proliferation of MSLs. Five fractions TAPA 1-TAPA5 were prepared from TAPA after anion-exchange chromatography. Five fractions TAPA 1-TAPA5 markedly increased proliferation rates at various testing concentrations (50,200,500μg/mL) compared with the blank reference. At the concentration of 500μg/mL, samples TAPA1 and TAPA5, almost showed similar MSLs stimulation potency to PHA which was served as a positive reference. Among three samples TAPA11、TAPA21、TAPA51, obtained from TAPA1 after Gel-chromatography, TAPA11 had the best MSLs stimulation potency. At 500μg/mL, TAPA11 had higher the proliferation rate of MSLs (429%) compared with its native fraction TAPA (its proliferation rate was 389%). Among three derivatives, TAPA11-s showed the highest immunobiological activity at various concentrations compared with their original fraction TAPA11, in apparent dose-dependent manner. At the concentration of 500μg/mL, the proliferation rate of MSLs was very close to that of positive control PHA, which indicated sulfation of polysaccharide TAPA 11 was effective.
     4.2 Effect of samples on nitric oxide production by macrophages RAW264.7
     Exposure of RAW264.7 cells to increasing concentrations (10-50μg/mL) of TAPA11 for 24 h resulted in significant increases in NO production (based on nitrite accumulation) compared with untreated controls. Cells treated with 50μg/mL TAPA11 produced the same NO compared with LPS, which was served as a positive control. Among three derivatives, TAPA11-ac was the best one in comparison with the others samples TAPA11-s and TAPA 11-deac.The data indicated that effect of samples on nitric oxide production by macrophages RAW264.7 might be related to not only degree of acetyl group but also different groups.
     4.3 Activity of oxidative injury Rehabilitation of PC12 induced with H2O2
     All samples were applied to investigate rehabilitation rate of PC 12 cell after treatment with H2O2, and the results indicated that samples TAP、TAPA、TAPB、TAPC、TAPA1-TAPA5、TAPA11 had properties to rehabilitate PC12 cell. APA11-ac exhibited a strong bioactivity to rehabilitate PC 12 cell, at the concentration of 500μg/mL, the rehabilitation rate was 157.63%, which was very close to that of positive control NGF and its rehabilitation rate was 166.8%. The data also revealed that acetylation could improve rehabilitation rate of polysaccharide to PC 12 after treatment with H2O2. However, two samples TAPA11-s and TAPA11-deac exhibited a lower bioactivity to rehabilitate PC12 cell in comparison with the native polysaccharide TAPA11 and NGF.
引文
[1]Agrawal P.K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides [J]. Phytochemistry.1992,31(10):3307-3330.
    [2]Ahrazem O, Prieto A, Leal J A, et al. Fungal cell wall galactomannan isolated from Apodus deciduus [J]. Carbohydrate Research,2002,337,1503-1506.
    [3]Bergstrom N, Nair G B, Weintraub A, et al. Structure of the O-polysaccharide from the lipopolysaccharide from Vibrio cholerae 06 [J]. Carbohydrate Research,2002, 337:813-817.
    [4]Borchers A T, Stern J S, Hackman R M, et al. Mushrooms, tumors, and immunity [J]. Proc Soc Exp Biol Med,1999,221 (4):281-293.
    [5]Carlucci M, Pujol C, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity [J]. International Journal of Biological Macromolecules,1997,20(2):97-105.
    [6]Corsaro M M, Castro C D, Naldi T, et al.1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145[J]. Carbohydrate Research,2005,340:2212-2217.
    [7]De Baets, S.; Vandamme, P. Extracellular Tremella polysaccharides:structure, properties and applications [J]. Biotechnology Letter.2001,23:1361-1366.
    [8]Dobruchowska J M, Gerwig G J, Babuchowski A, et al. Structural studies on exopolysaccharides produced by three different propionibacteria strains [J]. Carbohydrate Research,2008,343:726-745.
    [9]Drzeweiecha D, Toukach P V, Arbatsky N P, et al. Structure of the O-specific polysaccharide of Proteus penneri 103 containing ribitol and 2-aminoethanol phosphates [J]. Carbohydrate Research,2002,337:1535-1540.
    [10]Faber E J, Haaster D J, Kamerling J P, et al. Characterization of the exopolysaccharide produced by Streptococcus thermophilus 85 containing an open chain nonionic acid [J]. Europen Journal of Biochemistry,2002,269:5590-5598.
    [11]Ghosh K, Chandra K, Roy S K, et al. Structural studies of a methyl galacturonosyl-methoxyxylan isolated from the stem of Lagenaria siceraria (Lau) [J]. Carbohydrate Research,2008,343:341-349.
    [12]Green L C, Wagner D D A, Glowgowski J, et al. Analysis of nirtate, nitrite and 15N nitrate in biological fluids[J]. Analytical Biochemistry.1982,1236:131-138.
    [13]Jachymek W, Czaja J, Niedziela T, et al. Structural studies of the O-specific polysaccharide of Hafnia alvei strain PCM 1207 lipopolysaccharide [J]. European Journal of Biochemistry,1999,266:53-61.
    [14]Kariya Y, Watabe S, Kyogashima M, et al. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus[J]. Carbohydrate Research,1997,297:273-279.
    [15]Kiho T, Kochi M, Usui S, et al. Antidiabetic effect of an acidic polysaccharide(TAP) from Tremella aurantia and its degradation product (TAP-H)[J]. Biological andarmaceutical Bulletin,2001,24(12):1400-1403.
    [16]Kiho T, MorimotoH, KobayashiT, et al. Effect of a polysaccharide from the bodies of Tremella aurantia glucose metabolism in mouse live [J]. Biosci.Biotechnol.Biochem. 2000,64:417-419.
    [17]Kogan G, Uhrin D, Brisson J R, et al. Structural and immunochemical characterization of the type III group B Streptococcus capsular polysaccharide [J]. The Journal of Biological Chemistry.1996,271(16):8786-8790.
    [18]Kondakova A N, Fudala R, Senchenkova S N, et al. Structure of a lactic acid ether-containing and glycerol phosphate-containing O-polysaccharide from Proteus mirabilis O40[J]. Carbohydrate Research,2005,340:1612-1617.
    [19]Kondakova A N, Senchenkova S N, Gremyakov A I, et al. Structure of the O-polysaccharide of Proteus mirabilis 038 containing 2-acetamidoethyl phosphate and N-linked D-aspartic acid [J]. Carbohydrate Research,2002,338:2387-2392.
    [20]Landersjo C, Weintraub A, Widmalm G, et al. Strutural analysis of the O-antigen polysaccharide from the shiga toxin-producing Escherichia coli O172[J]. Europen Journal of Biochemistr,2001,268:2239-2245.
    [21]Leslie M R, Parolis H, Parolis L A S, et al. The structure of the O-antigen of Escherichia coli 0116:K+:H10[J]. Carbohydrate Research,1999,321:246-256.
    [22]Lin H Y, Juan S H, Shen S C, et al. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1.
    Biochemcial Pharmacology [J].2003,66:1821-1832.
    [23]Liu C H, Li X D, Li Y H, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry, 2008,110:807-813.
    [24]Mazumder S, Ghosal P K, Pujol C A, et al. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta)[J]. Biol Macromol,2002,31:87-95.
    [25]Mirzaeva M R, Rakhamanherdyeva R K, Kristallovich E L, et al. Water-soluble polysaccharides of seeds of the Genus Gleditsia[J]. Chemistry of Natural Compounds, 1998,34(6):653-655.
    [26]Mondal S, Chakraborty I, Rout D, et al. Isolation and structural elucidation of a water-soluble polysaccharide (PS-I) of a wild edible mushroom, Termitomyces striatus [J]. Carbohydrate Research,2006,341:878-886.
    [27]Mulloy B, Mourao PAS, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR [J]. Journal of Biotechnology,2000,77(1):123-135.
    [28]Omarsdottir S, Petersen B O, Barsett H, et al. Structural characterisation of a highly branched galactomannan from the lichen Peltigera canina by methylation analysis and NMR-spectroscopy [J]. Carbohydrate Polymers,2006,63:54-60.
    [29]Pereira M S, Vilela-Silva A E S, Valente A, et al. A 2-sulfated,3-linked a-L-galactan is an anticoagulant polysaccharide [J]. Carbohydr Res,2002,337:2231-2238.
    [30]Perepelov A V, Zablotni A, Shashkov A S, et al. Structure of the O-polysaccharide and serological studies of the lipopolysaccharide of Proteus mirabilis 2002 [J]. Carbohydrate Research,2005,340:2305-2310.
    [31]Rout D, Mondal S, Chakraborty I, et al. The structure of a polysaccharide from Fraction-Ⅱ of an edible mushroom, Pleurotus florida [J]. Carbohydrate Research.2006, 341:995-1002.
    [32]Schoniger, W. Rapid microanalytical determination of halogens and sulfur and organic substances [J]. Mikrochem Acta,1956, pp 869-873.
    [33]Serrato R V, Sassaki G L, Gorin P A J, Leonardo M. Cruz L M, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica[J]. Carbohydrate Polymers,2008,73:564-572.
    [34]Suarez E R,Kralovec J A,Noseda M D, et al. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa[J]. Carbohydrate Research,2005,340:1489-1498.
    [35]Tao Y, Zhang L, Cheung P C K. Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides [J]. Carbohydr Res,2006,341:2261-2269.
    [36]Taylor R L, Shively J E, Conrad H E. Stoichiometric reduction of uronic acid carboxyl groups in polysaccharides [J]. MethOrds Carbohydrate Chemistry,1976,7:149-151.
    [37]Urai M, Yoshizaki H, Anzai H, et al. Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4 [J]. Carbohydrate Research,2007,342:927-932.
    [38]Vinogradov E, Petersen B O, Duus J (?), et al. The structure of the glucuronoxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) grown as one cell biomass in submerged culture [J]. Carbohydrate Research,2004,339:1483-1489.
    [39]Wasser S P, Weis A L. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms:a modern perspective [J]. Crit Rev Immunol,1999,19(1): 65-96.
    [40]Yang Y, Zhang J S, Liu Y F, et al. Structural elucidation of a 3-O-methyl-d-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius [J]. Carbohydrate Research,2007,342:1063-1070.
    [41]Ye L B, Zhang J S, Ye X J, et al. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-Ⅱ) from Ganoderma lucidum fruiting bodies [J]. Carbohydrate Research,2008,343:746-752.
    [42]Young S H, JacobsR R. Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue [J]. Carbohydrate Research,1998,310(1):91-99.
    [43]Zhang P, Zhang L, Cheng S. Effects of urea and sodium hydroxide on the molecular weight and conformation of α-(1→3)-D-glucan from Lentinus edodes in aqueous solution [J]. Carbohydrate Research,2000,327(2):431-438.
    [44]暴增海,马桂珍,张昌兆.我国金耳资源及其开发利用研究[J].自然资源,1996,(4):34-37.
    [45]柴红梅,赵永昌,李树红,钟明惠.金耳酵母状抱子发酵产多糖研究[J].中国食用菌,2008,27(3):39-40.
    [46]陈芝兰,何建清,张涪平.金耳分离试验简报[J].食用菌,2005(6):14-15.
    [47]程富胜,胡庭俊,梁纪兰,等.黄芪多糖对小鼠腹腔巨噬细胞一氧化氮生成的影响[J].中兽医医药杂志,2001,20(3):3-4.
    [48]邓云霞,瞿伟菁,曹群华,等.金耳胞外多糖的结构分析[J].中草药,2005,36(4):397-398.
    [49]邓云霞.金耳胞外多糖的结构分析及其生物学活性的探讨[D].华东师范大学硕士学位论文,2004.
    [50]杜巍,李元瑞,袁静.食药用菌多糖生物活性与结构关系[J].食用菌,2001,(2):3-5.
    [51]丁湖广.金耳特性及优质栽培技术[J].北京农业,2006(10):20-21.
    [52]董群,方积年.寡糖及多糖甲基化的发展及现状[J].天然产物开发与研究,1995,7(2):60-65.
    [53]冯慧琴,杨庆尧,杨晓彤,等.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报,(自然科学版),2001,(3):91-96.
    [54]方一苇.具有药理活性多糖的研究现状[J].分析化学,1994,22(9):955-960.
    [55]郭春沅.真菌多糖的免疫调节作用[J].中国食用菌,1999,19(3):6-7.
    [56]侯敢,黄迪南,祝其锋.猪苓多糖对小鼠腹腔巨噬细胞一氧化氮生成的影响及其机制[J].中国老年杂志,2000,20:233-235.
    [57]贺青提,张松.食(药)用菌多糖免疫增强作用机制的研究进展[J].食用菌学报,2004.11(2):52-58.
    [58]胡顺珍,贾乐.食药用真菌多糖构效关系研究进展[J].生物技术通报,2007,4:42-44.
    [59]霍光华,李来生.波谱学在多糖结构分析中的应用[J].生命的化学,2002,22(2):194-196.
    [60]季玉彬,高世勇.多糖的研究进展[J].中草药,2003,34:45-53.
    [61]李秀花,杨莉莉,祝寿芬.金耳浓缩液对小鼠免疫活性的影响[J].山西医科大学学报,2000,31(3):206-207.
    [62]李卫旗,何国庆,李志昂.金耳水溶性多糖JP-2的分离及化学结构研究[J].中国食品学报.2003,3(3):13-17.
    [63]李卫旗,陈云龙,皇甫宏.金耳多糖的提取及其性能研究[J].菌物系统,1999,18(3):330-333.
    [64]李小明,陈敏,戴如琴,等.金耳菌发酵液多糖组分A的初步研究[J].中国中药杂志,1997,22(12):745-746.
    [65]梁进,张剑韵,崔莹莹等.茶多糖的化学修饰及体外抗凝血作用研究[J].茶叶科学,2008,28(3):166-171.
    [66]梁忠岩,苗春艳,张翼伸.化学修饰对斜顶菌多糖抑瘤活性影响的研究[J].中国药学杂志,1996,31(10):613-615.
    [67]刘正南,郑淑芳.金耳的生理特性及有效优良菌种的制备原理[J].中国食用菌,1994,14(6):9-10.
    [68]刘正南,郑淑芳.金耳人工栽培技术[M].北京:金盾出版社,2002.3
    [69]李艳辉,王琦.真菌多糖的生物活性与构效关系研究评介[J].吉林农业大学学报,2002,24(2):70-74.
    [70]刘春卉,瞿伟菁,张雯,焦磊.药用真菌金耳的rDNA ITS序列分析与鉴别[J].天然产物研究与开发,2007,19:216-22.
    [71]刘春卉,谢红,苏槟楠,等.金耳菌丝发酵产物抗血栓的生物活性研究[J].天然产物的研究与开发.2003,15(4):289-292.
    [72]刘春卉,荣福熊,陆桂莲.金耳多糖的研究初报[J].食用菌,1996,18(3):4-5.
    [73]刘春卉,谢红.金耳子实体和发酵菌丝体多糖的分离、纯化与结构的比较研究[J].菌物系统,1998,17(3):246-250.
    [74]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,9:39-43.
    [75]毛述永.金耳菌丝体多糖、子实体多糖的初步化学及降血糖作用的比较研究[D]华东师范大学硕士学位论文,1999.
    [76]毛述永,吕庆茂,翟伟菁.金耳多糖降血糖效应的研究[J].华东师范大学学报(自然科学版,生物学专辑),1997,74-77.
    [77]盂丽君,刘光珍.金耳糖肽胶囊的基础药理学研究[J].食用菌学报,2000,7(3): 31-36.
    [78]孟丽君,刘黄华.保健型金耳胶囊的研制[J].中国食用菌,1999,18(3):35-36.
    [79]孟丽君,赵玉明,刘芰华,等.金耳糖肽胶囊的基础药理学研究[J].食用菌学报,2000,7(3):31-36.
    [80]孟丽君,刘芰华,潘佩平.金耳糖肽胶囊的Ⅱ期临床观察[J].中国食用菌,2002,21(4):40-41.
    [81]牛四坤,鲁晓霞,谢红.金耳菌丝体抗凝血有效部位初筛[J].中国中医药信息杂志,2007,14(3):37-38.
    [82]裴武红,舒翠玲,陈兴等.神经生长因子介导的促神经生长化合物筛选系统的建立[J].生物化学与生物物理进展,2001,28:556-560.
    [83]瞿伟菁,黄福麟,吴制生.无腺体棉籽壳代料栽培金耳研究[J].上海农业学报,1997,13(4):56-60.
    [84]瞿伟菁,汪长根.金耳化痰止咳降血糖的药理试验[J].上海农业学报,1998,14(1):58-62.
    [85]瞿伟菁,张学锋,唐绍祥,等.金耳化痰止咳降血糖的药理试验[J].上海农业学报,1998,14(1):58-62.
    [86]孙才华,谷新利,卢慧.免疫活性多糖作用机制的研究进展[J].中兽医医药杂志,2006,25(4):19-21.
    [87]苏槟楠,谢红,王长青,等.金耳发酵液对正常家兔血糖及糖耐量的影响[J].中国食用菌,2004,23(5):41-43.
    [88]苏槟楠,王长青,韩建欣,等.金耳发酵液对糖尿病小鼠降血糖作用的研究[J].中国食用菌,2006,25(5):43-44.
    [89]史宝军,聂小华,许泓渝.灰树花多糖硫酸酯的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [90]田庚元,李寿桐,宋麦丽,等.牛膝多糖硫酸酯的合成及其抗病毒活性[J].药学学报.1995,30(2):107-111.
    [91]田庚元,冯宇澄.多糖类免疫调节剂的研究和应用[J].化学进展,1994,6(2):114-124.
    [92]王长云,管华诗.多糖抗病毒作用研究进展Ⅰ.多糖抗病毒作用[J].生物工程进展, 2000,20(1):17-20.
    [93]汪虹,瞿伟菁,褚书地,等.金耳菌丝体多糖对小鼠高脂血症的防治作用[J].营养学报,2002,24(4):431-432.
    [94]汪虹,瞿伟菁,曹群华.金耳的液体发酵研究[J].食用菌学报,2003,10(4):29-33.
    [95]汪虹,瞿伟菁,褚书地,等.金耳菌丝体多糖对小鼠高脂血症的防治作用[J].营养学报,2002,24(4):431-432.
    [96]王金华,薛宝云.金耳发酵液多糖免疫调节作用的实验研究[J].中国中医药科技,1997,4(5):282-283.
    [97]王索安.葡聚糖对实验性肝细胞损伤的保护作用及其机制[J].南京医科大学学报,2002,22(2):173-174.
    [98]王顺春,方积年.香菇多糖硫酸化衍生物的制备及其结构分析[J].生物化学与生物物理学报,1999,31(5):594-597.
    [99]王荫棠,荣福雄.墓头回、金耳及贞芪扶正冲剂对小白鼠免疫功能影响的初步观察[J].兰州医学院学报,1989,15(2):59-65.
    [100]王兆梅,李琳,郭祀远,等.活性多糖构效关系研究评述[J].现代化工,2002,22(8):18-22.
    [101]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学评述与进展,2000,28(2):240-247.
    [102]熊耀康,俞冰.金耳抗炎作用实验研究[J].浙江中医学院学报,1999.23(3):50-53.
    [103]熊谱成.几种有开发价值的新药用菌.专业户,2004,4:43.
    [104]谢红,刘春卉,苏槟楠,等.金耳8254的营养价值和药理研究[J].中国食用菌,2000,19(6):39-41.
    [105]肖朱洋.多糖的结构分析与构效关系[J].海峡药学,2007,19(3):98-100.
    [106]徐锦堂主编.中国药用真菌学[M].1996,pp 436-437.
    [107]杨娟,吴谋成,张声华.香菇子实体蛋白多糖Le-3的结构性研究[J].中草药,2001,32(9):769-771.
    [108]杨立.二维核磁共振简明原理及图谱解析[M].兰州:兰州大学出版社.1996.
    [109]杨仁智,张劲松,唐庆九.高效阴离子交换色谱法测定毛头鬼伞多糖中的单糖组成[J].中国食用菌,2005,24(5):42-44.
    [110]叶立斌.灵芝子实体多糖(缀合物)的纯化、结构鉴定、分子改性和生物学活性的研究(D).南京农业大学博士学位论文,2009.
    [111]殷红,杜冠华.促神经细胞分化小分子活性物质的筛选研究[J].中国药理学通报,2005,21(2):174-181.
    [112]苑小林,张培德,陈石根.金耳水溶性多糖的部分化学性质及抑瘤试验[J].复旦大学学报(自然科学版),1996,35(6):703-706.
    [113]张培敏,朱岩,凌艳艳.离子色谱脉冲安培检测法测定水体颗粒物与河口沉积物中的糖[J].浙江大学学报,2004,31(4):431-434.
    [114]杨仁智,张劲松,唐庆九.高效阴离子交换色谱法测定毛头鬼伞多糖中的单糖组成[J].中国食用菌,2005,24(5):42-44.
    [115]张安强,张劲松,潘迎捷.食药用菌多糖的提取、分离纯化与结构分析[J].食用菌学报,2005,12(2):62-68.
    [116]郑建仙.功能性食品[M].北京:中国轻工业出版社,2002,pp 53.
    [117]张丽,彭少平,韩蓉,等.灵芝酯溶性提取物诱导PC12细胞分化的研究[J].中国药理学通报,2005,21:662-669.
    [118]张丽萍,张翼伸.硫酸化对金顶侧耳多糖构象及生物活性的影响[J].生物化学与生物物理学报,1994,26(4):417-421.
    [119]张俐娜,丁琼,张平义,等.茯苓菌核多糖的分离和结构分析[J].高等学校化学学报,1997,18(6):990-993.
    [120]张林.金耳栽培技术[J].农村实用技术.2005(11):37-38.
    [121]张培敏,朱岩,凌艳艳.离子色谱脉冲安培检测法测定水体颗粒物与河口沉积物中的糖[J].浙江大学学报,2004,31(4):431-434.
    [122]张骐,阎志勇,贾学江,等.灵芝多糖肽对氧化应激损伤PC12细胞的保护作用[J].中国临床康复,2005,9(32):138-140.
    [123]张雯,翟伟菁,张晓玲,等.金耳菌丝体多糖降血糖作用研究[J].营养学报,2004,26(4):300-303.
    [124]张雯.金耳菌丝体多糖对高血糖大鼠糖代谢及慢性并发症相关因素的影响[D].华东师范大学硕士学位论文,2001.
    [125]张雯,瞿伟菁,张晓玲,等.金耳菌丝体多糖降血糖作用研究[J].营养学报,2004, 26(4):300-303.
    [126]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,197.
    [127]周光炎.免疫学原理[M].上海:上海科学技术文献出版社,2000,110-111.
    [128]周林,郭祀远,郑必胜,等.裂褶多糖的乙酰化及光谱分析[J].华南理工大学学报(自然科学版),2006,34(12):88-91.
    [129]周玲.药食两益金耳与膳食[J].食用菌,2002,5:38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700