控制性根系分区交替灌溉对作物生长及其根区微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国西北部农田灌溉大都采用传统的地面灌溉,水资源浪费十分严重,农业水资源的利用系数仅为0.46左右。如此低的水分利用效率使节水灌溉技术的改进有了很大的发展空间,通过改进灌溉技术来提高水利用效率是发展农业优先考虑的问题。控制性根系分区交替灌溉是人为使作物根系始终有一部分生长在干燥或较为干燥的土壤区域中,限制该部分的根系吸水,同时通过人工控制使根系的干燥区域交替出现,使干燥区的根系尤其是根尖产生水分胁迫信号(ABA),有效地调节气孔关闭。而处于湿润区的根系从土壤中吸收水分以满足作物的最小生命之需,使对作物的伤害保持在临界限度以内。
     本文以控制性根系分区交替灌溉为研究主线,设计了玉米盆栽和大田试验,涉及不同灌水方式(常规灌溉、交替灌溉和固定灌溉)、不同灌水水平(充分灌水、轻度水分亏缺和重度水分亏缺)、不同施肥水平(无肥、120kgNhm-2和240kgNhm-2)以及局部施肥等试验处理。主要对玉米根区土壤微生物数量和分布以及玉米生长和产量进行研究。同时,以油菜为供试作物,设计了一个与外界环境非常接近的,具有较大种植容器(50×50×70cm)的遮雨棚下试验和一个补充盆栽试验,涉及不同灌水方式和地下水处理。主要对油菜的根系生长和分布、形态变化和最终产量进行研究。主要取得以下研究成果:
     (1)交替灌溉条件下玉米根系在两侧根区分布均匀,长势良好;固定灌溉因为一侧根系受到严重水分胁迫而使根系分布不均,直接影响地上部分生长和干物质积累;常规灌溉条件下玉米生长旺盛,产量最高,但是水分利用效率却低于交替灌溉。盆栽试验中轻度水分亏缺的干物质总量虽不如充分灌溉,但在大田试验中前者却明显高于后者。而且在中度施肥下的玉米作物产量最高。水肥异区施肥方式能有效地避免环境污染,利于作物养分吸收和提高作物产量。
     (2)控制性根系分区交替灌溉对油菜的生长形态及最终产量影响很小,不适用于油菜作物的灌溉,指出控制性根系分区交替灌溉并不适用于所有作物。尤其对具有不确定生长特性植物的影响还有待进一步的研究。
     (3)在盆栽试验中,交替灌溉根区两侧菌落数均衡,而在固定灌溉条件下,干燥区的土壤细菌和放线菌显著小于湿润区,土壤真菌却在干燥区生长较好。在大田试验中,由于各种试验处理的交互作用使土壤微生物在根区分布更加复杂。总的来说,交替灌溉特殊的干湿交替土壤环境促进了土壤微生物,尤其是细菌和真菌的生长。
     (4)土壤微生物总数与土壤含水量呈现出二次抛物线关系,在土壤中度水分亏缺条件下达到峰值,这归结于土壤良好的通气条件。细菌适于在氮素含量相对较高的土壤环境下生存,而真菌和放线菌则更倾向于氮素含量较低的根区。土壤微生物在玉米整个生育期的数量随着生育期的推进逐渐增加,到蜡熟期达到峰值,后又在收获期降低。
     研究结果表明,控制性根系分区交替灌溉能够促进玉米根系土壤微生物的健康发展,有利于促进玉米的生长发育和提高产量。但是控制性根系分区交替灌溉并不适用于所有农作物,具有不确定生长特性的油菜就是其中的特例。控制性根系分区交替灌溉必然有其适用的范围,受作物品种、气候条件、地理条件等的约束。除此之外,农业生产除了考虑最大经济利益外,还要节水节肥,杜绝浪费水资源,避免氮素流失,维护农业生态环境。
The conventional surface irrigation is very popular in northwest of China for field irrigation, a large amount of water is wasted and the agricultural water use efficiency is only about 0.46. Such low water use efficiency created enormous room for improving of water-saving irrigation technique. Agriculture developing should give priority to enhancing water use efficiency through improving irrigation technique. Controlled alternate partial rootzone drying irrigation (APRI) is a new irrigation technique which requires that approximately half of the root system is always exposed to drying soil and prevent from water consumption. Moreover, the dried and wetted sides may be shifted periodically. Part of the root system in drying soil can produce large amount of abscisic acid (ABA) and regulate stomatal opening while the rest of the root system in wet soil may function normally to keep the plant hydrated.
     Thus, APRI is the main line of this thesis. Pot experiment and field experiments of maize were designed, including distinct water patterns (conventional irrigation, alternate irrigation and fixed irrigation), distinct watering levels (sufficient, moderate water deficit and severe water deficit), distinct fertilizer levels (no fertilizer, 120 kgNhm-2 and 240 kgNhm-2) and fertilizer placement treatments. The number, distribution of soil microorganism in rootzone of maize, the growth and yield of maize were investigated. Other two experiments about oilseed rape were carried out under near-field rain shelter, one of them was conducted in big size of container (50×50×70cm), water patterns and groundwater condition were involved. The growth and distribution of oilseed rape roots were monitored and the data of morphological parameter and yield were recorded. The main results of this thesis are as follows:
     (1)Maize roots distributed evenly in both sides of rootzone and plants grew well under alternate irrigation. Meanwhile, roots were asymmetry under fixed irrigation because of extremely severe water deficit on one side of root system, resulting in restraining growth of aboveground and dry biomass accumulation. Although vigorous maize plants and preponderance yield were gained under conventional irrigation, water use efficiency was lower than that of alternate irrigation. The dry biomass of plant under full irrigation outperformed other water levels in pot experiment, but the highest yield was gained under moderate water deficit treatment, especially with low nitrogen application in field experiments. Moreover, water and nitrogen were provided in distinct furrows, which could avoid environment pollution and enhanced nutrition absorption and yield of plants.
     (2)Water patterns had little effect on oilseed rape growth and yield components (number of branches, branch lengths, number of pods, etc.). The results suggest that partial root-zone drying doesn’t work well with oilseed rape. More researches on indeterminate growth habit plants under APRI should be conducted to determine the limits of this irrigation technique.
     (3)In pot experiment of maize, soil microorganism distributed evenly in both sides of rootzone under APRI. But under fixed irrigation, the bacteria and actinomyces were less in dry rootzone than that of wet rootzone. However, the fungi preferred drying soil to wet part. In field experiments, the distribution of soil microorganism was more complex because of the treatment factors and their interaction. In general, special wet-dry cycling condition under alternate irrigation created an appropriate micro environment for soil microorganism, especially for bacteria and fungi.
     (4)A quadratic parabola relationship between the number of soil microorganisms and soil water content was found, indicating the number of soil microorganisms reached a peak at the moderate soil water deficit condition, possibly due to better soil aeration. In terms of nitrogen condition in soil, bacteria multiplied very well in high nitrogen level rootzone; on the contrary, lower nitrogen level in soil provide an appropriate soil environment for fungi and actinomyces. Moreover, the total number of soil microorganism grows with the growth period of maize going on and reached the peak during dough stage and decreased in harvesting period.
     Our results suggest that APRI could enhance soil microorganism reproduction, resulting flourishing plants and high yield. But APRI is not the most ideal water pattern for all of plants. APRI has its limit in agriculture, restricted by plant species, climate, geographic condition and so on. Moreover, the main goal of agricultural production is not only the greatest economic interest, but also water-nitrogen-saving and sustainable development of agricultural environment.
引文
[1] Marios S. Global and regional water availability and demand: prospects for the future [J]. Natural Resources Research, 2004, 13 (2): 61-75.
    [2] Herman B. Integrated water management: emerging issues and challenges [J]. Agricultural Water Management, 2000, 45: 217-228.
    [3] Shiklomanov I.A. Appraisal and assessment of world water resources [J]. Water International, 2000, 25: 11-32.
    [4] Falkenmark M. Population growth and water supplies: an emerging crisis [J]. People, 1990, 17 (1): 18-20.
    [5] Falkenmark M. Widstrand C. Population and water resources: a delicate balance [J]. Population Reference Bureau, Population Bulletin, 1992, 43 (3): 1-36.
    [6]余谋昌.中国资源现状[J].中国城市经济, 2004, (8) : 4-9.
    [7]刘俊萍,畅明琦.农业节水是现代生产力发展的要求[J].生产力研究,2007, 21: 57-58,67.
    [8]龙振华,丁雨恒.浅谈水资源保护与节水灌溉技术[J].湖北水利水电职业技术学院学报, 2008, 12 (4): 6-9.
    [9]张杰,熊必永.创建城市水系统健康循环促进水资源可持续利用[J].沈阳建筑工程学院学报(自然科学版), 2004, 20 (3) : 204-206.
    [10]徐彬.水资源的危机警示[J].决策与信息, 2004, (8): 6-7.
    [11]舟野.缺水制约中国经济[J].东方经济, 2004, (8) : 72-73.
    [12]武文慧.浅析我国水资源现状[J].资源调查与评价, 2005, 22: 71-74.
    [13]孙中伟.中国水资源问题对策新论[J ] .中学地理教学参考, 2004 , (1) :31-32.
    [14]汪恕诚.怎样解决中国4大水问题[J ].水利经济, 2005, 23 (2) :1-6.
    [15] Wen D., David P. Water and energy use in China’s agriculture [C] Zuo Tianjue. Forum on China’s Agriculture in 1949-2030. Beijing, China Agricultural University Press, 1998: 263-274.
    [16]刘驰.可持续利用水资源确保中国粮食安全[J].农业经济, 2008, (4): 35-36.
    [17]王兆华,李立科,赵二龙等.西北地区水资源利用的问题与对策[J].安徽农业科技, 2008, 36 (10) : 4202 - 4204.
    [18] Deng X., Shan L., Zhang H., et al. Improving agricultural water use efficiency in arid and semiarid areas of China [J]. Agricultural Water Management, 2006, 80: 23-40.
    [19]徐建新,张泽中,刘发.浅议粮食安全的水资源保障[J].水利科技与经济, 2005, 11 (10): 611-614.
    [20]江平.西部农业水资源可持续发展与利用[J].农村经济, 2005, (9):111-113.
    [21] Oudshoorn H.M. The pending‘water crisis’[J]. Geophysical Journal, 1997, 42 (1): 27-38.
    [22]álvarez J.F.O., de Juan V.J.A., Martín-Benito J.M.T., et al. MOPECO: an economic optimization model for irrigation water management [J]. Irrigation Science, 2004, 23: 61-75.
    [23] Ayars J.E., Christen E.W., Soppe R.W., et al. The resource potential of in-situ shallow ground water use in irrigated agriculture: a review [J]. Irrigation Science, 2006, 24: 147-160.
    [24] Nalliah V., Sri Ranjan R., Kahimba F.C. Evaluation of a plant-controlled subsurface drip irrigation system [J]. Biosystems Engineering, 2009, 102: 313-320.
    [25] Jermá? M.K. Water Management for Food Production: Strategy Plan [J]. Water ResourcesManagement, 1989, 3: 299-313.
    [26]山仑,邓西平,黄占斌等.挖掘作物抗旱节水潜力[J].中国农业科技导报, 2000, 2 (2): 66-70.
    [27]山仑.我国节水农业发展中的科技问题[J].干旱地区农业研究, 2003, 21 (1): 1-5.
    [28]康绍忠,潘英华,石培泽等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报, 2001, (11): 80-86.
    [29]史文娟,康绍忠,王全九.控制性分根交替灌溉-常规节水灌溉技术的新突破[J].灌溉排水, 2000, 19 (1) :32-35.
    [30]孙景生,康绍忠,蔡焕杰等.控制性交替灌溉技术的研究进展[J].农业工程学报, 2001, 17 (4): 1-5.
    [31]孙景生,康绍忠,蔡焕杰等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报, 2002, (3): 64-68.
    [32] Kang S., Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency [J]. Journal of Experimental Botany, 2004, 55 (407): 2437-2446.
    [33] Davies W.J., Bacon M.A., Thompson D.S., et al. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’chemical signaling system and hydraulic architecture to increase the efficiency of water use in agriculture [J]. Journal of Experimental Botany, 2000, 51 (350): 1617-1626.
    [34] Shao G., Zhang Z., Liu N., et al. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper [J]. Scientia Horticulturae, 2008, 119: 11-16.
    [35] Skinner R.H., Hanson J.D., Benjamin J.G. Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn [J]. Plant and Soil, 1998, 199: 187-194.
    [36]史文娟,康绍忠.分根区垂向交替供水对玉米生长影响的研究[J].中国生态农业学报, 2001, 9 (2): 44-46.
    [37]杜社妮,梁银丽,翟胜等.不同灌溉方式对茄子生长发育的影响[J].农业工程科学, 2005, 21 (6): 430-432.
    [38]陈海丽,刘明池.大白菜节水栽培技术研究[J].北方园艺, 2007, (10): 20-22.
    [39]汪耀富,蔡寒玉,张晓海等.分根交替灌溉对烤烟生理特性和烟叶产量的影响[J].干旱地区农业研究, 2006, 24 (5): 93-98.
    [40]石玫莉,李伏生,韦建玉等.不同氮水平下根区局部灌溉对烤烟产量、水分利用与氮钾含量的影响[J].广西农业生物科学, 2008, 27 (2): 142-147.
    [41]杜太生,康绍忠,胡笑涛等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学2005, 38 (10): 2061-2068.
    [42]周琼,李伏生,黄文君等.分根区交替灌溉对百合鲜切花生理变化和质量的影响[J].北方园艺, 2007, (3): 33-38.
    [43] Domingo R., Ruiz-Sánchez M.C. Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation [J]. Irrigation Science, 1996, 16: 115-123.
    [44] Cifre J., Bota J., Escalona J.M., et al. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) An open gate to improve water-use efficiency [J]. Agriculture, Ecosystems and Environment, 2005, 106: 159-170.
    [45]杜太生,康绍忠,张霁等.不同沟灌模式对沙漠绿洲区葡萄生长和水分利用的效应[J].应用生态学报, 2006, 17 (5): 805-810.
    [46]程福厚,赵志军,张纪英等.分区交替灌溉对梨生长结果及水分利用效率的影响[J].干旱地区农业研究, 2007, 25 (4): 130-133, 140.
    [47]康绍忠,张建华,梁宗锁等.控制性交替灌溉一种新的农田节水调控思路[J].干旱地区农业研究, 1997, 15 (1): 1-6.
    [48] Smith W.K., Hollinger D.Y. Measuring stomatal behaviour. In: Lassoie J.P., Hinckley T.M., eds. Techniques and approaches in forest tree ecophysiology [M]. Boca Raton: CRC Press Inc. 1991.
    [49] Saliendra N.Z., Sperry J.S., Comstock J.P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis[J]. Planta, 1995, 196: 357-366.
    [50] Kramer P.J. Water relations of plants [M]. New York: Academic Press, 1983.
    [51] Gollan T., Passioura J.B., Munns R. Soil water status affects stomatal conductance of fully turgid wheat and sunflower leaves [J]. Australian Journal of Plant Physiology, 1986, 13: 459-464.
    [52] Davies W.J., Zhang J. Root signals and the regulation of growth and development of plants in drying soil [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76.
    [53] Gowing D.J.G., Jones H.G., Davies W.J. Xylem-transported abscisic acid– the relative importance of its mass and its concentration in the control of stomatal aperture [J]. Plant, Cell and Environment, 1993, 16: 453-459.
    [54] Tardieu F., Katerji N., Benthenod O., et al. Maize stomatal conductance in the field: its relationship withsoil and plant water potentials, mechanical constraints and ABA concentration in the xylem sap [J]. Plant, Cell and Environment, 1991, 14: 121-126.
    [55] AugéR.M., Stodola A.J.W., Ebel R.C., et al. Leaf elongation and water relations of mycorrhizal sorghum in response to partial soil drying: two Glomus species at varying phosphorus fertilization [J]. Journal of Experimental Botany, 1995, 46: 297-307.
    [56] Khalil A.A.M., Grace J. Does xylem sap ABA control the stomatal behaviour of water-stressed sycamore (Acer pseudo-platanus L.) seedlings [J]? Journal of Experimental Botany, 1993, 44: 1127-1134.
    [57] Jackson G.E., Irvine J., Grace J., et al. Abscisic acid concentrations and fluxes in droughted conifer saplings [J]. Plant, Cell and Environment, 1995, 18: 13-22.
    [58] Liu F., Shahnazari A., Andersen M.N., et al. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency[J]. Journal of Experimental Botany, 2006, 57 (14): 3727-3735.
    [59] Stoll M., Loveys B., Dry P. Hormonal changes induced by partial rootzone drying of irrigated grapevine [J]. Journal of Experimental Botany, 2000, 51 (350): 1627-1634.
    [60] Dry P.R., Loveys B.R., Düring H. Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange [J]. Vitis, 2000, 39: 3-7.
    [61] Dry P.R., Loveys B.R., Düring H. Partial drying of the rootzone of grape. II. Changes in the pattern of root development [J]. Vitis, 2000, 39: 9-12.
    [62] Dry P.R., Loveys B.R., McCarthy M.G., et al. Strategic irrigation management in Australian vineyards [J]. International Journal of Vine and Wine Sciences, 2001, 35: 129-139.
    [63] Loveys B.R., Dry P.R., Stoll M., et al. Using plant physiology to improve the water use efficiency of horticultural crops [J]. Acta Horticulturae, 2000, 537: 187-197.
    [64] dos Santos T.P., Lopes C.M., Rodrigues M.L., et al. Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera) [J]. Functional Plant Biology, 2003, 30: 663-671.
    [65] de Souza C.R., Maroco J.P., dos Santos T.P., et al. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel) [J]. Functional Plant Biology, 2003, 30: 653-662.
    [66] de Souza C.R., Maroco J.P., dos Santos T.P., et al. Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars [J]. Agriculture, Ecosystems and Environment , 2005, 106: 261-274.
    [67] Fernández J.E., Díaz-Espejo A., Infante J.M., et al. Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying [J]. Plant and Soil, 2006, 284: 273-291.
    [68] Goldhamer D.A., Salinas M., Crisosto C., et al. Effects of regulated deficit irrigation and partial root zone drying on late harvest peach tree performance [J]. Acta Horticulturae, 2002, 592: 345-350.
    [69] Wakrim R., Wahbi S., Tahi H., et al. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.) [J]. Agriculture, Ecosystems and Environment, 2005, 106: 275-287.
    [70] Sobeih W.Y., Dodd I.C., Bacon M.A., et al. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying [J]. Journal of Experimental Botany, 2004, 55 (407): 2353-2363.
    [71] Wilkinson S., Davies W.J. Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of the saturable ABA uptake by the epidermal symplast [J]. Plant Physiology, 1997, 113: 559-573.
    [72] Davies W.J., Wilkinson S., Loveys B.R. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture [J]. New Phytologist, 2001, 153: 449-460.
    [73] Fushs E.E., Livingston N.J. Hydraulic control of stomatal conductance in Douglas fir [Pesudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (bong)] seedlings [J]. Plant, Cell and Environment, 1996, 19: 1091-1098.
    [74] Comstock J., Mencuccini M. Control of stomatal conductance by leaf water potential in hymeoclea salsola (T.& G.), a desert subshrub [J]. Plant, Cell and Environment, 1998, 21: 1029-1038.
    [75] Yao C., Moreshet S., Aloni B. Water relations and hydraulic control of stomatal behaviour in bell pepper plant in partial soil drying [J]. Plant, Cell and Environment, 2001, 24: 227-235.
    [76] Liu F., Jensen C.R., Andersen M.N. Pod set related to photosynthetic rate and endogenous aba in soybeans subjected to different water regimes and exogenous ABA and BA at early reproductive stages [J]. Annals of Botany, 2004, 94: 405-411.
    [77] Westgate M.E., Passioura J.B., Munns R. Water status and ABA content of floral organs in drought-stressed wheat [J]. Australian Journal of Plant Physiology, 1996, 23: 763-772.
    [78] Setter T.L., Flannigan B.A., Melkonian J. Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins [J]. Crop Science, 2001, 41: 1530-1540.
    [79] Liu F., Andersen M.N., Jensen C.R. Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean [J]. Functional Plant Biology, 2003, 30: 271-280.
    [80] Liu F., Andersen M.N., Jensen C.R. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development [J]. Field Crops Research, 2004, 85: 159-166.
    [81]梁宗锁,康绍忠,高俊风等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].作物学报, 2000, 26 (2): 250-255.
    [82]梁宗锁,康绍忠,石培泽等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33 (6): 26-32.
    [83] Kang S., Liang Z., Pan Y., et al. Alternate furrow irrigation for maize production in an arid area [J]. Agricultural Water Management, 2000, 45: 267-274.
    [84] Qi W., Guan X., Li E., et al. Effects of partial rootzone drying on the growth of Vitis vinifera cv. Malvasia grafted on different rootstocks [J]. Agricultural Sciences in China, 2007, 6 (5): 567-572.
    [85] dos Santos T.P., Lopes C.M., Rodrigues M.L., et al. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines [J]. Scientia Horticulturae, 2007, 112: 321-330.
    [86] Abrisqueta J.M., Mounzer O.,álvarez S., et al. Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation [J]. Agricultural Water Management, 2008, 95: 959-967.
    [87] Kang S., Hu X., Jerie P., et al. The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard [J]. Journal of Hydrology, 2003, 280: 192-206.
    [88]潘英华,康绍忠,杜太生等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学, 2002, 35 (5): 531-535.
    [89]韩艳丽,康绍忠.根系分区交替灌水对玉米吸收养分影响的初步研究[J].农业工程学报, 2002, 18 (1): 57-59.
    [90] Kirda C., Topcu S., Kaman H., et al. Grain yield response and N-fertiliser recovery of maize under deficit irrigation [J]. Field Crops Research, 2005, 93: 132-141.
    [91] Shahnazari A., Ahmadi S.H., Laerke P.E., et al. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes [J]. European Journal of Agronomy , 2008, 28: 65-73.
    [92] Gen?o?lan C., Altunbey H., Gen?o?lan S. Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation [J]. Agricultural Water Management, 2006, 84: 274-280.
    [93] Tang L., Li Y., Zhang J. Physiological and yield responses of cotton under partial rootzone irrigation [J]. Field Crops Research, 2005, 94: 214-223.
    [94] Kang S., Zhang L., Hu X., et al. An improved water use effciency for hot pepper grown under controlled alternate drip irrigation on partial roots [J]. Scientia Horticulturae, 2001, 89: 257-267.
    [95] Campos H., Trejo C., Pe?a-Valdivia C.B., et al. Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.) [J]. Scientia Horticulturae, 2009.
    [96] Zegbe J.A., Behboudian M.H., Clothier B.E. Partial rootzone drying is a feasible option for irrigating processing tomatoes [J]. Agricultural Water Management, 2004, 68: 195-206.
    [97] Kang S., Shi P., Pan Y., et al. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas [J]. Irrigation Science, 2000, 19: 181-190.
    [98] Kang S., Hu X., Goodwin I., et al. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard [J]. Scientia Horticulturae, 2002, 92: 277-291.
    [99] Liu F., Shahnazari A., Andersen M.N., et al. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato [J]. Scientia Horticulturae, 2006, 109: 113-117.
    [100] Kirda C., Cetin M., Dasgan Y., et al. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation [J]. Agricultural Water Management, 2004, 69: 191-201.
    [101] Du T., Kang S., Zhang J., et al. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China [J]. Irrigation Science, 2008, 26: 147-159.
    [102] Shahnazari A., Liu F., Andersen M.N., et al. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions [J]. Field Crops Research, 2007, 100: 117-124.
    [103] Du T., Kang S., Zhang J., et al. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation [J]. Agricultural Water Management , 2008, 95: 659-668.
    [104] Spreer W., Ongprasert S., Hegele M., et al. Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes [J]. Agricultural Water Management, 2009, 96: 574-584.
    [105] Spreer W. , Nagle M., Neidhart S., et al. Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv.‘Chok Anan’) [J]. Aagricultural Water Management, 2007, 88: 173-180.
    [106] Wahbi S., Wakrim R., Aganchich B., et al. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate I. Physiological and agronomic responses [J]. Agriculture, Ecosystems and Environment, 2005, 106: 289-301.
    [107] Zegbe-Domínguez J.A.,Behboudian M.H.,Lang A.,et al. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in‘Petopride’processing tomato (Lycopersicon esculentum, Mill.) [J]. Scientia Horticulturae, 2003, 98: 505-510.
    [108] Grimplet J., Deluc L.G., Cramer G.R., et al. Integrating functional genomics with salinity and water deficit stress responses in wine grape - vitis vinifera. In: Jenks M.A. et al. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops [M], Springer, 2007, 643-668.
    [109] Treeby M.T., Henriod R.E., Bevington K.B., et al. Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality [J]. Agricultural Water Management, 2007, 91: 24-32.
    [110] Intrigliolo D.S., Castel J.R. Response of Vitis vinifera cv.‘Tempranillo’to partial rootzone dryingin the field: Water relations, growth, yield and fruit and wine quality [J]. Agricultural Water Management, 2009, 96: 282-292.
    [111] Dorji K., Behboudian M.H., Zegbe-Domínguez J.A. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying [J]. Scientia Horticulturae, 2005, 104: 137-149.
    [112]武永军,刘红侠,梁宗锁等.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报, 1999, 19 (4): 605-611
    [113]綦伟,翟衡,厉恩茂等.部分根区干旱对不同砧木嫁接葡萄光合作用的影响[J].园艺学报, 2007, 34 (5): 1081-1086.
    [114]牛铁泉,田给林,薛仿正等.半根及半根交替水分胁迫对苹果幼苗光合作用的影响[J].中国农业科学, 2007, 40 (7): 1463-1468.
    [115]杜太生,康绍忠,王振昌等.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报, 2007, 33 (12): 1982-1990.
    [116]杜太生,康绍忠,夏桂敏等.滴灌条件下不同根区交替湿润对葡萄生长和水分利用的影响[J].农业工程学报, 2005, 21 (11): 43-48.
    [117]綦伟,厉恩茂,翟衡等.不同砧穗组合葡萄植株对部分根区干旱的生理生化响应[J].应用生态学报, 2008, 19 (2): 306-310.
    [118]原丽娜,胡田田.局部施氮对玉米生理生化特性和产量的影响[J].干旱地区农业研究, 2008, 26 (4): 49-52.
    [119]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水, 2001, 20 (2): 5-7.
    [120]李彩霞,陈晓飞,王铁良等.控制性交替灌溉对玉米根系层水分再分布与产量的影响[J].农业工程学报, 2007, 23 (11): 59-64.
    [121]潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水, 2002, 19 (1): 1-4.
    [122]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报2005, 11 (4) : 442-448.
    [123]王志平,王克武,李红岭等.不同灌溉条件对甘蓝生物学性状、产量和水分利用效率的影响[J].北京农业, 2008, (6): 17-21.
    [124]刘佳伟,魏荔,贯立茹等.交替灌溉对大白菜生长发育的影响[J].北京农业, 2008, (6):73-75.
    [125]王志平,王克武,李红岭等.隔沟灌溉下甘蓝、绿菜花和大白菜高水分利用效率品种的初步筛选[J].北京农业, 2008, (6): 14-16.
    [126]刘永贤,李伏生,农梦玲等.不同生育时期分根区交替灌溉对烤烟生长和氮钾含量的影响[J].灌溉排水学报, 2007, 26 (6): 102-109.
    [127]周开兵,陈小亮,符方杰等.根际交替灌溉技术在南岛无核荔枝上的应用效果分析[J].广西农业科学, 2008, 35 (9): 644-649.
    [128]毕彦勇,高东升,王晓英等.根系分区灌溉对设施油桃生长发育、产量及品质的影响[J].中国生态农业学报, 2005, 13 (4): 88-90.
    [129]曲慧,杨丽娟,周崇俊等.局部限量灌溉对非洲菊生理特性的影响[J].北方园艺, 2008, (5): 125-127.
    [130]连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技, 2006, (8): 21-22.
    [131] Ma B.L., Dwyer L.M. Nitrogen uptake and use of two contrasting corn hybrids differing in leaf senescence [J]. Plant and Soil, 1998, 199: 283-291.
    [132] Uhart S.A., Andrade F.H. Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set [J]. Crop Science, 1995, 35: 1376-1383.
    [133] Uhart S.A., Andrade F.H. Nitrogen deficiency in maize: II. Carbon–nitrogen interaction effects on kernel number and grain yield [J]. Crop Science, 1995, 35: 1384-1389.
    [134] Manuel M.T., Naboa V., Alcakde C., et al. Field response of groundnut and maize to fertilization and soil physicc-chemical properties in different classes of Philippine soils [J]. Communications in Soil Science and Plant Analysis, 2000, 31: 11-14.
    [135] Westerman R.L., Raun W.L., Johnson G.V. Nutrient and water use efficiency. In: Sommers M.E. (Ed.) Handbook of Soil Science [M]. Boca Raton, Florida, United States: CRC Press, 1999.
    [136] Al-Kaisi M.M., Yin X. Effect of nitrogen rate, irrigation rate and plant population on corn yield and water use efficiency [J]. Agronomy Journal, 2003, 95: 1475-1482.
    [137] Lory J.A., Scharf P.C. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn [J]. Agronomy Journal, 2003, 95: 994-999.
    [138] Mamo M., Malzer G.L., Mulla D.J., et al. Spatial and temporal variation in economically optimum nitrogen rate for corn [J]. Agronomy Journal, 2003, 95: 958-964.
    [139] Katsvario T.W., Cox W.J., Van Es H.M., et al. Spatial yield response of two corn hybrids at two nitrogen levels [J]. Agronomy Journal, 2003, 95: 1012-1022.
    [140] Raun W.R., Solie J.B., Johnson G.V., et al. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application [J]. Agronomy Journal, 2002, 94: 815-820.
    [141] Pandey R.K., Maranville J.W., Admou A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment I. Grain yield and yield components [J]. Agricultural Water Management, 2000, 46: 1-13.
    [142] Pandey R.K., Maranville J.W., Chetima M.M. Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction [J]. Agricultural Water Management, 2000, 46: 15-27.
    [143] Pandey R.K., Maranville J.W., Admou A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency [J]. European Journal of Agronomy, 2001, 15: 93-105.
    [144]任建德.不同玉米施肥量试验[J].山西农业科学, 2008, 36 (8): 47-48.
    [145]宁堂原,焦念元,李增嘉等.施氮水平对不同种植制度下玉米氮利用及产量和品质的影响[J].应用生态学报, 2006, 17 (12): 2332-2336.
    [146]王林学,杨义,刘帮银等.施氮量对玉米植株硝态氮含量及产量的影响[J].安徽农业科学, 2008, 36 (15): 6404-6406, 6468.
    [147] Cox W.J., Kalonge S., Cherney D.J.R., et al. Growth, yield, and quality of forage corn under different nitrogen management practices [J]. Agronomy Journal, 1993, 85: 341-347.
    [148] Zhang S., Li X., Li X., et al. Crop yield, N uptake and nitrates in a fluvc-aquic soil profile [J]. Pedosphere, 2004, 14 (1): 131-136.
    [149] Broadbent F.E., Carlton A.B. Field trials with isotopically labeled nitrogen. In: Nielsen D.R., MacDonald J.G. (Eds.) Nitrogen in the Environment [M]. New York, USA: Academic Press, 1978 1-41.
    [150] Ribbe L., Delgado P., Salgado E., et al. Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed, Chile [J]. Desalination, 2008, 226: 13-20.
    [151] Hu K., Huang Y., Li H., et al. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain [J]. Environment International, 2005, 31: 896-903.
    [152]董雪凌.玉米合理施用氮肥的研究[J].农业科技通讯, 2008, (8): 67-68.
    [153] Saha S., Gopinath K.A., Mina B.L., et al. Influence of continuous application of inorganic nutrients to a Maize–Wheat rotation on soil enzyme activity and grain quality in a rainfed Indian soil [J]. European Journal of Soil Biology, 2008, 44: 521-531.
    [154] Tilman D., Cassman K.G., Matson P.A., et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418: 671-677.
    [155]胡田田.玉米水氮吸收利用对根区局部供应方式的响应及其作用机理[D].陕西杨凌:西北农林科技大学, 2005.
    [156] Guo Y., Chen F., Zhang F., et al. Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize [J]. Plant Science, 2005, 169: 894-900.
    [157] Drew M.C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal root system, and the shoot, in barley [J]. New Phytologist, 1975, 75: 479-490.
    [158] Brouder S.M. , Cassman K.G. Cotton root and shoot response to localized supply of nitrate, phosphate and potassium: Split-pot studies with nutrient solution and vermiculitic soil [J]. Plant and Soil, 1994, 161: 179-193.
    [159] Trapeznikov V.K., Ivanov1 I.I., Kudoyarova G.R. Effect of heterogeneous distribution of nutrients on root growth, ABA content and drought resistance of wheat plants [J]. Plant and Soil, 2003, 252: 207-214.
    [160] Jackson L.E., Bloom A.J. Root distribution in relation to soil nitrogen availability in field-grown tomatoes [J]. Plant and Soil, 1990, 128: 115-126.
    [161] He Y., Liao H., Yan X.. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures [J]. Plant and Soil, 2003, 248: 247-256.
    [162] Boukcima H., Pagès L., Mousaina D. Local NO3-or NH4+ supply modifies the root system architecture of Cedrus atlantica seedlings grown in a split-root device [J]. Journal of Plant Physiology, 2006, 163: 1293-1304.
    [163] Drew M.C., Saker L.R. Uptake and long-distance transport of phosphate, potassium, and chloride in relation to internal ion concentration in barley: evidence of non-allosteric regulation [J]. Planta, 1984, 160: 500-507.
    [164] Jackson R.B., Caldwell M.M. Kinetic responses of Pseudoroegneria roots to localized soil enrichment [J]. Plant and Soil, 1991, 138: 231-238.
    [165] Lunin J., Gallatin M.H. Zonal salinization of the root system in relation to plant growth [J]. Soil Science Society of America Journal, 1965, 29: 608-612.
    [166] Bingham F.T., Garber M.J. Zonal salinization of the root system with NaCl and boron in relation to growth and water uptake of corn plants [J]. Soil Science Society of America Journal, 1970, 34:122-126.
    [167]肖深根,施晋杰,郑志华等.根系分区施肥对黄瓜干物质生产的影响[J].湖南农业大学学报(自然科学版), 2007, 33 (5): 614-616.
    [168] LainéP., Ourry A., Boucaud J., et al. Effects of a localized supply of nitrate on NO3- uptake rate and growth of roots in Lolium multiflorum Lam [J]. Plant and Soil, 1998, 202: 61-67.
    [169] LainéP., Ourry A., Boucaud J. Shoot control of nitrate uptake rates by roots of Brassica napus L.: Effects of localized nitrate supply[J]. Planta, 1995, 196: 77-83.
    [170] Granato T.C., Rape C.D. Proliferation of maize (Zea Mays L.) roots in response to localized supply of nitrate [J]. Journal of Experimental Botany, 1989, 40: 263-275.
    [171] Ivanov I.I., Kudoyarova G.R., Trapeznikov V.K. The effect of local application of fertilizer on the content of cytokinins in the xylem sap of maize [J]. Biologia Plantarum, 1998, 41(4): 587-590.
    [172] Robinson D. The responses of plants to non-uniform supplies of nutrients [J]. New Phytologist, 1944, 127: 635-674.
    [173] Lehrsch G.A., Sojka R.E., Westermann D.T. Nitrogen placement, row, spacing, and furrow irrigation water positioning effects on corn yield [J]. Agronomy Journal, 2000, 92: 1266-1275.
    [174] Robbins C.W., Carter D.L. Nitrate–nitrogen leached below the root zone during and following alfafa [J]. Journal of Environmental Quality, 1980, 9: 447-450.
    [175] Benjamin J.G., Porter L.K., Duke H.R., et al. Nitrogen movement with furrow irrigation method and fertiliser band placement [J]. Soil Science Society of America Journal, 1998, 62: 1103-1108.
    [176]邢维芹,骆永明,王林权等.半干旱区玉米水肥空间耦合效应Ⅰ.氮素的吸收和残留及其环境效应[J].土壤, 2003, (2): 118-121.
    [177] Mailhol J.C., Crevoisier D., Triki K. Impact of water application conditions on nitrogen leaching under furrow irrigation: Experimental and modeling approaches [J]. Agricultural Water Management, 2007, 87: 275-284.
    [178] Zand-Parsa S., Sepaskhah A.R. Optimal applied water and nitrogen for corn [J]. Agriculture Water Management, 2001, 52: 73-58.
    [179] Qian J.H., Doran J.W. Weier K.L., et al. Soil denitrification and nitrous losses under corn irrigated with high-nitrate ground water [J]. Journal of Environmental Quality, 1997, 26: 360-378.
    [180] O'Toole J.C., Baldia E.P. Water deficits and mineral uptake in rice [J]. Crop Science, 1982, 22: 1144-1150.
    [181] O'Toole J.C., Padilla J.L. Water deficits and nitrogen uptake as affected by water table depth in rice (Oryza sativa L.) [J]. Plant and Soil, 1984, 80: 127-132.
    [182] Yambao E.B., O'Toole J.C. Effects of nitrogen nutrition and root medium water potential on growth, nitrogen uptake and osmotic adjustment of rice [J]. Plant Physiology, 1984, 60: 507-515.
    [183] Haefele S.M., Jabbar S.M.A., Siopongco J.D.L.C., et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels [J]. Field Crops Research, 2008, 107: 137-146.
    [184] Schjoerring J.K. Nitrogen incorporation and remobilization in different shoot components of fieldgrown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation [J]. Plant and Soil, 1995, 177: 255-264.
    [185] Singh B., Singh G.. Effects of controlled irrigation on water potential, nitrogen uptake and biomassproduction in Dalbergia sissoo seedlings [J]. Environmental and Experimental Botany, 2006, 55: 209-219.
    [186] Muchow R.C. Nitrogen utilization efficiency in maize and grain sorghum [J]. Field Crops Research, 1998, 56: 209-216.
    [187] Latiri-Souki K., Nortcliff S., Lawlor D.W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions [J]. European Journal of Agronomy, 1998, 9: 21-34.
    [188] Fisher F.M., Zak J.C., Cunningham G.L., et al. Water and nitrogen effects on growth and allocation patterns of creosote bush in the northern Chihuahuan Desert [J]. Journal of Range and Management, 1988, 41: 387-391.
    [189] Lajtha K., Schlesinger W.H. Plant response to variations in nitrogen availability in a desert shrubland community [J]. Biogeochemistry, 1986, 2: 29-37.
    [190] Runion G.B., Mitchell R.J., Rogers H.H., et al. Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of longleaf pine [J]. New Phytologist, 1997, 137: 681-689.
    [191] Prasertsak A., Fukai S. Nitrogen availability and water stress interaction on rice growth and yield [J]. Field Crops Research, 1997, 52: 249-260.
    [192] Zhai B., Li S. Study on the Key and Sensitive Stage of Winter Wheat Responses to Water and Nitrogen Coordination [J]. Agricultural Sciences in China, 2006, 5 (1): 50-56.
    [193] Pandey R.K., Maranville J.W., Chetima M.M. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. II. Biomass accumulation, nitrogen uptake and water extraction [J]. European Journal of Agronomy, 2001, 15: 107-118.
    [194] Anderson W.K. Grain yield response of barely and durum wheat to split nitrogen application under rain-fed conditions in a Mediterranean environment [J]. Field Crops Research, 1985, 12: 191-202.
    [195]薛亮,周春菊,雷杨莉等.夏玉米交替灌溉施肥的水氮耦合效应研究[J].农业工程学报, 2008, 24 (3): 91-94.
    [196] Akmal M., Janssens M.J.J. Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies [J]. Field Crops Research, 2004, 88: 143-155.
    [197] Papastylianou I. Yield components in relation to grain yield losses of barley fertilized with nitrogen [J]. European Journal of Agronomy, 1995, 4: 55-63.
    [198] Heckathorn S.A., De Lucia E.H., Zielinski R.E. The contribution of drought related decreases in foliar nitrogen concentration to decrease in photosynthetic capacity during and after drought in prairie grasses [J]. Plant Physiology, 1997, 101: 173-182.
    [199] Wright G.C., Smith C.J., Woodroofe M.R. The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in south-eastern Australia. I. Growth and seed yield [J]. Irrigation Science, 1988, 9: 1-13.
    [200] Smith C.J., Wright G.C., Woodroofe M.R. The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in Southeastern Australia . II. Nitrogen accumulation and oil yield [J]. Irrigation Science, 1988, 9: 15-25.
    [201] Castillo E.G., Buresh R.J., Ingram K.T. Lowland rice yield as affected by timing of water deficit and nitrogen fertilization [J]. Agronomy Journal, 1992, 84: 152-159.
    [202] Foster E.F., Pajarito A., Acosta-Gallegos J. Moisture stress impact on nitrogen partitioning, nitrogen remobilization and nitrogen use efficiency in beans (Phaseolus vulgaris) [J]. Journal of Environmental Quality, 1995, 24: 27-37.
    [203] Jose S., Merritt S., Ramsey C.L. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen [J]. Forest Ecology and Management, 2003, 180: 335-344.
    [204] Gheysari M., Mirlatifi S.M., Bannayan M., et al. Interaction of water and nitrogen on maize grown for silage [J]. Agricultural Water Management, 2009, 96: 809-821.
    [205] Shangguan Z., Shao M., Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat [J]. Environmental and Experimental Botany, 2000, 44: 141-149.
    [206] Fredrick J.R., Camberato J.J. Water and nitrogen effects on winter wheat in the southeastern central plain: physiological responses [J]. Agronomy Journal, 1995, 87: 527-533.
    [207] Jacob J., Udayakumar M. Prasad T.G. Mesophyll conductance was inhibited more than stomatal conductance in nitrogen deficient plants [J]. Plant Physiology and Biochemistry, 1995, 17: 55-61.
    [208] Caviglia O.P., Sadras V.O. Effect of nitrogen supply on crop conductance, water- and radiation-use efficiency of wheat [J]. Field Crops Research, 2001, 69: 259-266.
    [209] Brown P.L. Water use and soil water depletion by dryland winter wheat as affected by nitrogen fertilization [J]. Agronomy Journal, 1971, 63: 43-46.
    [210] Heitholt J.J. Water use efficiency and dry matter distribution in nitrogen- and water-stressed winter wheat [J]. Agronomy Journal, 1989, 81: 464-469.
    [211] Nielsen D.C., Halvorson A.D. Nitrogen fertility influence on water stress and yield of winter wheat [J]. Agronomy Journal, 1991, 83: 1065-1070.
    [212] Ogola J.B.O., Wheeler T.R., Harris P.M. Effects of nitrogen and irrigation on water use of maize crops [J]. Field Crops Research, 2002, 78: 105-117.
    [213] Ferreira T.C., Carr M.K.V. Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate I. Water use [J]. Field Crops Research, 2002, 78: 51-64.
    [214] Dordas C.A., Sioulas C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions [J]. Industrial Crops and Products, 2008, 27: 75-85.
    [215] Hati K.M., Mandal K.G., Mishra A.K., et al. Effect of irrigation regimes and nutrient management on soil water dynamics, evapotranspiration and yield of wheat in vertisols [J]. Indian Journal of Agriculture Science, 2001, 71: 581-586.
    [216] Rahman M.A., Karim A.J.M.S., Solaiman A.R.M., et al. Water use, yield and yield component of wheat under irrigation and nitrogen application in terrace soil of Bangladesh [J]. Annual Bangladesh Agriculture, 1999, 9: 191-204.
    [217] Garcia A.L., Fuentes V., Gallego J. Influence of nitrogen supply on osmoregulation in tomato (Lycopersicon esculentum Mill.) plants under moderate water stress [J]. Plant Science, 1996, 115: 33-38.
    [218] Morgan J.M., Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology, 1984, 35: 299-319.
    [219] Bennet J.M., Jones J.W., Zur B., et al. Hammond, Interactive effects of nitrogen and water stress on water relations of field-grown corn leaves [J]. Agronomy Journal, 1986, 78: 273-280.
    [220] Morgan J.A. The effects of N nutrition on the water relations and gas exchange characteristics of wheat (Triticum aestivum L.) [J]. Plant Physiology, 1986, 80: 52-58.
    [221] Saneoka H., Moghaieb R.E.A., Premachandra G.S., et al. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds.[J] . Environmental and Experimental Botany, 2004, 52: 131-138.
    [222] Monreal J.A., Jiménez E.T., Remesal E., et al. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions [J]. Environmental and Experimental Botany, 2007, 60: 257-267.
    [223] Delauney A.J., Hu C.A., Kishor P.B., et al. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis [J]. Journal of Biological Chemistry, 1993, 268: 18673-18678.
    [224] Gammelvind L.H., Schjoerring J.K., Mogensen V.O., et al. Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L.) [J]. Plant and Soil, 1996, 186: 227-236.
    [225] Cooper P.J.M., Gregory P.J., Tully D., et al. Improving water use efficiency of annual crops in the rainfed farming systems of West Asia and North Africa [J]. Experimental Agriculture, 1987, 23: 113-158.
    [226] Gonzales P.R., Salas M.L., Mason S.C. Nitrogen use efficiency by winter barley under different climatic conditions [J]. Journal of Plant Nutrition, 1993, 16: 1249-1261.
    [227] Rinaldi M. Water availability at sowing and nitrogen management of durum wheat: a seasonal analysis with the CERES-Wheat model [J]. Field Crops Research, 2004, 89: 27-37.
    [228] Ncube B., Dimes J.P., van Wijk M.T., et al. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south-western Zimbabwe: Unravelling the effects of water and nitrogen using a simulation model [J]. Field Crops Research, 2009, 110: 173-184.
    [229] Alon A., Steinberger Y. Effect of nitrogen amendments on microbial biomass, above-ground biomass and nematode population in the Negev Desert soil [J]. Journal of Arid Environments, 1999, 41: 429-441.
    [230] Mazzarino M.J., Bertiller M.B., Sain C., et al. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes [J]. Plant and Soil, 1998, 202: 125-131.
    [231] Nagakura J., Kaneko S., Takahashi M., et al. Nitrogen promotes water consumption in seedlings of Cryptomeria japonica but not in Chamaecyparis obtuse [J]. Forest Ecology and Management, 2008, 255: 2533-2541.
    [232] Norwood C.A. Water use and yield of limited-irrigated and dryland corn [J]. Soil Science Society of America Journal , 2000, 64: 365-370.
    [233] Shen Y., Li L., Chen W., et al. Soil water, soil nitrogen and productivity of lucerne–wheat sequences on deep silt loams in a summer dominant rainfall environment [J]. Field Crops Research, 2009, 111: 97-108.
    [234] Balestra G.M., Misaghi I.J. Increasing the efficiency of the plate counting method for estimating bacterial diversity [J]. Journal of Microbiological Methods, 1997, 30: 111-117.
    [235] Mitsui H., Gorlach K., Lee H.-J., et al. Incubation time and media requirements of culturablebacteria from different phylogenetic groups [J]. Journal of Microbiological Methods, 1997, 30: 103-110.
    [236] Torsvik V., Golsoyr J., Daae F. High diversity in DNA of soil bacteria [J]. Applied and Environmental Microbiology, 1990, 56: 782-787.
    [237] Hill G.T., Mitkowski N.A., Aldrich-Wolfe L., et al. Methods for assessing the composition and diversity of soil microbial communities [J]. Applied Soil Ecology, 2000, 15: 25-36.
    [238] Boylea S.A., Yarwood R.R., Bottomley P.J., et al. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon [J]. Soil Biology and Biochemistry, 2008, 40: 443-451.
    [239] Lynch J.M., Bragg E. Microorganism and soil aggregate stability [J]. Advanced Soil Science, 1985, 2: 133-171.
    [240] Yin S.., Tang Y., Liang Y., et al. Effect of ammonium fixation on determination of N mineralized from soil microbial biomass [J]. Pedosphere, 1997, 7 (2): 127-132.
    [241] Kennedy A.C., Smith K.L. Soil microbial diversity and the sustainability of agriculture soils [J].Plant and Soil, 1995, 170: 75-86.
    [242] Kieft T.L., Soroker E., Firestoxe M.K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted [J]. Soil Biology and Biochemistry, 1987, 19 (2): 119-126.
    [243] Yancey P.H., Clark M.E., Hand S.C., et al. Living with water-stress—evolution of osmolyte systems [J]. Science, 1982, 217: 1214-1222.
    [244] Wilson J.M., Griffin D.M. Water potential and the respiration of microorganisms in the soil [J]. Soil Biology and Biochemistry, 1975, 7: 199-204.
    [245] Lynch J.M., Whipps J.M. Substrate flow in the rhizosphere [J]. Plant and Soil, 1990, 129: 1-10.
    [246] Burger M., Jackson L.E., Lundquist E.J., et al. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes [J]. Biology and Fertility of Soils, 2005, 42: 109-118.
    [247] Whiteley A.S., Griffiths R.I., Bailey M.J. Analysis of the microbial functional diversity within water-stressed soil communities by flow cytometric analysis and CTC+ cell sorting [J]. Journal of Microbiological Methods, 2003, 54: 257-267.
    [248] Linn D.M., Doran J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils [J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.
    [249] Griffiths R.I., Whiteley A.S., O’Donnell A.G., et al. Physiological and Community Responses of Established Grassland Bacterial Populations to Water Stress [J]. Applied and Environmental Microbiology, 2003, 69 (12): 6961-6968.
    [250] Todd T.C., Blair J.M., Milliken G.A. Effects of altered soil– water availability on a tallgrass prairie nematode community [J]. Applied Soil Ecology, 1999, 13: 45-55.
    [251] Vriezen J.A.C., de Bruijn F.J., Nüsslein K. Responses of Rhizobia to Desiccation in Relation to Osmotic Stress, Oxygen, and Temperature [J]. Applied and Environmental Microbiology, 2007, 73 (11): 3451-3459.
    [252] Kosanke J.W., Osburn R.M., Shuppe G.I., et al. Slow rehydration improves the recovery of dried bacterial populations [J]. Canadian Journal of Microbiology, 1991, 38: 520-525.
    [253] Nesci A., Etcheverry M., Magan N. Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina [J]. Journal of Applied Microbiology, 2004, 96: 965-972.
    [254] Drenovsky R.E., Vo D., Graham K.J., et al. Soil Water Content and Organic Carbon Availability Are Major Determinants of Soil Microbial Community Composition [J]. Microbial Ecology, 2004, 48: 424-430.
    [255] Bottner P. Response of microbial biomass to alternate moist and dryconditions in a soil incubated with 14C- and 15N-labelled plant material [J]. Soil Biology and Biochemistry, 1985, 17: 329-337.
    [256] Lundquist E.J., Jackson L.E., Scow K.M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils [J]. Soil Biology and Biochemistry, 1999, 31: 1031-1038.
    [257] Appel T. Non biomass soil organic N-the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying [J]. Soil Biology and Biochemistry, 1998, 30: 1445-1456.
    [258] Cabrera M.L. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils [J]. Soil Science Society of America Journal, 1993, 57: 63-66.
    [259] Adu J.K., Oades J.M. Physical factors influencing decomposition of organic materials in soil aggregates [J]. Soil Biology and Biochemistry, 1978, 10: 109-115.
    [260] Anderson J.M. The breakdown and decomposition of sweet chestnut (Castanea satiua Mill.) and beech (Fagus sylvaticus L.) leaf litter in two deciduous woodland soils [J]. Oecologia (Berlin), 1973, 12: 25l-274.
    [261] Degens B.P., Sparling G.P. Repeated wet-dry cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a sandy loam soil [J]. Plant and Soil, 1995, 175: 197-203.
    [262] Funke B.R., Harris J.O. Early respiratory responses of soil treated by heat or drying [J]. Plant and Soil, 1968, 28 (1): 38-48.
    [263] Lundquist E.J., Scow K.M., Jackson L.E., et al. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle [J]. Soil Biology and Biochemistry, 1999, 31: 1661-1675.
    [264] Salema M.P., Parker C.A., Kirby D.K., et al. Rupture of nodule bacteria on drying and rehydration [J]. Soil Biology and Biochemistry, 1981, 14: 15-22.
    [265] Robinson J.B., Salonius P.O., Chase F.E. A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil [J]. Canadian Journal of Microbiology, 1965, 11: 746-748.
    [266] Vangestel M., Merckx R., Vlassak K. Microbial biomass and activity in soils with fluctuating water contents [J]. Geoderma, 1993, 56: 617-626.
    [267] Clein J.S., Schimel J.P. Reduction in microbial activity in birch litter due to drying and rewetting events [J]. Soil Biology and Biochemistry, 1994, 26 (3): 403-406.
    [268] Henderson J.C., Davies F.T. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L. cv. Ferdy is independent of leaf elemental content [J]. New Phytologist, 1990, 115: 503-510.
    [269] Bryla D.R. Duniway J.M. Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant and Soil, 1997, 197: 95-103.
    [270] Faber B.A., Zasoski R.J., Munns D.N., et al. A method for measuring hyphal nutrient and wateruptake in mycorrhizal plants [J]. Canadian Journal of Botany, 1991, 69: 87-94.
    [271] Hall S.J., Raffaelli D. Food webs: theory and reality [J]. Advances in Ecological Research, 1993, 24: 187-239.
    [272] Hunt H.W., Coleman D.C., Ingham E.R., et al. The detrital food web in a shortgrass prairie [J]. Biology and Fertility of Soils, 1987, 3: 57-68.
    [273] Boyle S.A., Yarwood R.R., Bottomley P.J., et al. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon [J]. Soil Biology and Biochemistry, 2008, 40: 443-451.
    [274] Belay A., Claassens A.S., Wehner F.C. Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation [J]. Biology and Fertility of Soils, 2002, 35: 420-427.
    [275] Johnson D., Leake J.R., Lee J.A. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands [J]. Environmental Pollution, 1998, 103: 239-250.
    [276] Kieliszewska-Rokicka A.B. Effect of nitrogen level on acid phosphatase activity of eight isolates of ectomycorrhizal fungus Paxillus involutus cultured in vitro [J]. Plant and Soil, 1992, 139: 229-238.
    [277] Scheu S., Schaefer M. Bottom-up control of the soil macro-fauna community in a beechwood on limestone: manipulation of food resources [J]. Ecology, 1998, 79: 1573-1585.
    [278] Joergensen R.G., Scheu S. Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina [J]. Soil Biology and Biochemistry, 1999, 31: 859-866.
    [279] Wardle D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biological Reviews, 1992, 67: 321-358.
    [280] Gallardo A., Schlesinger W.H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest [J]. Soil Biology and Biochemistry, 1994, 26: 1409-1415.
    [281] S?derstr?m B., B??th E., Lundgren B. Decrease in soil microbial activity and biomasses owing to nitrogen amendments [J]. Canadian Journal of Microbiology, 1983, 29: 1500-1506.
    [282] Bardgett R.D., McAlister E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self regulation in temperate meadow grasslands [J]. Biology and Fertility of Soils, 1999, 29: 282-290.
    [283] Leckie S.E., Prescott C.E., Grayston S.J., et al. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability [J]. Microbial Ecology, 2004, 48: 29-40.
    [284] H?gberg M.N., H?gberg P., Myrold D.D. Is microbial community composition in boreal forest soils determined by pH, Cto-N ratio, the tree, or all three [J]? Oecologia, 2007, 150: 590-601.
    [285] Bardgett R.D., Mawdsley J.L., Edwards S., et al. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands [J]. Functional Ecology, 1999, 13: 650-660.
    [286] Gr?nli K.E., Frosteg?rd ?., Bakken L.R., et al. Nutrient and carbon additions to the microbial soil community and its impact on tree seedlings in a boreal spruce forest [J]. Plant and Soil, 2005, 278: 275-291.
    [287] Wallenstein M.D., McNulty S., Fernandez I.J., et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments [J]. Forest Ecology and Management,2006, 222: 459-468.
    [288] Johnson N.C., Rowland D.L., Corkidi L., et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands [J]. Ecology, 2003, 84: 1895-1908.
    [289] Johnson N.C. Can fertilization of soil select less mutualistic mycorrhizae [J]? Ecological Application, 1993, 3: 749-757.
    [290] Egerton-Warburton L.M., Allen E.B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient [J]. Ecological Application, 2000, 10: 484-496.
    [291] Schimel J.P., Bennett J. Nitrogen mineralization: challenges of a changing paradigm [J]. Ecology, 2004, 85: 591-602.
    [292] Merrick M.J., Edwards R.A. Nitrogen control in bacteria [J]. Micrbiological Reviews, 1995, 59: 604-622.
    [293] Marzluf G.A. Genetic regulation of nitrogen metabolism in the fungi [J]. Microbiology and Molecular Biology Reviews, 1997, 61: 17-32.
    [294] Hart S.C., Binkley D., Perry D.A. Influence of red alder on soil nitrogen transformations in two conifer forests of contrasting productivity [J]. Soil Biology and Biochemistry, 1997, 29: 1111-1123.
    [295] Chen J., Stark J.M. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheat-grass soil [J]. Soil Biology and Biochemistry, 2000, 32: 47-57.
    [296] Larkin Robert P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles [J]. Soil Biology and Biochemistry, 2003, 35: 1451-1466.
    [297] Grayston S.J., Wang S., Campbell C.D., et al. Selecting influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry, 1998, 30: 369-378.
    [298] Siciliano S.D., Theoret C.M., de Freitas J.R., et al. Differences in the microbial communities associated with the roots of different cultivars of canola and wheat [J]. Canadian Journal of Microbiology, 1998, 44: 844-851.
    [299] Miethling R., Wieland G., Backhaus H., et al. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33 [J]. Microbial Ecology, 2000, 41: 43-56.
    [300] Grayston S.J., Wang S., Campbell C.D., et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry, 1998, 30 (3): 369-378.
    [301] Maloney P.E., Van Bruggen A.H.C., Hu S. Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil [J]. Microbial Ecology, 1997, 34: 109-117.
    [302] Marschner P., Ynag C.-H., Lieberei R., et al. Soil and plant specific effects on bacterial community composition in the rhizosphere [J]. Soil Biology and Biochemistry, 2001, 33: 1437-1445.
    [303] Merbach W., Mirus E., Knof G., et al. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance [J]. Journal of Plant Nutrition and Soil Science, 1999, 162: 373-383.
    [304] Sigüenza C., Crowley D.E., Allen E.B. Soil microorganisms of a native shrub and exotic grasses along a nitrogen deposition gradient in southern California [J]. Applied Soil Ecology, 2006, 32: 13-26.
    [305] Bever J.D., Westover K.M., Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach [J]. Journal of Ecology, 1997, 85: 561-573.
    [306] Zaidi A., Khan M.S. Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat [J]. Journal of Plant Nutrition, 2005, 28 (12): 2079-2092.
    [307] Kaya C., Higgs D., Kirnak H., et al. Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions [J]. Plant and Soil, 2003, 253: 287-292.
    [308] Choudhury A.T.M.A., Kennedy I.R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production [J]. Biology and Fertility of Soils, 2004, 39: 219-227.
    [309] Choudhury A.T.M.A., Kennedy I.R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems [J]. Communications in Soil Science and Plant Analysis, 2005, 36: 1625-1639.
    [310] Kennedy I.R., Choudhury A.T.M.A., Kecskés M.L. Nonsymbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited [J]? Soil Biology and Biochemistry, 2004, 36: 1229-1244.
    [311] Dobbelaere S., Vanderleyden J., Okon Y. Plant growthpromoting effects of diazotrophs in the rhizosphere [J]. Critical Reviews in Plant Sciences, 2003, 22: 107-149.
    [312] Murty M.G., Ladha J.K. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions [J]. Plant and Soil, 1988, 108: 281-285.
    [313] Biswas J.C., Ladha J.K., Dazzo F.B. Rhizobia inoculation improves nutrient uptake and growth of lowland rice [J]. Soil Science Society of America Journal, 2000, 64: 1644-1650.
    [314] Biswas J.C., Ladha J.K., Dazzo F.B., et al. Rhizobial inoculation influences seedling vigor and yield of rice [J]. Agronomy Journal, 2000, 92: 880-886.
    [315] Cong P.T., Dung T.D., Hien T.M., et al. Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam [J]. European Journal of Soil Biology, 2009, 45: 52-61.
    [316] Steenwerth K.L., Jackson L.E., Calderon F.J., et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California [J]. Soil Biology and Biochemistry, 2002, 34: 1599-1611.
    [317] Williams M.A., Rice C.W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community [J]. Applied Soil Ecology, 2007, 35: 535-545.
    [318] Wyland L.J., Jackson L.E., Chaney W.E., et al. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs [J]. Agriculture, Ecosystems and Environment, 1996, 59: 1-17.
    [319] Wyland L.J., Jackson L.E., Schulbach K.F. Soil-plant nitrogen dynamics following incorporation of a mature rye cover crop in a lettuce production system [J]. Journal of Agricultural Science, 1995, 124: 17-25.
    [320] Sheoran I.S., Sawhney V., Babbar S., et al. In vivo fixation of CO2 by attached pods of Brassica campestris L [J]. Annals of Botany, 1991, 67: 425-428.
    [1]张启宗,马向东.浅议节水灌溉与节水农业技术[J].水利科技与经济, 2005, 11 (2): 113.
    [2]张正斌,徐萍,董宝娣等.高水效农业是我国农业发展的必由之路[J]. 21世纪青年学者论坛, 2005, 27 (4): 63-71.
    [3]山仑.加速发展我国节水农业[J].求是, 2005, 22: 42-43.
    [4]孙福琴.简论可持续发展农业和节水灌溉[J].内蒙古林业, 2004, (6): 30-31.
    [5]刘毅,董藩.中国水资源管理的突出问题与对策[J].中南民族大学学报(人文社会科学版), 2005, 25 (6): 112-118.
    [6]陈志恺.中国水资源的可持续利用问题[J].水文, 2003, 23(1): 1-5.
    [7]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版), 2003, 33 (3): 1-5.
    [8]无作者.节水农业是惟一出路[J].瞭望新闻周刊, 2005, 16: 33.
    [9]吴传清,刘陶.以色列节水型社会建设模式的制度经济学分析[J].世界经济, 2005, (7): 41-44.
    [10] Pandey R.K., Maranville J.W., Admou A.. Deficit irrigation and nitrogen effects on maize in a Sahelian environment I. Grain yield and yield components [J]. Agricultural Water Management, 2000, 46: 1-13.
    [11] Pandey R.K., Maranville J.W., Chetima M.M.. Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction [J]. Agricultural Water Management, 2000, 46: 15-27.
    [12] Oktem Abdullah, Simsek Mehmet, Oktem A. Gulgun. Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region I. Water-yield relationship [J]. Agricultural Water Management, 2003, 61: 63-74.
    [13] Wakrim R., Wahbi S., Tahi H., et al. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.) [J]. Agriculture, Ecosystems and Environment, 2005, 106: 275-287.
    [14] Brian G.L., Horst W.C., Cristoti A.R., et al. Partial rootzone drying and deficit irrigation of‘Fuji’apples in a semi-arid climate [J]. Irrigation Science, 2006, 24: 85-99.
    [15] Moya P., Lin H., Dawe D., et al. The impact of on-farm water saving irrigation techniques on rice productivity and profitability in Zhanghe Irrigation System, Hubei, China [J]. Paddy and Water Environment, 2004, 2: 207-215.
    [16] Kirda C., Cetin M., Dasgan Y., et al. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation [J]. Agricultural Water Management, 2004, 69: 191-201.
    [17]康绍忠,张建华,梁宗锁等.控制性交替灌溉—种新的农田节水调控思路[J].干旱地区农业研究, 1997, 15 (1): 1-6.
    [18]孙景生,康绍忠,蔡焕杰等.控制性交替灌溉技术的研究进展[J].农业工程学报, 2001, 17 (4): 1-5.
    [19]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水, 2001, 20 (2): 5-7.
    [20]康绍忠,潘英华,石培泽等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报, 2001, (11): 80-86.
    [21]梁宗锁,康绍忠,石培泽等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33 (6): 26-32.
    [22]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报, 2000, 16 (1): 39-43.
    [23]杨秀英,杜太生,潘英华等.干旱沙漠绿洲区地膜玉米控制性隔沟交替灌溉节水技术研究[J].干旱地区农业研究, 2003, 21 (3): 74-77.
    [24] Kang S., Zhang L., Hu X., et al. An improve water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots [J]. Scientia Horticulturae, 2001, 89: 257-267.
    [25] Kang S., Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency [J]. Journal of Experimental Botany, 2004, 55: 2437-2446.
    [26] Zegbe J.A., Behboudian M.H., Clothier B.E. Partial rootzone drying is a feasible option for irrigating processing tomatoes [J]. Agricultural Water Management, 2004, 68: 195-206.
    [27] Hill G.T., Mitkowski N.A., Aldrich-Wolfe L., et al. Methods for assessing the composition and diversity of soil microbial communities [J]. Applied Soil Ecology, 2000, 15: 25-36.
    [28] B??th E., Anderson T.-H., Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J]. Soil Biology and Biochemistry, 2003, 35: 955-963.
    [29] Lundquist E.J., Scow K.M., Jackson L.E., et al. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle [J]. Soil Biology and Biochemistry, 1999, 31: 1661-1675.
    [30]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报, 2004, 15 (6): 1005-1008.
    [31]沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究[J].应用生态学报, 1999, 10 (4): 471-474.
    [32]高明,周保同,魏朝富等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报, 2004, 15 (7): 1177-1181.
    [33]李秀英,赵秉强,李絮花等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学, 2005, 38 (8): 1591-1599.
    [34] Rietz D.N., Haynes R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology and Biochemistry, 2003, 35: 845-854.
    [35] Stromberger M., Shah Z., Westfall D. Soil microbial communities of no-till dryland agroecosystems across an evapotranspiration gradient [J]. Applied Soil Ecology, 2007, 35: 94-106.
    [36] Drenovsky R.E., Vo D., Graham K.J. et al. Soil Water Content and Organic Carbon Availability Are Major Determinants of Soil Microbial Community Composition [J]. Microbial Ecology, 2004, 48: 424-430.
    [37] Steenwerth K.L., Jaclson E.L., Calderon F.J. Soil Microbial Community Composition and Land Use History in Cultivated and Grassland Ecosystems of Coastal California [J]. Biology and Biochemistry, 2002, 34: 1599-1611.
    [38] Vieira F.C.S., Nahas E.. Comparison of microbial numbers in soils by using various culture media and temperatures [J]. Microbiological Research, 2005, 160: 197-202.
    [39] Yao H., He Z., Wilson M.J., et al. Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use [J]. Microbial Ecology, 2000, 40: 223-237.
    [40] Williams M.A., Rice C.W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community [J]. Applied Soil Ecology, 2006, 35:535-545.
    [41]程丽娟,薛泉宏.微生物学实验技术[M].北京:世界图书出版公司, 2000: 80-83.
    [42]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社, 1985: 44-460.
    [43]陈文新,李阜棣,闫章才.我国土壤微生物学和生物固氮研究的回顾与展望[J].世界科技研究与发展, 2002, 24 (4): 6-12.
    [44]何振立.土壤微生物量的测定方法:现状和展望[J].土壤学进展, 1994, 22 (4): 36-44.
    [45] Larkin R.P. Characterization of soil microbial communities under different potato cropping system by microbial population dynamics, substrate utilization, and fatty acid profiles [J]. Soil Biology and Biochemistry, 2003, 35: 1451-1466.
    [46] Ward D.M., Weller R., Bateson M.M. 16s rRNA sequences reveal numerous uncultured microorganisms in a natural community [J]. Nature, 1990, 345: 63-65.
    [47] Bakken L.R. Culturable and non-culturable bacteria in soil. In: van Elsas J.D., Trevor J.T., Wellington E.M.H. (Eds.), Modern soil microbiology [M]. New York: Marcel Dekker, 1997, 47-61.
    [48] Torsvik V., Golsoyr J., Daae F. High diversity in DNA of soil bacteria [J]. Applied and Environmental Microbiology, 1990, 56: 782-787.
    [49]陶水龙,林启美,赵小蓉.土壤微生物量研究方法进展[J].土壤肥料, 1998, (5): 15-18.
    [50]亚历山大.广西农学院农业微生物学教研组译.娄隆后校.土壤微生物学导论[M].北京:科学出版社, 1983: 9-45.
    [51] Clein J.S., Schmel J.P. Reduction in microbial activity in birch litter due to drying and rewetting events [J]. Soil Biology and Biochemistry, 1994, 26: 403-406.
    [52] Linn D.M., Doran J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils [J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.
    [53] Burger M., Jackson L.E., Lundquist E.J., et al. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes [J]. Biology and Fertility of Soils, 2005, 42: 109-118.
    [54] Wilson J.M., Griffin D.M. Water potential and the respiration of microorganisms in the soil [J]. Soil Biology and Biochemistry, 1974, 7: 199-204.
    [55] Kieft T.L., Soroker E., Firestoxe M.K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted [J]. Soil Biology and Biochemistry, 1987, 19: 119-126.
    [56] Funke B.R., Harris J.O. Early respiratory responses of soil treated by heat or drying [J]. Plant and Soil, 1968, 28: 38-48.
    [57] Vangestel M., Ladd J.N., Amato M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles [J]. Soil Biology and Biochemistry, 1992, 24: 103-111.
    [58] Appel T. Non biomass soil organic N-the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying [J]. Soil Biology and Biochemistry, 1998, 30: 1445-1456.
    [59] Cabrera M.L. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils [J]. Soil Science Society of America Journal, 1993, 57: 63-66.
    [60]顾峰雪,文启凯,潘伯荣等.塔克拉玛干沙漠腹地人工植被下土壤微生物的初步研究[J].生物多样性, 2000, 8 (3): 297-303.
    [61]张小冰.根系分泌物及其作用[J].生物学教学, 2004, 29 (l1): 6-8.
    [62] Lynch J. M., Whipps J.M. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129: 1-10.
    [63] Mahaffe W.F., Kl?pper J.W. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.) [J]. Microbial Ecology, 1997, 34: 210-223.
    [64] Wieland G., Neumann R., Backhaus H. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development [J]. Applied and Environmental Microbiology, 2001, 67: 5849-5854.
    [65]乔云发,韩晓增,马献发.植物根系分泌物研究进展[J].腐植酸, 2004, (3): 17-20.
    [66]史刚荣.植物根系分泌物的生态效应[J].生态学杂志, 2004, 23 (1): 97-101.
    [67] Kandeler E., Marschner P., Tscherko D., et al. Microbial community composition and functional diversity in the rhizosphere of maize [J]. Plant and Soil, 2002, 238: 301-312.
    [68] Marschner P., Yang C.-H, Lieberei R., et al. Soil and plant specific effects on bacterial community composition in the rhizophere [J]. Soil Biology and Biochemistry, 2001, 33: 1437-1445.
    [69]史文娟,康绍忠,王全九.控制性分根交替灌溉-常规节水灌溉技术的新突破[J].灌溉排水, 2000, 19 (1): 32-35.
    [70] Kang S., Liang Z., Pan Y., et al. Alternate furrow irrigation for maize production in an arid area [J]. Agricultural Water Management, 2000, 45: 267-274.
    [71] Kang S., Shi W., Cao H., et al. Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays) [J]. Field Crops Research, 2002, 77: 31-41.
    [72] Skinner R.H., Hanson J.D., Benjamin J.G. Nitrogen uptake and partitioning under alternate- and every-furrow irrigation [J]. Plant and Soil, 1999, 210: 11-20.
    [73] Liu F., Shahnazari A., Andersen M.N., et al. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency [J]. Journal of Experimental Botany, 2006, 57: 3727-3735.
    [74]梁宗锁,康绍忠,高俊风.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].作物学报, 2000, 26 (2): 250-254.
    [75]武永军,刘红侠,梁宗锁等.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报, 1999, 19 (4): 605-611.
    [76]梁宗锁,康绍忠,邵明安等.土壤干湿交替对玉米生长速度及其耗水量的影响[J].农业工程学报, 2000, 16 (5): 38-40.
    [1]杨劲峰,韩晓日,阴红彬等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响[J].土壤与环境, 2001, 10 (2): 154-157.
    [2] Azam F., Farooq S., Lodhi A. Microbial Biomass in Agricultural Soils - Detenuination, Synthesis, Dynamics and Role in Plant Nutrition [J]. Pakistan Journal of Biological Sciences, 2003, 6 (7): 629-639.
    [3]胡诚,曹志平,叶钟年等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J].生态学报, 2006, 26 (3): 808-814.
    [4] Garcia C., Roldan A., Hernandez T. Ability of different plant species to promote microbiological processes in semiarid soil [J]. Geoderma, 2005, 124: 193-202.
    [5] Spedding T.A., Hamel C., Mehuys G.R., et al. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems [J]. Soil Biology and Biochemistry, 2004, 36: 499-512.
    [6] Rietz D.N., Haynes R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology and Biochemistry, 2003, 35: 845-854.
    [7] Crecchio C., Gelsomino A., Ambrosoli R., et al. Functional and molecular responses of soil microbial communities under differing soil management practices [J]. Soil Biology and Biochemistry, 2004, 36: 1873-1883.
    [8] Mendes I.C., Bandick A.K., Dick R.P., et al. Microbial Biomass and Activities in Soil Aggregates Affected by Winter Cover Crops [J]. Soil Science Society of America Journal, 1999, 63: 873-881.
    [9] Rutigliano F.A., D’Ascoli R., De Santo A.V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover [J]. Soil Biology and Biochemistry, 2004, 36: 1719-1729.
    [10] Papatheodorou E.M., Stamou G.P., Giannotaki A. Response of soil chemical and biological variables to small and large scale changes in climatic factors [J]. Pedobiologia, 2004, 48: 329-338.
    [11]米国全,袁丽萍,龚元石等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究[J].农业工程学报, 2005, 21 (7): 124-126.
    [12]詹风,刘雪琴,孟涛等.氮素对农田生态系统的污染现状及对策[J].陕西农业科学, 2006, (1): 45-46.
    [13] Hadas A., Hadas A., Sagiv B., et al. Agricultural practices, soil fertility management modes and resultant nitrogen leaching rates under semi-arid conditions [J]. Agricultural Water Management, 1999, 42: 81-95.
    [14] Aparicio V., Costa J.L., Zamora M. Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina [J]. Agricultural Water Management, 2008, 95: 1361-1372.
    [15] Ribbe L., Delgado P., Salgado E., et al. Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed, Chile [J]. Desalination, 2008, 226: 13-20.
    [16]张成娥,梁银丽.不同氮磷施肥量对玉米生育期土壤微生物量的影响[J].中国生态农业学报, 2001, 9 (2): 72-74.
    [17]吴铁航,李振高.土壤微生物在持续农业中的作用与应用前景[J].土壤学进展, 1995, 23 (4):29-35.
    [18]兰晓泉.半干旱黄土丘陵区农田水肥效应研究[J].土壤通报, 1998, 29 (4): 161-163.
    [19]吕世华,张福锁,刘学军等.重视土壤、水和肥料资源利用与保护新技术研究促进农业可持续发展[J].西南农业学报, 1999, (12): 26-31.
    [20]侯彦林,李红英,周永娟等.中国农田氮面源污染研究:Ⅱ污染评价指标体系的初步制定[J].农业环境科学学报, 2008, 27 (4): 1277-1282.
    [21]张海芝.氮素化肥最大效益和最小污染技术措施[J].中国农学通报, 2004, 20 (6): 99-330.
    [22]谢红梅,朱波.农田非点源氮污染研究进展[J].农田非点源氮污染研究进展,生态环境, 2003, 12 (3): 349-352.
    [23]葛鑫,戴其根,霍中洋等.农田氮素流失对环境的污染现状及防治对策[J].环境科学技术, 2003, 26 (6): 53-54.
    [24]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报, 2000, 6 (4): 476-480.
    [25] Malhi S.S., Grant C.A., Johnston A.M., et al. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review [J]. Soil and Tillage Research, 2001, 60: 101-122.
    [26] Vineela C., Wani S.P., Srinivasarao C., et al. Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manurial experiments in the semi-arid tropics of India [J]. Applied Soil Ecology, 2008, 40: 165-173.
    [27] Wei D., Yang Q., Zhang J., et al. Bacterial Community Structure and Diversity in a Black Soil as Affected by Long-Term Fertilization [J]. Pedosphere, 2008, 18 (5): 582-592.
    [28] Odlare M., Pell M., Svensson K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues [J]. Waste Management, 2008, 28: 1246-1253.
    [29]曹志平,胡诚,叶钟年等.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响[J].生态学报, 2006, 26 (5): 1487-1493.
    [30]隋跃宇,张兴义,焦晓光.不同施肥制度对玉米生育期土壤微生物量的影响[J].中国生态农业学报, 2007, 15 (3): 52-54.
    [31]程丽娟,薛泉宏.微生物学实验技术[M].北京:世界图书出版公司, 2000: 80-83
    [32]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社, 1985: 44-460.
    [33] Kang S., Liang Z., Pan Y., et al. Alternate furrow irrigation for maize production in an arid area [J]. Agricultural Water Management, 2000, 45: 267-274.
    [34] Zegbe-Domínguez J.A., Behboudian M.H., Lang A., et al. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in‘Petopride’processing tomato (Lycopersicon esculentum, Mill.) [J]. Scientia Horticulturae, 2003, 98: 505-510.
    [35] Tang L., Li Y., Zhang J. Physiological and yield responses of cotton under partial rootzone irrigation [J]. Field Crops Research, 2005, 94: 214-223.
    [36] Leib B.G., Caspari H.W., Redulla C.A., et al. Partial rootzone drying and deficit irrigation of‘Fuji’apples in a semi-arid climate [J]. Irrigation Science, 2006, 24: 85-99.
    [37] Du T., Kang S., Zhang J., et al. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation [J]. Agricultural Water Management, 2008, 95: 659-668.
    [38] Cabangon R.J., Tuong T.P., Castillo E.G., et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland riceconditions in China [J]. Paddy and Water Environment, 2004, 2: 195-206.
    [39] De la Hera M.L., Romero P., Gómez-Plaza E., et al. Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions [J]? Agricultural Water Management, 2007, 87: 261-274.
    [40] Wahbi S., Wakrim R., Aganchich B., et al. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate I. Physiological and agronomic responses [J]. Agriculture, Ecosystems and Environment, 2005, 106: 289-301.
    [41]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报, 2000, 16 (1): 39-43.
    [42]梁宗锁,康绍忠,石培泽等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33 (6) : 26-32.
    [43]史文娟,康绍忠,王全九.分根区垂向交替供水的节水机理及效应[J].农业工程学报, 2000, 16 (5): 11-15.
    [44] Du T., Kang S., Zhang J., et al. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China [J]. Irrigation Science, 2008, 26: 147-159.
    [45]王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中作用机制[J].西北农业大学学报, 1997, 25 (1): 15-19.
    [46] Haefele S.M., Jabbar S.M.A., Siopongco J.D.L.C., et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels[J]. Field Crops Research, 2008, 107: 137-146.
    [47] Vázquez N.V, Pardo A., Suso M.L., et al. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching [J]. Agriculture, Ecosystems and Environment, 2006, 112: 313-323.
    [48]邢维芹,骆永明,王林权等.半干旱区玉米水肥空间耦合效应Ⅰ.氮素的吸收和残留及其环境效应[J].土壤, 2003, (2): 118-121.
    [49]董雪凌.玉米合理施用氮肥的研究[J].农业科技通讯, 2008, (8): 67-68.
    [50] Zhu A., Zhang J., Zhao B., et al. Water balance and nitrate leaching losses under intensive crop production with Ochric Aquic Cambosols in North China Plain[J]. Environment International, 2005, 31: 904-912.
    [51] Clein J.S., Schimel J.P. Reduction in microbial activity in birch litter due to drying and rewetting events [J]. Soil Biology and Biochemistry, 1994, 26 (3): 403-406.
    [52] Lundquist E.J., Scow K.M., Jackson L.E., et al. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle [J]. Soil Biology and Biochemistry, 1999, 31: 1661-1675.
    [53] Lundquist E.J., Jackson L.E., Scow K.M. Wet-dry cycles a.ect dissolved organic carbon in two California agricultural soils [J]. Soil Biology and Biochemistry, 1999, 31: 1031-1038.
    [54] Van Schreven D.A. The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralization [J]. Plant and Soil, 1967, 26 (1): 14-32.
    [55] Liljeroth E., B??th E., Mathiasson M. Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth [J].Plant and Soil, 1990, 127: 81-89.
    [56]张小冰.根系分泌物及其作用[J].生物学教学, 2004, 29 (11): 6-8.
    [57]史刚荣.植物根系分泌物的生态效应[J].生态学杂志, 2004, 24 (1): 97-101.
    [58]刘洪升,宋秋华,李凤民.根分泌物对根际矿物营养及根际微生物的效应[J].西北植物学报, 2002, 22 (3): 693-702.
    [59] Reichardt W., Briones A., de Jesus R., et al. Microbial population shifts in experimental rice systems [J]. Applied Soil Ecology, 2001, 17: 151-163.
    [60] Williams M.A., Rice C.W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community [J]. Applied Soil Ecology, 2007, 35: 535-545.
    [61] Wilson J.M., Griffin D.M. Water potential and the respiration of microorganisms in the soil [J]. Soil Biology and Biochemistry, 1975, 7: 199-204.
    [62] Bhaumik H.D., Clark F.E. Soil moisture tension and microbiological activity [J]. Soil Science Society of America Journal, 1947, 12: 234-238.
    [63] Miller R.D., Johnson D.D. The effect of soil moisture tension on carbon dioxide evolution, nitrifxation and nitrogen mineralization[J]. Soil Science Society of America Journal, 1964, 28: 644-647.
    [64]孙瑞莲,朱鲁生,赵秉强等.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报, 2004, 15 (10): 1907-1910.
    [65]胡俊,高翔,郑红丽.覆膜、灌水、氮肥对春玉米根部土壤微生物数量的影响[J].内蒙古农业大学学报, 2000, 21 (12): 115-119.
    [66] Sarathchandra S.U., Ghani A., Yeates G.W., et al. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils [J]. Soil Biology and Biochemistry, 2001, 33: 953-964.
    [67]杜社妮,梁银丽,徐福利等.施肥对日光温室土壤微生物与酶活性变化的影响[J].中国生态农业学, 2007, 15 (4): 68-71.
    [68] Zhong W., Cai Z. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay [J]. Applied Soil Ecology, 2007, 36: 84-91.
    [69] Luard E.J. Effect of osmotic shock on some intracellular solutes in two filamentous fungi [J]. Journal of General Microbiology, 1982, 128: 2575-2581.
    [70] Arnebrandt K., B??th E., Sgderstrg M.B. Changes in micro-fungal community structure after fertili-station of Scots pine forest soil with ammonium nitrate or urea [J]. Biology and Fertility of Soils, 1990, 22: 309-312.
    [71] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter [J]. Biological Review, 1988, 63: 433-462.
    [72] Dick R.P. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters [J]. Agriculture Ecosystems and Environment, 1992, 40: 25-36.
    [73]於丽华,洛雪,殷博等.甜菜、玉米和大豆根系对土壤微生物数量的影响[J].中国甜菜糖业, 2008, (2): 8-11.
    [1]王延宇,王鑫,赵淑梅等.玉米各生育期土壤水分与产量关系的研究[J].干旱地区农业研究, 1998, 16 (1): 100-105.
    [2]刘树堂,东先旺,孙朝辉等.水分胁迫对夏玉米生长发育和产量形成的影响[J].莱阳农学院学报, 2003, 20 (2): 98-100.
    [3]梁宗锁,康绍忠,邵明安等.土壤干湿交替对玉米生长速度及其耗水量的影响[J].农业工程学报, 2000, 16 (5): 38-40.
    [4]刘建栋,李世奎,于强等.水分胁迫对黄淮海夏玉米农业气候资源利用的影响—水分胁迫对叶片生产力影响[J].资源科学, 2002, 24 (1): 51-54.
    [5]徐世昌,戴俊英,沈秀瑛等.水分胁迫对玉米光合性能及产量的影响[J].作物学报, 1995, 21 (3): 356-363.
    [6]宋凤斌,徐世昌,戴俊英.水分胁迫对玉米光合作用的影响[J].玉米科学, 1994, 2 (3): 66-70.
    [7]于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报, 2003, 25 (3): 239-242.
    [8] Igbadun H.E., Salim B.A., Tarimo A.K.P.R., et al. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize [J]. Irrigation Science, 2008, 27: 11-23.
    [9] Zhuang Y., Ren G., Yue G., et al. Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize [J]. Plant Cell Reports, 2007, 26: 2137-2147.
    [10] HervéC. Xylem embolism and drought-induced stomatal closure in maize [J]. Planta, 2002, 215: 466-471.
    [11]康绍忠,张建华,梁宗锁等.控制性交替灌溉—种新的农田节水调控思路[J].干旱地区农业研究, 1997, 15 (1): 1-6.
    [12] Kang S., Zhang L., Hu X., et al. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots [J]. Scientia Horticulturae, 2001, 89: 257-267.
    [13] Du T., Kang S., Zhang J., et al. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China [J]. Agricultural Water Management, 2006, 84: 41-52.
    [14] Shahnazari A., Liu F., Andersen M.N., et al. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions [J]. Field Crops Research, 2007, 100: 117-124.
    [15] Shao G., Zhang Z., Liu N., et al. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper[J]. Scientia Horticulturae, 2008, 119: 11-16.
    [16] Intrigliolo D.S., Castel J.R. Response of Vitis vinifera cv.‘Tempranillo’to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality [J]. Agricultural Water Management, 2009, 96: 282-292.
    [17]米国华,赖宁薇,陈范骏等.细菌、真菌及植物氮营养信号研究进展[J].植物营养与肥料学报, 2008, 14 (5): 1008-1016.
    [18] Skinner R.H., Hanson J.D., Benjamin J.G. Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn [J]. Plant and Soil, 1998, 199: 187-194.
    [19] Skinner R.H., Hanson J.D., Benjamin J.G. Nitrogen uptake and partitioning under alternate- and every-furrow irrigation [J]. Plant and Soil, 1999, 210: 11-20.
    [20] Shahnazari A., Ahmadi S.H., Laerke P.E., et al. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes [J]. European Journal of Agronomy, 2008, 28: 65-73.
    [21] Hu T., Kang S., Li F., et al. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize [J]. Agricultural Water Management, 2009, 96: 208-214.
    [22]韩艳丽,康绍忠.根系分区交替灌水对玉米吸收养分影响的初步研究[J].农业工程学报, 2002, 18 (1): 57-59.
    [23]黄春燕,李伏生,覃秋兰等.两种施肥水平下根区局部灌溉对甜玉米水分利用的效应[J].节水灌溉, 2004, 23 (6): 8-11.
    [24]梁继华,李伏生,唐梅等.分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J].农业工程学报, 2006, 22 (10): 68-72.
    [25]刘永贤,李伏生,农梦玲等.不同生育时期分根区交替灌溉对烤烟生长和氮钾含量的影响[J].灌溉排水学报, 2007, 26 (6): 101-105.
    [26]原丽娜,胡田田.局部施氮对玉米生理生化特性和产量的影响[J].干旱地区农业研究, 2008, 26 (4): 49-52.
    [27]谭军利.水肥异区交替灌水施肥和地面覆盖条件下土壤水分养分运移及其利用效率[D].陕西杨凌,西北农林科技大学, 2005.
    [28]肖深根,施晋杰,郑志华等.根系分区施肥对黄瓜干物质生产的影响[J].湖南农业大学学报(自然科学版), 2007, 33 (5): 614-616.
    [29]王绍辉,张福墁.局部施肥对植株生长及根系形态的影响[J].土壤通报, 2002, 33 (2): 153-155.
    [30] Drew M.C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley [J]. New Phytologist, 1975, 75: 479-490.
    [31] Robinson D., Rorison I.H. A comparison of the responses of lolium perenne L., holcus lanatus L. and deschampsia elexuosa (L.) trin. to a localized supply of nitrogen [J]. New Phytologist, 1983, 94: 263-273.
    [32] Brouder S.M., Cassman K.G. Cotton root and shoot response to localized supply of nitrate, phosphate and potassium: Split-pot studies with nutrient solution and vermiculitic soil [J]. Plant and Soil, 1994, 161: 179-193.
    [33] LainéP., Ourry A., Boucaud J. Shoot control of nitrate uptake rates by roots of Brassica napus L.: Effects of localized nitrate supply [J]. Planta, 1995, 196: 77-83.
    [34] Ivanov I.I., Kudoyarova G.R., Trapeznikov V.K. The effect of local application of fertilizer on the content of cytokinins in the xylem sap maize [J]. Biologia Plantarum, 1998, 41 (4): 587-590.
    [35] Schubert S., Yan F. Changes in net proton release by roots of intact maize plants after local nutrient supply in a split root system [J]. Journal of Plant Nutrition and Soil Science, 1999, 162: 577-582.
    [36] Sun H., Zhang F., Li L., et al. The morphological changes of wheat genotypes as affected by the levels of localized phosphate supply [J]. Plant and Soil, 2002, 245: 233-238.
    [37] Trapeznikov V.K., Ivanov1 I.I., Kudoyarova G.R. Effect of heterogeneous distribution of nutrients on root growth, ABA content and drought resistance of wheat plants [J]. Plant and Soil, 2003, 252:207-214.
    [38] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162: 9-24.
    [39] Guo Y., Chen F., Zhang F., et al. Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize [J]. Plant Science, 2005, 169: 894-900.
    [40] Subedi K.D., Ma B.L. Assessment of some major yield-limiting factors on maize production in a humid temperate environment [J]. Field Crops Research, 2009, 110: 21-26.
    [41] Pandey R.K., Maranville J.W., Admou A. Defcit irrigation and nitrogen effects on maize in a Sahelian environment I. Grain yield and yield components [J]. Agricultural Water Management, 2000, 46: 1-13.
    [42] Pandey R.K., Maranville J.W., Chetima M.M. Defcit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction [J]. Agricultural Water Management, 2000, 46: 15-27.
    [43] Ogola J.B.O., Wheeler T.R., Harris P.M. Effects of nitrogen and irrigation on water use of maize crops [J]. Field Crops Research, 2002, 78: 105-117.
    [44]张秋英,刘晓冰,金剑等.水肥耦合对玉米光合特性及产量的影响[J].玉米科学, 2001, 9 (2): 64-67.
    [45] Tanguilig V.C., Yambao E.B., O' Toole J.C., et al. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean [J]. Plant and Soil, 1987, 103: 155-168.
    [46] Begg J.E., Turner N.C. Crop water deficits [J]. Advanced Agronomy, 1976, 28: 161-217.
    [47] Uhart, S.A., Andrade F.H. Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set [J]. Crop Science, 1995, 35: 1376-1383.
    [48] Sinclair, T.R., Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review [J]. Crop Science, 1989, 29: 90-98.
    [49] Marais J.N. Weirsma D. Phosphorus uptake by soybeans as influenced by moisture stress in the fertilized zone [J]. Agronomy Journal, 1975, 67: 777-781.
    [50] Hsiao T.C. Plant responses to water stress [J]. Annual Review of Plant Physiology, 1973, 24: 519-570.
    [51] O’Neill P.M., Shanahan J.F., Schepers J.S., et al. Agronomic Responses of Corn Hybrids from Different Eras to Deficit and Adequate Levels of Water and Nitrogen [J]. American Society of Agronomy, 2004, 96: 1660-1667.
    [52] Jackson R.B., Caldwell M.M. Kinetic responses of Pseudoroegneria roots to localized soil enrichment [J]. Plant and Soil, 1991, 138: 231-238.
    [53] Fransen B.G., De Kroon H., De Kovel C.G.F., et al. Disentangling the effects of root foraging and inherent growth rate on plant biomass accumulation in heterogeneous environments: A modelling study [J]. Annals of Botany, 1999, 84: 305-311.
    [54] Lucas B., Otegui M.E. Maize Kernel Weight Response to Postflowering Source–Sink Ratio [J]. Crop Science, 2001, 49: 1816-1822.
    [55] Otegui M.E., Nicolini M.G., Ruiz R.A., et al. Sowing date effects on grain yield components for different maize genotypes [J]. Agronomy Journal, 1995, 87: 29-33.
    [56] Andrade F.H., Vega C., Uhart S., et al. Kernel number determination in maize [J]. Crop Science, 1999, 39: 453-459.
    [57] Garrity D.P., Sullivan C.Y., Watts D.G. Moisture deficits and grain sorghum performance: drought stress conditioning [J]. Agronomy Journal, 1983, 75: 997-1004.
    [58] Moser S.B., Feil B., Jampatong S., et al. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize [J]. Agricultural Water Management, 2006, 81: 41-58
    [59] Frey N.M. Dry matter accumulation in kernels of maize [J]. Crop Science, 1982, 21: 118-122.
    [60] Eck H.V. Effects of water deficits on yield, yield components, and water use efficiency of irrigated corn [J]. Agronomy Journal, 1986, 78: 1035-1040.
    [61] Andrade F.H., Echarte L., Rizzalli R., et al. Kernel number prediction in maize under nitrogen or water stress [J]. Crop Science, 2002, 42: 1173-1179.
    [62] Harold V.E. Effects of water deficits on yield, yield components, and water use efficiency of irrigated corn [J]. Agronomy Journal, 1986, 78: 1035-1040.
    [63] Cirilo A.G., Andrade F.H. Sowing date and maize productivity: II. kernel number determination [J]. Crop Science, 1994, 34: 1044-1046.
    [64] Yu L., Setter T.L. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit [J]. Plant Physiology, 2003, 131: 568-582.
    [65] Maddonni G.A., Otegui M.E., Bonhomme R. Grain yield components in maize II. Postsilking growth and kernel weight [J]. Field Crops Research, 1998, 56: 257-264.
    [66] Uhart S.A., Andrade F.H. Nitrogen deficiency in maize: II. Carbon–nitrogen interaction effects on kernel number and grain yield [J]. Crop Science, 1995, 35: 1384-1389.
    [67] Varvel G.E., Stevenson R.K. Evaluation of cultivar and nitrogen management options for malting barley [J]. Agronomy Journal, 1987, 79: 459-463.
    [68] Fois S., Motzo R., Giunta F. The effect of nitrogenous fertiliser application on leaf traits in durum wheat in relation to grain yield and development [J]. Field Crops Research, 2009, 110: 69-75.
    [69] Nordgren A. A method for determining microbially available N and P in an organic soil [J]. Biology and Fertility of Soils , 1992, 13: 195-199.
    [70] Marumoto T., Anderson J.P., Domsch K.H. Decomposition of carbon-14 labeled and nitrogen-15 labeled microbial cells in soil [J]. Soil Biology and Biochemistry, 1982, 14: 461-468.
    [71] Burton D.L., McGill W.B. Spatial and temporal fluctuation in biomass, nitrogen mineralizing reactions and mineral nitrogen in a soil cropped to barley [J]. Canadian Journal of Soil Science, 1992, 72: 31-42.
    [72] Murphy D.V., Sparling G.P., Fillery I.R.P. Stratification of microbial biomass C and N and gross N mineralization with soil depth in two contrasting Western Australian agricultural soils [J]. Australian Journal of Soil Research, 1998, 36: 45-55.
    [73] EI-Nawawy A.S., EI-Bagouri I.H., Abdal M., et al. Biodegradation of oily sludge in Kuwait soil [J]. World Journal of Microbiology and Biotechnology, 1992, 8: 618-620.
    [74]胡元森,吴坤,刘娜等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学, 2004, 37 (10): 1521-1526.
    [75]张凤华,马富裕,郑重等.不同水肥处理膜下滴灌棉田根际微生物及棉花生长发育的研究[J].新疆农业大学学报, 2000, 23 (4): 56-58.
    [76]张亚平,刘日明.根际微生物与地膜甜菜生长发育关系的研究[J].石河子大学学报(自然科学版), 1999, 3 (3): 183-186.
    [77]徐瑞富,任永信.连作花生田土壤微生物群落动态与减产因素分析[J].农业系统科学与综合研究, 2003, 19 (1): 33-34.
    [78]李潮海,赵霞,刘天学等.麦茬处理方式对夏玉米(Zea mays L. )根际生物活性的影响[J].生态学报, 2008, 28 (5): 2169-2175.
    [79]马春梅,唐远征,季尚宁.作物定位轮作体系长期试验研究——土壤微生物在作物可生育期间的数量变化(Ⅰ)[J].东北农业大学学报, 2004, 35 (2): 129-134.
    [80] Kieft T.L., Soroker E., Firestoxe M.K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted [J]. Soil Biology and Biochemistry, 1987, 19: 119-126.
    [81] Wilson J.M., Griffin D.M. Water potential and the respiration of microorganisms in the soil [J]. Soil Biology and Biochemistry, 1974, 7: 199-204.
    [82]蒋舜媛,孙辉,秦纪洪等.亚高山红桦根及根际土壤生化特性对升高温度和CO2的响应[J].吉首大学学报(自然科学版), 2008, 29 (3): 91-96.
    [83]张崇邦.羊草草原土壤细菌数量动态与生态因子之间关系的研究[J].微生物学通报, 2001, 28 (2): 1-4.
    [84] Harris R.F., Allen O.N., Chesters G. Microbial colonization of soil aggregates as affected by temperature [J]. Plant and Soil, 1966, 25 (3): 361-371.
    [85] Kaizzi C.K., Ssali H., Vlek P.L.G. Differential use and benefits of Velvet bean (Mucuna pruriens var. utilis) and N fertilizers in maize production in contrasting agro-ecological zones of E. Uganda [J]. Agricultural Systems, 2006, 88: 44-60.
    [86] Matson P.A., Naylor R., Ortiz-Monasterio I. Integration of environmental, agronomic, and economic aspects of fertilizer management [J]. Science, 1998, 280: 112-115.
    [87] Riley W.J., Ortiz-Monasterio I., Matson P.A. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico [J]. Nutrient Cycling in Agroecosystems, 2001, 61: 223-236.
    [88] Johnson J.M.F., Reicosky D.C., Allmaras R.R., et al. Greenhouse gas contributions and mitigation potential of agriculture in the central USA [J]. Soil and Tillage Research, 2005, 83: 73-94.
    [89] Okano Y., Hristova K.R., Leutenegger C.M., et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil [J]. Applied and Environmental Microbiology, 2004, 20: 1008-1016.
    [90] Zhou J., Li S., Chen Z. Soil microbial biomass nitrogen and its relationship to uptake of nitrogen by plants [J]. Pedosphere, 2002, 12 (3): 251-256.
    [91]杨劲峰,韩晓日,阴红彬等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响[J].土壤肥料科学, 2006, 22 (1): 173-175.
    [92] Hodge A., Robinson D., Fitter A. Are microorganisms more effective than plants at competing for nitrogen [J]? Trends in Plant Science, 2000, 5 (7): 304-308.
    [93] Jakson L.E., Schimel J.P., Firestone M.K. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland [J]. Soil Biology and Biochemistry, 1989, 21: 409-415.
    [94] Jingguo W. Bakken L.R. Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability [J]. Soil Biology and Biochemistry, 1997, 29: 163-170.
    [95] Zaidi A., Khan M.S., Amil M. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.) [J]. European Journal of Agronomy, 2003, 19: 15-21.
    [96] Garland J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology [J]. FEMS Microbiology Ecology, 1997, 24: 289-300.
    [97]贾志红,孙敏,杨珍平等.施肥对作物根际微生物的影响[J].作物学报, 2004, 30 (5): 491-495.
    [98] Li Y., White R., Chen D., et al. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain [J]. Ecological Modelling, 2007, 203: 395-423.
    [99] Chowdary V.M., Rao N.H., Sarma P.B.S. A coupled soil water and nitrogen balance model for flooded rice fields in India [J]. Agriculture, Ecosystems and Environment, 2004, 103: 425-441.
    [100] Zhou X., Wang H., Chen Q., et al. Coupling effects of depth of film-bottomed tillage and amount of irrigation and nitrogen fertilizer on spring wheat yield [J]. Soil and Tillage Research, 2007, 94: 251-261.
    [101]赵萌,方晰,田大伦.第2代杉木人工林地土壤微生物数量与土壤因子的关系[J].林业科学, 2007, 43 (6): 7-12.
    [102]肖玲,王开运,张远彬. CO2浓度和温度升高对红桦根际微生物的影响[J].生态学报, 2006, 26 (6): 1701-1708.
    [103]封海胜,万书波,左学青等.花生连作土壤及根际主要微生物类群的变化及与产量的相关[J].花生科技, 1999, (增刊): 277-283.
    [104]吴海燕,范作伟,刘春光等.保护性耕作条件下玉米田土壤微生物区系变化与影响因素分析[J].玉米科学, 2008, 16 (4): 135-139.
    [105]吕卫光,余廷园,诸海涛等.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学报, 2006, 14 (2): 119-121.
    [106]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报, 2004, 15 (6): 1005-1008.
    [107]郭志英,薛泉宏,张晓鹿等.生防菌苗床接种对辣椒根域微生态及产量的影响[J].西北农林科技大学学报(自然科学版), 2008, 36 (4): 159-170.
    [108]周永强,薛泉宏,杨斌等.生防放线菌对西瓜根域微生态的调整效应[J].西北农林科技大学学报(自然科学版) , 2008, 36 (4): 143-150.
    [109]於丽华,洛雪,殷博等.甜菜、玉米和大豆根系对土壤微生物数量的影响[J].中国甜菜糖业, 2008, (2): 8-11.
    [110] Egerton-Warburton L.M. Allen E.B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient [J]. Ecological Application, 2000, 10: 484-496.
    [111] Dekkers D.B.M., Van der W.P.A. Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization[J]. Mycorrhiza, 2001, 10: 195-201.
    [112] Eom A., Hartnet D.C., Wilson G.W.T., et al. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie [J]. The American Midland Naturalist, 1999, 142: 55-70.
    [113] Hayman D.S. Endogone spore numbers in soil and vesicular–arbuscular mycorrhiza in wheat as influenced by season and soil treatment [J]. Transaction of the British Mycological Society, 1970, 54: 53-63.
    [114] Corkidi L., Rowland D.L., Johnson N.C., et al. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands [J]. Plant and Soil, 2002, 240: 299-310.
    [115] Frey S.D., Knorr M., Parrent J.L., et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management, 2004, 196: 159-171.
    [116] H?gberg M.N., H?gberg P., Myrold D.D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three [J]? Oecologia, 2007, 150: 590-601.
    [117] H?gberg M.N., Chen Y., H?gberg P. Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests [J]. Biology and Fertility of Soils, 2007, 44: 363-366.
    [118]王超,吴凡,刘训理等.不同肥力条件下烟草根际微生物的初步研究[J].中国烟草科学, 2005, (2): 12-14.
    [119]米国全,袁丽萍,龚元石等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究[J].农业工程学报, 2005, 21 (7): 124-127.
    [120]杜社妮,梁银丽,徐福利等.日光温室不同水分条件下盆栽黄瓜产量和土壤微生物数量[J].干旱地区农业研究, 2005, 23 (3): 49-53.
    [121]蔡晓布.不同培肥方式对西藏中部退化土壤的影响[J].水土保持学报, 2002, 16 (2): 12-15.
    [122]张丽荣,沈瑞清,康萍芝等.尿素施用量对不同土壤中微生物的影响[J].宁夏农林科技, 2006, (6): 31-32.
    [123]孙瑞莲,朱鲁生,赵秉强等.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报, 2004, 15 (10): 1907-1910.
    [124] Drew M.C., Saker L.R., Ashley T.W. Nutrient supply and the growth of the seminal root system in Barley [J]. Journal of Experimental Botany, 1973, 24: 1189-1202.
    [125] Drew M.C., Saker L.R. Nutrient supply and the growth of the seminal root system in barley. II. Localised, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system [J]. Journal of Experimental Botany, 1975, 26: 79-90.
    [126]陈芝兰,张涪平,周小英.不同作物根际土壤微生物的初步研究[J].西藏科技, 2004, (7): 8-10.
    [127]李慧星,夏自强,马广慧.含水量变化对土壤温度和水分交换的影响研究[J].河海大学学报(自然科学版), 2007, 35 (2): 172-175.
    [128]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性, 2007, 15 (2): 162-171.
    [129]董艳,汤利,郑毅等.小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响[J].应用生态学报, 2008, 19 (7): 1559-1566.
    [130]郑雅楠,杨宇,吕国忠等.土壤放线菌分离方法研究[J].安徽农业科学, 2006, 34 (6): 1167-1168, 1170.
    [131]孙淑荣,吴海燕,刘春光等.玉米连作对中部农区主要土壤微生物区系组成特征影响的研究[J].玉米科学, 2004, 12 (4): 67-69.
    [132]李絮花.施肥制度与土壤可持续利用[D].北京,中国农业科学院, 2005.
    [133]孔维栋,朱永官,傅伯杰等.农业土壤微生物基因与群落多样性研究进展[J].生态学报, 2004, 24 (12): 2894-2900.
    [134]杨瑞吉,马海灵,杨祁峰等.种植密度与施氮量对麦茬复种饲料油菜土壤微生物活性的影响[J].应用生态学报, 2007, 18 (1): 113-117.
    [1] Buttar G.S., Thind H.S., Aujla M.S. Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.) [J]. Agricultural Water Management, 2006, 85: 253-260.
    [2] Kang S., Liang Z., Pan Y., et al. Alternate furrow irrigation for maize production in an arid area [J]. Agricultural Water Management, 2000, 45: 267-274.
    [3] Panda R.K., Behera S.K., Kashyap P.S. Effective management of irrigation water for wheat under stressed conditions [J]. Agricultural Water Management, 2003, 63: 37-56.
    [4] Wakrim R., Wahbi S., Tahi H., et al. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.) [J]. Agriculture, Ecosystems and Environment, 2005, 106: 275-287.
    [5] Kang S., Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency [J]. Journal of Experimental Botany, 2004, 55: 2437-2446.
    [6] Centritto M., Wahbi S., Serraj R., et al. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate II. Photosynthetic responses [J]. Agriculture, Ecosystems and Environment, 2005, 106: 303-311.
    [7] Liu F., Shahnazari A., Andersen M.N., et al. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency [J]. Journal of Experimental Botany, 2006, 57: 3727-3735.
    [8] Sepaskhah A.R., Karngar-Haghighi A.A. Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals [J]. Agricultural Water Management, 1997, 34: 71-79.
    [9] Kirda C., Cetin M., Dasgan Y., et al. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation [J]. Agricultural Water Management, 2004, 69: 191-201.
    [10] Davies W.J., Bacon M.A., Thompson D.S., et al. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants' chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture [J]. Journal of Experimental Botany, 2000, 51: 1617-1626.
    [11] Kang S., Shi W., Cao H., et al. Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays) [J]. Field Crops Research, 2002, 77: 31- 41.
    [12] Kang S., Zhang L., Hu X., et al. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots [J]. Scientia Horticulturae, 2001, 89: 257-267.
    [13] Zegbe-Domínguez J.A., Behboudian M.H., Lang A., et al. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in‘Petopride’processing tomato (Lycopersicon esculentum Mill.) [J]. Scientia Horticulturae, 2003, 98: 505-510.
    [14] Cifre J., Bota J., Escalona J.M., et al. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) An open gate to improve water-use efficiency [J]? Agriculture, Ecosystems and Environment, 2005, 106: 159-170.
    [15] Leib B.G., Caspari H.W., Redulla C.A., et al. Partial rootzone drying and deficit irrigation of‘Fuji’apples in a semi-arid climate [J]. Irrigation Science, 2006, 24: 85-99.
    [16] Al-Jaloud A.A., Hussian G., Karimulla S., et al. Effect of irrigation and nitrogen on yield and yield components of two rapeseed cultivars. Agricultural Water Management [J], 1996, 30: 57-68.
    [17] Mandal K.G., Hati K.M., Misra A.K., et al. Assessment of irrigation and nutrient effects on growth, yield and water use efficiency of Indian mustard (Brassica juncea) in central India [J]. Agricultural Water Management, 2006, 85: 279 -286.
    [18] Rathke G.W., Diepenbrock W. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop [J]. European Journal of Agronomy, 2006, 24: 35-44.
    [19] Jensen C.R., Mogensen V.O., Mortensen G., et al. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand [J]. Field Crops Research, 1996, 47: 93-105.
    [20] Mogensen V.O., Jensen C.R., Mortensen G., et al. Pod photosynthesis and drought adaptation of field grown rape (Brassica napus L.) [J]. European Journal of Agronomy, 1997, 6: 295-307.
    [21] Maisiri N., Senzanje A., Rockstrom J., et al. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system [J]. Physics and Chemistry of the Earth, 2005, 30: 783-791.
    [22] Zhang H., Turner N.C., Poole M.L. Yield of wheat and canola in the high rainfall zone of south-western Australia in years with and without a transient perched watertable [J]. Australian Journal of Agricultural Research, 2004, 55: 461-470.
    [23] Black V.J., Stewart C.A., Roberts J.A.,et al. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants) [J]. New Phytologist, 2007, 176: 150-163.
    [24] Wang L., de Kroon H., B?gemann G.M., et al. Partial root drying effects on biomass production in Brassica napus and the significance of root responses [J]. Plant and Soil, 2005, 276: 313-326.
    [25] Wang L., de Kroon H., Smits A.J.M. Combined effects of partial root drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed rape [J]. Plant and Soil, 2007, 295:207-216.
    [26]张丽林,俞扬凤.双低油菜新品种“沪油15”[J].上海农业科技, 2003, (1): 3.
    [27]孙超才,赵华,王伟荣等.双低油菜新品种“沪油”的选育.上海农业学报, 2003, 19 (3): 13-15.
    [28] de Kroon H., Mommer L., Nishiwaki A. Root competition: towards a mechanistic understanding. In: de Kroon H, Visser JWE (Eds.) Root Ecology [M]. Berlin, Springer, 2003, 215-231.
    [29] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162: 9-24.
    [30] Reid J.B., Renquist A.R. Enhanced root production as a feed-forward response to soil water deficit in field-grown tomatoes [J]. Australian Journal of Plant Physiology, 1997, 24: 685-692
    [31] Stone L.R., Goodrum D.E., Jaafar M.N., et al. Rooting front and water depletion depths in grain sorghum and sunflower [J]. Agronomy Journal, 2001, 93: 1105-1110.
    [32] Duncan R.R., Carrow R.N. Stress resistant turf-type tall fescue (Festuca arundinacea Schreb.): Developing multiple abiotic stress tolerance [J]. International Turfgrass Society Research Journal, 1997, 8: 653-662.
    [33] Songsri P., Jogloy S., Vorasoot N., et al. Root distribution of drought-resistant peanut genotypes in response to drought [J]. Journal of Agronomy and Crop Science, 2008, 194: 92-103.
    [34] Wright P.R., Morgan J.M., Jessop R.S., et al. Comparative adaptation of canola (Brassica napus) andIndian mustard (B. juncea) to soil water deficits: yield and yield components [J]. Field Crops Research, 1995, 42: 1-13.
    [35] Norouzi M., Toorchi M., Salekdeh G.H., et al. Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed [J]. Journal of Food Agriculture and Environment, 2008, 6: 312-318.
    [36] Dembinska O., Lalonde S., Saini H.S. Evidence against the regulation of grain set by spikelet abscisic acid levels in water-stressed wheat [J]. Plant Physiology, 1992, 100: 1599-1602.
    [37] Liu F.L., Jensen C.R., Andersen M.N. Pod set related to photosynthetic rate and endogenous ABA in soybeans subjected to different water regimes and exogenous ABA and BA at early reproductive stages [J]. Annals of Botany, 2004, 94: 405-411.
    [38] Sheoran I.S., Sawhney V., Babbar S., et al. In vivo fixation of CO2 by attached pods of Brassica campestris L [J]. Annals of Botany, 1991, 67: 425-428.
    [39] Adhikari K.N., Galwey N.W., Dracup M. The genetic control of mildly restricted branching in narrow-leafed lupin (Lupinus angustifolius L.) [J]. Euphytica, 2002, 123: 101-109.
    [40] Uzun A., Bilgili U., Sincik M., et al. Yield and quality of forage type pea lines of contrasting leaf types [J]. European Journal of Agronomy, 2005, 22: 85-94.
    [41] De Costa W.A.J.M., Dennett M.D., Ratnaweera U., et al. Effects of different water regimes on field-grown determinate and indeterminate faba bean (Vicia faba L.). II. Yield, yield components and harvest index [J]. Field Crops Research, 1997, 52: 169-178.
    [42] Black V.J., Black C.R., Roberts J.A., et al. Impact of ozone on the reproductive development of plants [J]. New Phytologist, 2000, 147: 421- 447.
    [43] Boutraa T. Sanders F.E. Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.) [J]. Journal of Agronomy and Crop Science, 2001, 187: 251-257.
    [44] Friend D.J.C. Brassica. In: Halevy AH (Ed) C.R.C. Handbook of Flowering Plants, 1st edn. CRC Press, Boca Raton, 1985, 48-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700