微生物有机肥缓解黄瓜枯萎病的生物学效应及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜镰刀霉菌枯萎病(Fusarium wilt)是黄瓜连作栽培中一种危害最大的土传病害,产生黄瓜连作障碍的主要原因是黄瓜连作导致土壤的微生物区系恶化,土壤有益微生物受抑制、有害微生物成为优势菌群,致使尖孢镰刀菌轻易侵染黄瓜根部的导管组织而发生。很多研究表明,有机肥料含有各种营养元素和生理活性物质,可改善作物根系微生态环境中的理化性状以及微生物活性,在一定程度上能提高作物的抗病害能力。黄瓜连作障碍的防治方法有很多种,有化学、物理和生物等方法,但生物防治是目前公认的最有前景的防治方法。本研究从黄瓜枯萎病的生物防治入手,进行了多方面的探索,得到如下结果:
     1、从枯萎病发病极为严重的黄瓜田块中的健康黄瓜植株根际土壤筛选到对黄瓜枯萎病致病菌尖孢镰刀菌具有强拮抗作用的拮抗菌二株(005号和021号),他们对病原菌的平板抑菌率大于70%,无菌培养液(胞外拮抗物质)的抑菌率大于40%,并且互相之间无拮抗现象,因此,可以将005号和021号二株拮抗菌复配应用。将二株高效拮抗菌进行常规的形态观察、生理生化鉴定和分子生物学鉴定,确定005号拮抗菌为炭疽芽孢杆菌(Bacillus anthracis),021号拮抗菌为多粘芽孢杆菌(Paenibacillus polymyxa)。
     2、施用生物酶解制成的氨基酸有机肥料(AAF)能使黄瓜生物学性状得到显著改善,黄瓜的叶绿素增加、叶面积增大、光合作用增强,干重提高;连作土壤的放线菌数量增加1.57-2.18倍,真菌数量增加2.22-8.43倍,尖孢镰刀菌明显减少,真菌/细菌比值显著提高,尖孢菌/真菌比值显著降低,对枯萎病的防治率最高达80%以上。说明AAF能通过激发土壤微生物活性而缓解黄瓜连作障碍的产生。
     3、连作土灭菌能消除土壤中所有的不利生物因素,改善黄瓜的生长。连作土灭菌增加黄瓜叶片的SOD、POD、CAT活性及可溶性蛋白含量,降低MDA含量。连作土灭菌改善土壤中的细菌、放线菌和真菌生长,提高其各种微生物的数量及其多样性,但消除了土壤中的尖孢镰刀菌,因而,黄瓜枯萎病也不致发生。这也说明生物因素是造成土壤连作障碍的主要因素。
     4、将吸附有混合微生物菌剂的有机肥(微生物有机肥)进行连续三年的田间试验(共四个田间试验)表明,普通有机肥处理,黄瓜枯萎病的发病率高达30.3%至90.4%,而微生物有机肥处理,黄瓜枯萎病的发病率则仅为2.9%至13.5%。在四个试验中,微生物有机肥的对黄瓜枯萎病的防治率分别达到73.6%、82.5%、96.3%和92.6%。黄瓜枯萎病发病率的下降,显著减少了黄瓜产量损失,微生物有机肥处理的产量分别比对照高98.8%、25.6%、73.3%和198.6%。
     5、土壤的DGGE和Biolog分析显示,施用微生物有机肥能改变土壤微生物群落结构,尖孢镰刀菌(Fusarium oxysporum)的数量显著减少。用扫描电镜结果显示,黄瓜发病部位的导管中分布着很多的类似菌丝的管状物,同时伴生大量无定形沉淀物,并且管状物越多,伴生的无定型沉淀物也越多,直至将导管全部堵塞。X射线电子探针元素显微分析发现,类似菌丝的管状物和伴生的沉淀物具有基本相同的成分,均含有较高的Ca和P,较低的C和O;与活的菌丝和植物的导管组织(两者也具有基本相同的元素组成)均含有较高的C和O,较低的Ca和P有显著区别。
Fusarium wilt disease (FWD), a vascular wilt of cucumber plants caused by Fusarium oxysporum f. sp. Cucumerinum J. H. Owen, is one of the most devastating diseases. Organic amendments are routinely used to improve soil structure, soil biochemical and microbial properties and plant nutrition. Some chemical and physical way, can control soil borne pathogen to some extent, but biocontrol is a best promising way, The objectives in present study were to make and evaluate a bio-organic fertilizer containing Paenibacillus polymyxa and Bacillus anthracis for cucumber production in a continuously cropping soil where Fusarium wilt disease is a problem and to quantify Fusarium population after and before bio-organic fertilizer application, the results obtained were as follows.
     1. Two antagonistic strains (No.005 and No.021) were isolated from the rhizosphere soil of health cucumber plants in the field of severe diseased Fusarium wilt of cucumber plant. The inhibition rate of them to Fusarium oxysporum is more than 70%, and the inhibition rate of the Bacteria-free filtrate of antagonistic bacteria is more than 40%. No.005 and No.021 were Bacillus anthracis and Paenibacillus polymyxa by the ways of confirming of culture, physico-biochemical characteristics, microscopical evaluation and molecular identification. The co-culture test showed that the two strains had no antagonistic action if they were cultivated separately in the medium plate. Therefore, they should be applied in mixed culture of two strains.
     2. Pot experiments were carried out to investigate effect of application of amino acid fertilizer (AAF) on growth of cucumber and soil microorganism under continuous mono-cropping. The soil which had been planted with continuously mono-cropping cucumber for 4 seasonal crops and had a severe continuous obstacle, was used in the experiment. Results show that application of AAF increased chlorophyll content, leaf area, photosynthesis rate, and dry weight of the cucumber plants. Moreover, after the application of AAF with high-quality carbon and nitrogen, the number of actinomycetes was increased by 1.57-2.18 folds, fungi by 2.22-8.43 folds, while the number of Fusarium oxysporum, a witling disease causing fungi, was significantly decreased. The ratio of fungi/bacteria was significantly increased while the ratio of F.oxy. to fungi was significantly decreased. The controlling rate of Fusarium wilt was more than 80%. The results suggested that AAF application could significantly promote the growth of cucumber plants, stimulate microbial activities in the soils, and alleviate the adverse effect of continuous mono-cropping of cucumber.
     3. Soil sterilization can eliminate the adverse effect of soil borne pathogen on crop growth, Pot experiments were carried out to investigate effect of sterilization and application of AAF on growth of cucumber plants and soil microflora in a continuously mono-cropping soil. The results indicated that soil sterilization could improve growth of cucumber plants to greater extent, and SPAD value, plant height, leaf area and fresh weight of cucumber plants grown in sterilized soil, for example, were much higher than those in non-sterilized soil. The differences of cucumber growth between the sterilized soil and non-sterilized soil decreased with increase of AAF application, showing that the application of AAF could solve some problems coming from continuous mono-cropping system. SOD, POD and CAT activities in the leaves of cucumber plants grown in sterilized soil were higher than those in CK, and soluble protein contents of all treatments in sterilized soil were much higher than those in non-sterilized soil while MDAs were significantly lower. The number of bacteria and fungi in sterilized soil was increased by 1.89-3.03 folds and 6.96-2.43 folds, respectively, compared with those in non-sterilized soil and the ratio of fungi to bacteria was significantly increased. In addition, Actinomycetes were slightly enhanced. The analyses of PCR-DGGE profiles showed that the number of bands on the lanes of DGGE profiles in sterilized soil was more than those in non-sterilized soil, with low similarities of DGGE profiles, and the diversities of soil microorganism in sterilized soil were increased compared to those in non-sterilized soil. The incidence of Fusarium wilt of cucumber plants grown in non-sterilized soil was up to 31.2%-68.8%, but no incidence was found in sterilized soil.
     4. Four field experiments were conducted to evaluate the effect of organic fertilizer application either with or without antagonistic bacteria on the impact of Fusarium wilt disease in cucumber. The incidence of Fusarium wilt disease was 5.3-13.5% for cucumber plants treated with bio-organic fertilizer while it was 30.3-90.4% in controls applied only with organic fertilizer. The inhibition rates of Fusarium wilt disease were 73.6%,82.5%, 96.3% and 92.6% in the four independent field experiments and accordingly, cucumber yields treated with bio-organic fertilizer were increased by 98.8%,25.6%,73.3% and 198.6% respectively compared with CK. The application of Bio-organic fertilizer had a great potential for the control of Fusarium oxysporum wilt disease in cucumber plants.
     5. Denaturing gradient gel electrophoresis (DGGE) and Biolog analysis showed a significant change in soil bacterial community after bioorganic fertilizer application. The numbers of colony forming units (CFU) of Fusarium oxysporum in bio-organic fertilizer applied soils were significantly decreased compared with controls. Scanning electron micrographs of cucumber basal stems showed a presence of mycelia-like mini strands accompanied by an amorphous substance within the xylem vessels. This amorphous substance and mini strands were richer in calcium and phosphorus but had a lower carbon and oxygen than the living mycelia.
引文
布斯[英],陈其焕译.镰刀属.北京:农业出版社,1988,31-37.
    蔡新忠,郑重.植物系统获得性抗病性的产生机理和途径.植物保护学报,1999,26:183-90.
    蔡燕飞,廖宗文,章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响.应用生态学报,2003,14(3):349-353.
    蔡燕飞,廖宗文.FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果.中国农业科学,2003,36(8):922-927.
    陈刚,丘小庆,卢晓风,等.多肽APS体外抗病原真菌活性及其抗菌机理初探.四川大学学报(医学版),2003,34(2):220-222.
    陈贵林,高绣瑞.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响.中国农业科学,2002,35(2):187-191.
    陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002:119-124.
    陈喜文,郝友进,陈德富,张文勤.含氮杂环化合物对黄瓜白粉病抗性的诱导作用及防御酶系统的关系.植物病理学报,2003,33(6):535-540.
    陈振德,黄俊杰,何金明,等.土施L-色氨酸对甘蓝产量和养分吸收的影响.土壤学报,1997,34(2):200-205.
    陈芝兰,张涪平,蔡晓布,等.秸秆还田对西藏中部退化农田土壤微生物的影响.土壤学报,2005,42(4):696-699.
    陈志谊,许志刚,陆芳等.拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报,2001,14:44-48.
    迟淑娟,路文靖,于相存.西瓜土传病害发生及综合防治技术.蔬菜,2004,7:23
    丁九敏,高洪斌,刘玉石等.黄瓜霜霉病抗性与叶片中生理生化物质含量关系的研究辽宁农业科学,2005(1):11-13.
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    范青,田世平,徐勇.丝孢酵母对苹果采后灰霉病和青霉病抑制效果的影响.中国农业科学,2001,34:163-168.
    方中达.植病研究方法.北京:中国农业出版社,1998,(3):62-75.
    冯洁,陈其瑛,石磊岩等.棉花幼苗根系分泌物与枯萎病关系的研究.棉花学报,1991,3:89-96.
    高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,1998,9(5):549-554.
    郜凤梧.黄瓜四季栽培.科学技术文献出版社,1994.
    葛会波,高志华,李青云等.菌剂对连作草莓影响的研究.河北科技师范学院学报,2004,18:14-19.
    葛秀春,宋凤鸣,陈永叶等.苯并噻二唑诱发水稻对稻瘟病抗性中防卫相关酶活性的变化.中国水稻科学,2002,16:171-175.
    龚国强,于梁,周山涛.低温对黄瓜果实超氧化物歧化酶(SOD)的影响.园艺学报,1996,23(1):97-98.
    郭润芳,史宝胜,高宝嘉等.木霉菌在生物防治中的应用与研究进展.河北林果研究,2001,16:294-298.
    郝变青,马利平,乔雄梧,等.芽孢杆菌BC9821拮抗蛋白性质及其对黄瓜枯萎病菌的抑菌作用.石河子大学学报,自然科学版,2004,22(增刊):91-95.
    何文寿.设施农业中存在的土壤障碍及其对策研究进展.土壤,2004,36(3):235-242.
    和凤美,何月秋,唐文华等.生防菌株B9601对促进植物生长作用的研究.中国农业通报,2002,18:62-64.
    贺字典,高玉峰.生防菌在植物病害防治中的研究进展.河北职业技术师范学院学报,2003,17:56-59.
    胡江春,薛德林等.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报,2004,15:1963-1966.
    胡元森,吴坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,2004,37(10):1521-1526.
    黄京华,骆世明,曾任森.丛枝茵根茵诱导植物抗病的内在机制.应用生态学报,2003,14:819-822.
    黄仲生,杨玉茹.黄瓜枯萎病病原菌鉴定及防治研究.华北农学报,1990,5:99-104.
    李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社,1996:178-181.
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:182-185.
    李洪连,王守正,王金生等.抗菌激发子诱导黄瓜产生对炭疽病的抗性.植物生理学报,1993,19:320-324.
    李洪连,王守正,袁红霞等.植物诱导抗病性研究的现状与展望.河南农业大学学报,1994,28: 219-229.
    李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片一些酶活生生的变化.植物病理学报,1991,21(4):277-283.
    李妙等.不同抗枯萎病类型棉花品种超氧化物歧化酶和过氧化物酶活性研究.华北农学报,1993,8(增刊):119-122.
    林福呈,陈振明,李德葆.毛壳菌及其生防作用.生命科学探索与进展.杭州大学出版社,1998:480-484.
    刘凤权,王金生.水杨酸对水稻防卫反应酶系的系统诱导.植物生理学通讯,2002,38:121-123.
    泷岛.防治连作障碍的措施.日本土壤肥料学杂志,1983(2):170-178.
    马利平,高芬,乔雄梧.家畜沤肥浸渍液对黄瓜枯萎病的防治及作用机理探析.植物病理学报,1999,29(3):270-274.
    马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,2004,15(6):1005-1008.
    毛树春,邢金松,刘传亮等.棉花抗氧化系统对黄萎病的反应.棉花学报,1996,8:92-96.
    缪卫国,张升,田逢秀,等.长绒棉区棉花枯萎病菌生理Ⅱ、Ⅲ型研究.西北农业大学学报,2000,28(2):22-26.
    潘超美,郭庆荣,邱桥姐等.VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,2000,9:304-306.
    潘汝谦,黄旭明,古希昕.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化.植物病理学报,1999,29(3):287-288.
    潘亚清,史淑芝.植物的诱导抗病性研究进展.植物保护科学,2005,8:366-369.
    乔宏萍,宗兆锋.用重寄生菌防治植物病害.中国生物防治,2002,18:176-179.
    阮维斌,王敬国,张福锁,等.溴甲烷灭菌对大豆苗期根系生长的影响.生态学报,2001,21(5):759-764.
    申卫星,陈玉,吕士恩等.西瓜枯萎病菌对西瓜及其嫁接砧木的接种试验和绿原酸、阿魏酸变化动态同抗病性的关系.山东农业大学学报,1998,29:469-477.
    松田明.土壤病害の生态防除.植物防疫,1978,32:231-237.
    宋述尧.玉米秸秆还田对塑料大棚蔬菜连作土壤改良效果研究.农业工程学报,1997,13:135-139.
    唐家斌,马炳田,王玲霞等.用木霉、类木霉对水稻纹枯病进行生物防治的研究.中国水稻科学,2002,16:63-66.
    王革,李梅云,段玉琪等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究.云南大学学报,2001,23:222-226.
    王海河,林奇英,谢联辉,吴祖建.黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响.植物病理学报,2001,31(1):43-49.
    王玲平.黄瓜感染枯萎病菌后生理生化变化及其与抗病性关系的研究.山西农业大学硕士研究生毕业论文,2001.
    王生荣,朱克恭.植物系统获得抗病性研究进展.中国生态农业学报.2002,10(2):32-35.
    王雅平等.小麦对赤霉病抗性不同品种的SOD活性.植物生理与分子生物学学报,1993,19(4):353-358.
    王燕,宗兆锋,程联社.放线菌在植物病害生物防治中的应用.杨凌职业技术学院学报,2005,4:21-23.
    吴凤芝,刘德,栾非时.大棚土壤连作年限对黄瓜产量和品质的影响.东北农业大学学报,1999,30(3):245-248.
    吴凤芝,刘德,王东凯等.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,1998,4:5-9.
    吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响.农业系统科学与综合研究.2002,18(1):20-22.
    吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,2000,31:241-247.
    吴凤芝等.大棚番茄土壤微生物区系研究.北方园艺,1999,3:1-3.
    吴功振等.对白叶枯病抗性不同的水稻品种同工酶凝胶电泳的观察.植物学报,1981,23(3):251-253.
    吴岳轩等.杂交稻对白叶枯病的诱导抗性与细胞内防御系统关系初步研究.植物病理学报,1996,26(2):127-131.
    夏淑芬.微生物学.北京:高等教育出版社,1992,p 324-326.
    肖宏,毛志泉,于明革,等.连作土与灭菌土对平邑甜茶幼苗生长发育的影响.果树学报,2004,21(4):370-372.
    徐建华,利容千,王建波.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物
    病理学报,1995,25(3):239-242.许煜泉,唐玮宁,郑有丽等.筛选假单胞菌株M18防治大棚黄瓜枯萎病害.上海交通大学学报,1999,33:210-213闫敏.黄瓜枯萎病的生物防治研究.四川农业大学硕士学位论文.2003杨海莲,孙晓璐,宋未.植物促生细菌诱导水稻对白叶枯病抗性的初步研究.植物病理学报,1999,29:256-287.杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,2000,30:106-110.杨文博,冯波,佟树敏.链霉菌Sol菌株几丁质酶对植物病害真菌的拮抗作用.微生物学通报,1997,24:224-227.杨依军,王勇.拮抗木霉菌在生防中的作用.天津农业科学,2000,6:29-33.
    伊东正.野菜栽培.土壤,1987,26:143-144.尹睿,张华勇,黄锦法,等.保护地菜田与稻麦轮作田土壤微生物学特征的比较.植物营养与肥料学报,2004,10(1):57-62.于占东,宋述尧.稻草配施生物菌剂对大棚连作土壤的改良作用.农业工程学报,2003,19(1):177-179.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,2000,31(1):124-126.袁飞,彭宇,张春兰,等.有机物料减轻设施连作黄瓜苗期病害的微生物效应.应用生态学报,2004,15(5):867-870.占新华,蒋延惠,徐阳春等.微生物制剂促进植物生长机理的研究进展.植物营养与肥料学报,1999,2:97-105.张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素.应用生态学报,2000,11:951-953.张璐.黄瓜枯萎病病原拮抗菌的筛选鉴定及其生防效果研究.山东农业大学硕士学位论文,2007.张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土微生物碳氮量及基因多样性变化.生态学报,2004,24(12):2818-2824.张昕.植物病原拮抗细菌的发酵条件作用机制及定殖规律的研究.浙江大学博士学位论文,2005.赵凤艳,吴凤芝,刘德等.大棚菜地土壤理化特性的研究.土壤肥料,2000,(2):11-13.
    赵其国,林福呈,陈卫良等.绿色木霉对西瓜枯萎病苗期的控制作用.浙江农业学报,1998,10:206-209.
    郑军辉,叶素芬,喻景权.蔬菜连作障碍产生原因及生物防治.中国蔬菜,2004,3:56-58.
    周毅,郭世伟,宋娜,等.水分胁迫和供氮形态耦合作用下分蘖期水稻的光合速率、水分与氮素利用.中国水稻科学,2006,20(3):313-318.
    朱林,彭宇,袁飞.施用稻草等有机物料对黄瓜连作土壤速效养分的影响.中国农业科学,2001,17:30-36.
    朱林,张春兰,沈其荣.施用稻草等有机物料对黄瓜连作土壤pH、EC值和微生物的影响.安徽农业大学学报,2001,28(4):350-353.
    朱林,张春兰等.施用稻草等有机物料对连作黄瓜根系活力、硝酸还原酶、ATP酶活力的影响.中国农学通报,2002,18:17-19.
    Agrios N George. Plant Pathology(4th Edition). Academic Press,1997.
    Albert F, Anderson AJ. The effect of Pseudomonas putida colonization on surface peroxidase. Plant Physiology,1987,85:537-541.
    Amann RI, Ludwig W, Schlefier KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Review.1995,59:143-169.
    Anderson AJ, Guerra D. Response of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology,1985,75:992-995.
    Andrew P, Feinberg, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry,1983,132:6-13.
    Arshad M, Frankenberger WTJ. Plant growth-promoting substance in the rhizosphere: Microbiology production and function. Advances in Agronomy,1998,62:145-151.
    Arshad M, Frankenberger WTJ. Response of Zea mays and Lycopersocon esculentum to the ethylene precursors, L-metheionine and L-ethionine applied to soil. Plant and Soil,1990,122:219-227
    Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology,1995,61:972-978
    Banik S, Dey BK. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and soil,1982,69:353-364.
    Bashan yoav, Holguim Gina. Proposal for the division of plant growth-promoting rhizobacteria into classification:Biocontrol-PGPR (Plant growth-promoting bacteria) and PGPB. Soil Biochemistry,1998,30:1225-1228.
    Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry,1991,196:80-83.
    Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology,2002,48:159-169.
    Beck T. Mikrobiologische and biochemische Charakterisierung landwirtschaftlich genutzter boden: I. Mit. Die Ermittlung der Bodenmikrobiologischen kennzahl. Z Pflanzenernaehr Bodenkd.1984,147:456-466.
    Bekwe AM, Kennedy AC, Frohne PS, et al. Microbial diversity along a transect of agronomic zones. FEMS Microbiological Ecology,2002,39:183-191.
    Benhamou N and Nicole M. Cell biology of plant immunization against microbial infection:The potential of induced resistance in controlling plant diseases. Plant Physiology and Biochemistry,1999,37 (10):703-719.
    Benhamou N, Joseph WK and Sadik T. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain:ultrastructure and cytochemistry of the host response. Planta,1998,204:153-168.
    Benhamou N. Ultrastructural and cytochemical aspects of the response of eggplant parenchyma cells contact with Verticillium-infected xylem vessels. Physiological and molecular plant pathology,1995,46:321-338.
    Benhamou N., Kloepper JW, et al. Induction of defense-related ultrastructure modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology,1996,112:919-929.
    Ben-Yephet Y, Nelson EB. Differential suppression of damping-off caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in composts at differrent temperatures. Plant disease,1999,83:356-360.
    Beyer M, Roding S, Ludewig A, Verreet JA. Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. Journal of Phytopathology,2004,152:92-97.
    Boer M, Bom P, Kindt F, et al. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology,2003,93: 626-632.
    Bollard EG. Effect of steam sterilized soil on growth of replant apple trees. N Z J Science and Technology,1956,38:412-415.
    Boopathi E, Sankara RK. A siderophore from Pseudomonas putida type A1:structural and biological characterization. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1999,1435:30-40
    Booth C. The Genus Fusarium, The Eastern Press Limited, London and Reading,1971:14-191
    Bora T, Ozaktan H, Gore E, Aslan E. Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathology,2004,152:471-475.
    Chen Wenshaw, Liu HoYih, et al. Gene transfer via pollen-tube pathway for anti-Fusarium wilt in water-melon. Biochemistry and Molecular Biology International,1998,46 (6):1201-1209.
    Ching-Hong Yang, David EC. Rhizosphere microbial communities structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology,2000,66: 345-351.
    Cindy H. Nakatsu, Torsvik V,φvreas L. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal,2000,64:1382-1388.
    Cook RJ, Thomashow LS, Welter DM, et al. Molecular mechanisms for biological control of plant pathogens. Phytopathology,1995,31:53-80.
    Covey RP, Benson NRJ, Haglund WA. Effect of soil fumigation on the apple replant disease in Washington. Phytopathology,1979,69:684-686.
    Daniel LM, Peter DS, Jeffrey SB. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology,2002,21:251-259.
    Dat J, Vandenabeele S, Varanova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Science,2000,57:779-795.
    De Cal A, Pascual S, Malgarejo P. A rapid laboratory method for assessing the biological potential of Penicillium oxalicum against Fusarium wilt of tomato. Plant Pathology,1997,46:699-707.
    Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. Journal of Applied Microbiology,1999,86:13-21.
    Dimond AE, Waggoner PE. On the nature and role of vivotoxins in plant disease. Phytopathology, 1953,43:229-235.
    Doran JW, Sarrantonio M, Liebig MA. Soil health and sustainability. Advance Agronomy,1996,56: 2-54.
    Dupler M, Baker R. Survival of Pseudomonas putida, a biological control agent in soil. Phytopathology,1984,74:195-199.
    Eichner CA, Erb RW, Timmis KN, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Applied and Environmental Microbiology,1999,65:102-109.
    Elad Y, Baker R. Influence of srace amounts of cations and siderophore-producing Pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology,1985,75:1047 1052.
    El-Hassan SA, Gowen SR. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of Lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Journal of Phytopathology,2006,154:148-155.
    Filippi C, Bagnoli G, Treggi G, Picci G. Antagonistic effects of soil bacteria on Fusarium oxysporum Schlecht f.sp.dianthii (Prill and Del.) Snyd. and Hans. Plant and Soil,1984,80:119-125.
    Fischer SG and Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America,1983,80:1579-1583.
    Folman LB, Postma J, Van Veen JA. Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool. Microbial Ecology,2001,42:586-597.
    Fridlender M, Inbar J, Chet I. Biological control of soil-borne plant pathogens by a β-1, 3-glucanase-producing Pseudomonas cepacia. Soil Biology and Biochemistry,1993,25:1211-1221.
    Garber RH, Houston BR. Penetration and development of Verticillium albo-atrum in the cotton
    plant. Phytopathology,1966,56:1121-1126.
    Garland JL, Mills AL.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology.1991,57:2351-2359.
    Gilbert GS. Bacterial communities in soil and soybean roots, and the effects of a biological control agent. Phytopathology,1990,80:995-998.
    Glick BR, Jacobson CB, Schwarze MMK, et al. Aminocyclopropane-1-carboxylic acid deaminase mutants of the growth promoting rhizobacterium Pseudomonas putida GB12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology,1994,40:911-915.
    Gong M, Wang JD, Zhang J, Yang H, Lu XF, PEI Y, Cheng JQ. Study of the Antifungal Ability of Bacillus subtilis Strain PY-1 in Vitro and Identification of its Antifungal Substance (Iturin A). Acta Biochimistry and Biophysics,2006,38:233-240.
    Gottstein HD, Kuc JA. Induction of systemic resistance anthracnose in cucumber by phosphates. Phytopathology,1989,79:176-179.
    Gracia-Grza JA, Fravel DR. Effect of relative humidity on sporulation of Fusarium oxysporum in various formulations and effect of water on spore dispersal. Phytopathology 1998,88:544-549.
    Guckert JB, Whute DC. Phospholipid, esther-linked fatty acid analysis in microbial ecology (A). In: Megusar F, Gantar G, eds. Perspectives in Microbial Ecology:Proceedings of the 4th International Symposium on Microbial Ecology (C). Ljubljana, Slovenia.1986:455-459.
    Guetsky R, Shtienberg D, Elad Y, Dinoor A. Combining biocontrol agents to reduce the variability of biological control. Phytopathology,2001,91:621-627.
    Gunes A, Post WNK, Kirkby EA, et al. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NET grown winter lettuce. Journal of Plant Nutrition,1994,17 (11):1929-1938.
    Handelsman J, Raffel S, Mester EH, et al. Biological control of Damping-off of alfalfa seedlings with Bacillus cereus UW85. Applied and Environmental Microbiology,1990,56:713-718.
    Handelsman J, Stabb EV. Biocontrol of soil-borne plant pathogens. The Plant Cell,1996,8:1855-1869.
    Harish S, Manjula K, Podile AR. Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1. FEMS Microbiologic Ecology,1998,25:385-390.
    Harris AR, Adkins PG. Versatility of fungal and bacterial isolates for biological control of Damping-off disease caused by Rhizoctonia solani and Pythium spp. Biological Control,1999, 15:10-18.
    Hasegawa N, Fukumoto Y, Minoda M, et al. Promotion of plant and root growth by soybean meal degradation products. Biotechnology Letters,2002,24:1483-1486.
    Howell CR, Stipanovic RD. Gliovirin, a new antibiotic from Gliocladiumvirens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology,1983,29:321-324.
    Howie WJ, Cook RJ, Weller DM. Effect of soil matric potential and cell motility on wheat root colonization by fluorescent Pseudomonads suppressive to take-all. Phytopathology,1987,77: 286-292.
    Ibekwe AM, Kennedy AC. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cottong spermosphere and rhizosphere by Pseudomonas fluorescens. Molecular Plant-Microbe Interaction,1998,4:393-399.
    Inbar J, Menendez A, Chet I. Hyphal interaction between Trichoderma Harzianum and Sclerotinia Sclerotiorum and its role in biological control. Soil Biology and Biochemistry,1996,28:757-763.
    Ingeborg Thoma, Christiane Loeffler, Alok K Sinha. Cyclopentenone Isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants.The plant Journal,2003,34(3):363-368
    Insam H. A new set of substrates proposed for community characterization in environmental samples,1997:123-356.
    Jaffee BA, Abawi GS, Mai WF. Role of soil microflora and pratylenchus penetrans in an apple replant disease. Phytopathology,1982,72:247-251.
    Jenkinson DS. The effects of biocidal treatments on metabolism in soil:IV. The decomposition of fumigated organisms in soil. Soil Biology and Biochemstry,1976,8:203-208.
    Jeon JS, Lee SS, Kim HY, et al. Plant growth promotion in soil by some inoculated microorganisms. Journal of Microbiology,2003,41:271-276.
    Jetiyanon K, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria for induction of
    systemic resistance against multiple plant diseases. Biological Control,2002,24:285-291.
    Jetiyanon K, Wei G, Tuzun S, et al. Induced systemic resistance (ISR) of cucumber by stem injection and seed treatment with PGPR. Pathology,1995,85:114-118.
    John M, Whipps. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany,2001,52:487-511.
    Joseph LM, Tan TK, Wong SM, et al. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial grow of Pseudocercospora species. Canadian Journal of Botany,1998,76(12):2119-2124.
    Jouve L, Engelmann F, Noirot M, et al. Evaluation of biochemical markers (sugar, proline, malondialdehhyde and ethylene) for cold sensitivity in microcuttings of two coffee species. Plant Science,1993,991:109-116.
    Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. Journal of antibiotics,1996,49:129-135.
    Kajimura Y, Kaneda M. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. Journal of antibiotics, 1997,50:220-228.
    Kang Z, Buchenauer H. Immunocyto chemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiological and Molecular Plant Pathology,1999,55:275-288.
    Kessman H, Staub T, Hofmann C, et al. Induction of systemic acquired resistance in plant by chemicals. Annual Review of Phytopathology,1994,32:439-456.
    Ki-Yong S., Hofte M, Boelens J, et al. Growth, survival and root colonization of plant growth beneficial P. fluorescence ANP15 and P. aeroginosa 7NSK2 at different temperature. Soil Biology and Biochemistry,1991,23:423-428.
    Kloepper JW, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature,1980,286:885-886.
    Kloepper JW. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on population of Erwinia caratovora on potato roots and in daughter tubers. Phytopathology, 1983,73:217-219.
    Kloepper JW. Plant growth-promoting rhizobacteria as biological control agents of soilborne diseases. In:J. Bay-Peterson (Ed.) The biological control of plant diseases. Food and Fertilizer Technological Center. Taiwan.1991,142-152.
    Koch E. Evaluation of commercial product for microbial control of soil-borne plant diseases. Crop Protection,1999,18:119-125
    Koike N, Hyakumachi M, Kageyama K. et al. Induction of system resistance in cucumber against several diseases by plant growth-promoting fungi:lignification and superoxide generation. European Journal of Plant Pathology,2001,107:523-533.
    Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA. Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil,2002,238,257-266.
    Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research,1975,8:114-125.
    Koumoutsi A, Xiao-Hua Chen, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42. Journal of bacteriology,2004,186:1084-1096.
    Kurusu K, Ohba K, Arai T, Fukushima K. New peptide antibiotics LI-FO3, FO4, FO5, FO7, and FO8, produced by Bacillus polymyxa I. Isolation and characterization. Journal of antibiotics, 1987,40:1506-1514.
    Lechno S, Zamski E, Tel-or E. Salt stress-induced responses in cucumber plants. Journal of Plant Physiology,1997,150:206-211.
    Leibinger W, Beukker B, Hahn M, et al. Control of postharvest pathogen and colonization of fluorescent Pseudomonas spp. and root-colonizing fungi. European Journal of Plant Pathology, 1997,102:21-31.
    Leifert C, Li H, Chidburee S, Hampson S, Workman S, Siqee D, Epton HA, Harbour A. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of applied bacteriology,1995,78:97-108.
    Lemanceau P, Alabouvette C. Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protection,1991,10:279-286.
    Lemanceau P, Alabouvette C. Suppression of Fusarium wilts by fluorescent Pseudomonads: mechanisms and applications. Biocontrol science and technology,1993,3:219-234.
    Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere,2006,62:1374-1380.
    Macura J. Trends and advances in soil microbiology from 1924 to 1974. Geoderma.1974,12:311-329.
    Mandeel Q, Baker R. Mechanisms involved in biological control Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology,1991,81:462-469.
    Mandeel Q. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains nonpathogenic Fusarium oxysporum. Mycopathologia,2006,161:173-182.
    Mandeel Q. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum. Mycopathologia,2007,163:9-20.
    Marja-Leena, Lahdenpera. Mycostop in the control of Fusarium oxysporum on vegetables. Infoletter,2000,8 (12):12
    Marjan de B, Peter B, Frodo K, Joost JBK, et al. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology,2003,93:626-632.
    Marschner P, Rumberger A. Rapid changes in rhizosphere bacterial community structure during re-colonization of sterilized soil. Biology and Fertiligy of Soils,2004,40:1-6.
    Maurhofer M, Hase C, Meuwly P, et al. Induction of systemic resistance of tobacco necrosis virus by the root-colonizing pseudomonas flurescens strain CHAO:Influence of the gacA gene and of pyoverdine production. Phytopathology,1994,88:139-146.
    Maurhofer M, Keel C, Haas D, et al. Influence of plant species on disease suppression by Pseudomonas fluorencens CHAO with enhanced antibiotic production. Plant Pathology,1995, 1:40-50.
    Mccullagh M, Utkhede R, Menzies JG, et al. Evaluation of plant prowth-promoting rhizobacteria for biological control of pythium root rot of cucumbers grown in rockwool and effects on yield. European Journal of Plant Pathology,1996,102:747-755.
    Mew TW, Rosales AM. Bacterization of rice plant for control sheath blight caused by Rhizoctonia solani. Phytopathology,1986,76:1260-1264.
    Michael O, Walter K, Bob D, et al. Induced disease resistance in plant by chemicals. Plant pathology, 2001,107(1):19-28.
    Milner JL, Silo-Suh LA, Lee JC, et al. Production of Kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology,1996,62:3061-3065.
    Minuto A, Minuto G, Migheli Q, Mocioni M, Gullino ML. Effect of antagonistic Fusarium spp. and of different commercial biofungicide formulations on Fusarium wilt of basil (Ocimum basilicum L.). Crop Protection,1997,16:765-769.
    Minuto A, Spadaro D, Garibaldi A, Gullino ML. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection,2006, 25:468-475.
    Moffett B F, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiological Ecology,2003,43: 13-19.
    Monni S, Bucking H, Kottke I. Ultrastructural element localization by EDXS in Empetrum nigrum. Micron,2002,33:339-351.
    Mpiga P, Belanger RR, Paulitz TC, et al. Increased resistance to Fusarium oxysporum f. sp. Radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas florescence strain 63-28. Physiological and Molecular plant Pathology,1997,50:301-320.
    Murray T, Leighton FC, Seddon B. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Letter in Applied Microbiology, 1986,3:5-7.
    Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerise chain reaction-amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology,1993,59 (3):695-700.
    Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Microbiology,1999,2:317-322.
    Nannipieri P, Ascher J, Ceccherini M T, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. European Journal of Soil Science,2003,54:655-670.
    Neilands JB. Microbial iron compounds. Annual Review of Biochemistry,1981,50:715-731.
    Ogram A. Soil molecular microbial ecology at age 20:methodological challenges for the future. Soil Biology and Biochemistry,2000,32:1149-1504.
    Orwa JA, Govaerts C, Gevers K, Roets E, Van Schepdael A, Hoogmartens J. Study of the stability of polymyxins B (1), E (1) and E (2) in aqueous solution using liquid chromatography and mass spectrometry. Journal of pharmaceutical and biomedical analysis,2002,29:203-212.
    Outi P, Susan JG, Risto HT. Microbial community structure and characteristics of the organic matter in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology and Fertility of Soils,2001,33:17-24.
    Ovreas L, Firney L, Daae FL. Distribution of bacterioPlankton in meromictic lake Saelenvannet, as determined by denaturing gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology,1997,63:1367-3373.
    Park CS, Baker R. Biocontrol of Fusarium wilt of cucumber resulting from interaction between Pseudomonas putida and nonpanthogenic isolates of Fusarium oxysporum. Phytopathology, 1988,78:190-194.
    Paulitz TC, Loper JE. Lack of a role for fluorecent siderophore production in the biological control of Phytum dimping of cucumber by a strain of Pseudomonds puica. Phytopathology,1991, 81:930-935.
    Pedersen BS, Mills NJ. Single vs. multiple introduction in biological control:the roles of parasitoid efficiency, antagonism and niche overlap. Journal of Applied Ecology,2004,41:973-984.
    Petersen SO, Debosz K, Schjonning P, Christensen B T, Elmholt S. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils. Geoderma,1997,78:181-196.
    Pichard B, Larue JP, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiological Letters,1995,133:215-218.
    Piuri, Sanchez-Rivas, Ruzal. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Letters in Applied Microbiology,27:9-13.
    Posmyk MM, Bailly C, Szafranska K, et al. Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine mas L. Merr.) seedlings. Journal of Plant Physiology,2005,162:403-412.
    Raaijmakers JM, Leeman M, Van Oorschot, et al. Dose-response relationship, in biological control
    of fusarium wilt of radish by Pseudomonas spp. Phytopathology,1995,85:1075-1081.
    Raupach GS, Kloepper JW. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology,1998,88:1158-1164.
    Robson GD, Wiebe MG, Cunliffe B, Trinci AP. Choline and acetylcholine-induced changes in the morphology of Fusarium graminearum:evidence for the involvement of the choline transport system and acetylcholinesterase. Microbiology,1995,141:1309-1314.
    Ruzicka S, Edgertond D, Norman M, Hill T. The utility of ergosterol as a bioindicator of fungi in temperature soils. Soil Biology and Biochemistry,2000,32:989-1006.
    Schwieger F, Tebbe CC. A new approach to utilize PCR-single strand-conformation polymorphism for 16s rRNA based microbial community analysis Applied and Environmental Microbiology,1998,64:4870-4876.
    Silo-Suh LA, Lethbridge BJ, Raffel SJ, et al. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology,1994,60: 2023-2030.
    Singh PP, Shin YC, Park CS, et al. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology,1999,89:92-99.
    Singleton LL, Mihail JD, Rush CM. Methods for Research on Soilborne Phytopathogenic Fungi. The American Phytopathogenical Society, St. Paul, MN, APS Press,1992, pp235-279.
    Skujins J. History of abiotic soil enzyme research. In:BURNS RG, ed. Soil Enrymes. New York: Academic Press,1978:1-49.
    Smith GE. Inhibition of Fusarium oxysporum f. sp. lycopersici by a species of Micromonospora isolated from tomato. Phytopathology,1957,47:429-432.
    Smith JA, Hammerschmidt R, Fulbright DW. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringe.Physiological and Molecular plant Pathology,1991,38: 223-235.
    Sticher L, Maych-Mani B, Metraux JP. Systemic acquired resistance. Annual Review Phytopathology,1997,35:235-270.
    Tabatabal MA, Bremner JM. Assay of urease activity in soil. Soil Biology and Biochemistry,1972, 4:479-487.
    Tang wenhua, Yang hetong. Research and application of biological of plant disease and PGPR in China. In:Plant Growth-promoting Rhizobacteria:Present Status and Future Prospects Proceeding of the Fourth International Workshop, Sapporo, Japan. October,1997, p5-10.
    Thirup L, Johansen A, Winding A. Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiological Ecology,2003,43:383-392.
    Thoma I, Loeffler C, Sinha AK. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. The Plant Journal, 2003,34 (3):363-368.
    Torsvik V L, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology,1990,56:782-787.
    Torsvik VL. Isolation of bacterial DNA from soil. Soil Biology and Biochemistry,1980,12:15-21.
    Trasar-Cepeda C, Leiros C, Gilsotres F, Seoane S. Towards a biochemical quality index for soils an expression relating several biological and biochemical properties. Biology and Fertility of Soils,1997,26:100-106.
    Trevors J. Dehydrogenase activity in soil:a comparison between the INT and TTC assay. Soil Biology and Biochemistry,1984,16:673-674.
    Troelstra SR, Wagenaar R, Smant W, et al. Interpretation of bioassays in the study of interactions between soil organisms and plants:involvement of nutrient factors. New Phytologist,2001, 150:697-706.
    Ulknes S, Mauch M, Moyer M, et al. Acquired resistance in Arabidopsis. Plant Cell,1992,4:645-654.
    Van Loon LC, Bakker P, pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology,1998,36:453-483.
    Van peer R, Niemann GJ, Schippers B, et al. Induced resistance and phytoallexin accumulation in biological control of Fusarium wilt carnation by Pseudomonas spp. Strain WCS417r. Phytopathology,1991,81:728-734.
    Van peer R, Schippers B. Lipopolycaccharides of plant-growth promoting Pseudomonas spp. strain WCS417r in carnation to Fusarium wilt. Applied Microbiology,1992,13:60-71.
    Visser S, Parkinson D. Soil biological criteria as indicators of soil quality:soil microorganisms. American Journal of Alternative Agriculture,1992,7:33-37.
    Viswanathan R. Samiyappan R. Identification of antifungal chitinase from sugarcane. ICAR News. 1999,5:1-2.
    Wagner WC. Sustainabel agriculture:How to sustain a production system in a changing environment. International Journal for Parasitology,1999,29:1-5.
    Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR Primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods,2001,44:253-262.
    Watanabe Y, Barbashow SF, Komatsu S, et al. A peptide that stimulates phosphorylation of the plant insulin-binding protein. European Journal of Biochemistry,1994,224:167-172.
    Wei G, Kloepper JW, Tuun S. Induced systemic resistance to cucumber disease and increased plant growth by plant growth-promoting rhizobacteria under field condition. Phytopathology,1996, 86:221-224.
    Wei G, Kloepper JW, Tuun S. Induction of systemic resistance to cucumber to colletolrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology,1991,81: 1508-1512.
    Weller DM, Cook RJ. Suppression of take-all of wheat by seed treatment with fluorescent Pseudomonads. Phytopathology,1983,73:463-469.
    Weller DM. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,1988,26:397-407.
    West AW, Grant WD, Sparling GP. Use of ergosterol, diaminopimelic acid and glucosamine content of soils to monitor changes in microbial populations. Soil Biology and Biochemstry, 1987,19:607-612.
    Whipps JM. Microbial interaction and biocontrol in the rhizosphere. Journal of Exprimental Botany, 2001,52:487-511.
    Wu LH, Mo LY, Fan ZL, et al. Absorption of glycine by three agricultural species under sterile sand culture conditions. Pedosphere,2005,15(3):286-292.
    Yang CH, Crowley DE, and Menge JA.16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiological Ecology,2001,35:129-136.
    Yang SS, Kim CH. Studies on cross protection of Fusarium wilt of cucumber. IV. Protective effect
    by nonpathogenic isolate of Fusarium oxysporum in a greenhouse and fields. Korean Journal of Plant Pathology,1996,12:137-141.
    Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil,2004,263:143-150.
    Yu JQ, Matsui Y. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). Journal of Chemical Ecology,1994,20:21-30.
    Zdor RE, Anderson AJ. Influence of root colonizing bacteria eria on the defense responses in bean. Plant and Soil,1992,140:99-107.
    Zelles L, Alef K. Biomarkers [A]. In:ALEF K, NANNIPIERI P eds. Methods in Applied Soil Microbiology and Biochemistry[C]. London:Academic Press,1995:422-439.
    Zelles L, Bal Q Y, Beck T, Beese F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biology Biochemistry,1992,24:317-323.
    Zhang WJ, Rui WY, TU C, et al. Responses of soil microbial community structure and diversity to agricultural deintensification. Pedosphere,2005,15 (4):440-447.
    Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology,1996,62:316-322.
    Zhou T, Paulitz C. Induced resistance in the biocontrol of Pythiu aphanidermatum by Pseudomonas spp. on cucumber. Journal of Phytopathology,1994,142:51-63.
    Zhu ZJ, Guo Q, Li J, et al. Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt-stressed cucumber(cucumis sativus L.). Plant Science,2004,167:527-533.
    Zuber P, Nakano MM, Marahiel MA. Peptide Antibiotics. In "Bacillus subtilis and Other Gram-Positive Bacteria", eds. Sonenshein AL, Hoch JA and Losick R, pp 897-916. Washington DC. American Society for Microbiology,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700