西气东输二线高铌X80钢直缝埋弧焊管应用开发的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西气东输二线管道是全球首条钢级最高、厚壁最厚、设计压力最高、距离最长的长输管线,主干线全部采用X80钢。而我国X80钢及钢管研究应用较少,尤其是针对低成本高Nb X80钢的应用可行性研究更少。因此,开展西气东输二线X80钢及钢管开发的基础研究,成功开发出项目所需的X80钢及焊管是保证管线顺利建设的前提。
     本文针对西气东输二线X80钢及直缝埋弧焊管开发面临的几个基础问题,采用热模拟技术、金相、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、理化性能测试分析等手段,系统研究了X80钢及焊管拉伸性能检测试验方法、高Nb钢制管过程拉伸性能变化规律、高Nb钢的可焊性,系统分析了钢管成分与性能之间的关系,深入研究了Nb、Cr、Mo等合金元素对钢管焊接热影响区强度和韧性影响规律。
     通过研究拉伸试样形式对试验结果影响规律表明:钢板矩形试样的屈服强度平均比圆棒试样高22MPa,而抗拉强度则比圆棒试样低10MPa;而对钢管,无论是屈强强度、抗拉强度还是屈强比,圆棒试样均高于矩形试样,屈服强度平均升高96MPa、抗拉强度升高17MPa、屈强比升高0.12。分析表明矩形试样能更好的反映钢板的拉伸性能,而圆棒试样能更好地反映钢管的拉伸性能。建议对钢板采用矩形试样、而钢管采用圆棒试样。
     对比研究了高Nb钢及传统Mn-Mo-Nb钢制管前后强度变化规律,结果发现无论高Nb钢还是低Nb钢均存在制管后屈服强度、屈强比显著升高的现象。研究发现钢板的显微组织是决定制管后屈服强度及屈强升高幅度的关键因素,获得少量块状铁素体及多边形铁素体可降低钢板制管后屈服强度和屈强比升高的幅度,降低钢管屈强比。根据钢管制管后屈服强度升高现象,可突破钢板屈服强度必须满足X80钢555MPa的限制,钢板的最低屈服强度可以降低至500~530Mpa,并要与组织相结合。
     热模拟研究结果表明,高Nb X80钢具有良好的焊缝及热影响区性能,在壁厚为22mm钢管焊接热输入达到4.5kJ/mm的多丝埋弧焊工艺条件下,焊接热影响粗晶区仍能保持较高的韧性。但焊接细晶区的强度明显降低,甚至低于标准规定555MPa。适当提高钢的合金含量有利于提高焊接粗晶区的韧性及细晶区的强度。
     对钢管的性能统计分析表明:管体及焊接接头的强度与钢的合金含量呈线性关系。随Ceq或Pcm的增加,管体抗拉强度及焊接接头抗拉强度均升高,但焊接接头强度升高幅度低于管体。然而,对管体和焊接热影响区韧性则表现为当Ceq或Pcm分别小于0.44%或0.17%时,冲击韧性保持在较高水平,且随Ceq或Pcm的增加,变化幅度不大;超过此值后,韧性降低明显。热影响区的韧性与管体相比有显著的降低,但管体的韧性越高则热影响区的韧性越高,提高钢板的韧性有利于保证钢管热影响区韧性。
     对比研究了Cr-Nb、Mo-Nb及Cr-Mo-Nb钢焊接热影响区连续冷却相变及组织与性能,结果表明:Nb对焊接过程中原奥氏体晶粒有显著的抑制作用,而对冷却过程中相变的抑制作用不大,对冷却后的组织和性能影响不大;Mo对高Nb钢相变的抑制作用大于Cr的作用,而Cr-Mo复合添加作用更大,更有利于焊接热影响区组织的细化和性能的提高。
The Second West-east X80pipeline is one of the highest steel grade, highest designpressure, heaviest wall thickness, longest distance pipeline in the world. However, in ourcountry, studies and using of X80steel and pipe are very rare, especially for high Nbcontent X80steel. Therefore, to carry out fundamental research for developing X80steeland pipe, and to successfully produce the X80steel and pipe required for the SecondWest-east Pipeline is a prerequisite for the project construction.
     In the paper, X80steel and welded pipe tensile performance test methods, tensileproperties change rule of low cost and high Nb steel druing the pipe manufacture process,weldability of high Nb steel, the relationship between chemical composition and pipeproperties, and the effect of Nb, Cr, Mo and other alloying elements on steel HAZ strengthand toughness have been systematically studied using thermal simulation method,metallographic and scanning eletron microscope (SEM), transmision electron microscope(TEM), the physical and chemical properties test and analysis method.
     The results of tensile samples form influence law of the test results show that, forsteel plates, the average yield strength of rectangular sample is higer22MPa than roundbar sample, while the tensile strength is lower10MPa than round bar sample. For pipes,yield strength and tensile strength and yield strength ratio of round bar sample are all higerthan those of rectangular sample, the difference are96MPa,17MPa and0.12respectively.The results show that the rectangular sample can better reflects the tensile properties of thesteel plate, but the round bar specimen can better reflects the tensile properties of the steelpipe. So, the suggestion is rectangular sample for steel plate and round bar specimen forsteel pipe.
     The tensile properties change rule of high-Nb steel and Mn-Mo-Nb steel after pipemanufacturing shows, both yield strength and yield strength ratio of two steel increasedsignificantly. The microstructure of steel is the key factor that determines the variationrange. With the content of polygonal ferrite and/or massive ferrite in microstructureincreasing, the rising trend of yield strength and yield strength ratio reduce. Because theyield strength of X80steel rising significantly after pipe manufacture process, steel plate with low yield strength even lower than555MPa, which is the lowest technical standardvalue of the X80pipe, can be used to manufactrue X80pipe. The lowest required yieldstrength of X80steel plate can be500~530MPa, and microstructure must be considered.
     Thermal simulation research results show that higher Nb X80steel has goodweldability. For22mm thickness X80steel, when the heat input is4.5kJ/mm (simulatonof four wire submerged are welding process condition), the coarse grain heat affected zone(CGHAZ) remained high toughness. But in the fine grain heat affected zone (FGHAZ),strength weaken is very serious, even lower than555MPa. Appropriate increasing of alloycontent is benefit both for CGHAZ’s toughness and FGHAZ’s strength.
     Statistical analysis of X80pipes composition and mechanical properities show, thestrength of pipe body and welded joint has a linear relation with the steel alloy content.With the increase of Ceq and/or Pcm, the strength of pipe body and welded joint increase.But welded joint strength rise less tan the pipe body. For the toughness of pipe body andwelded joint, when the Ceq and Pcm less than0.44%,0.17%respectively, toughness ofpipe body and HAZ remained higher level. But with the Ceq and Pcm higher than0.44%,0.17%respectively, both toughness of pipe body and HAZ decrease rapidly. Compairedwith pipe body, the HAZ’s toughness decreased significantly. But the HAZ’s toughnessshows obviously relationship with pipe body’s toughness, higher toughness in body’s,higher toughness in HAZ.
     Comparative studied the continuous cooling transformation characteristics,microstructure and performance of Cr-Nb steel, Mo-Nb steel and Cr-Mo-Nb steel. Theresult shows that Nb can significantly inhibit austenite grain grew up in the process ofwelding, but has little effect on phase transion druing weld cooling process, and has littleeffect on microstructure and performance after cooling. Inhibitory effect of Mo on highNb steel phase transition during welding is greater than the effect of Cr, and the effect ofCr-Mo compound is even greater. Adding of Mo especially of Cr-Mo in high Nb X80steelis more advantageous to obain finer microstructure and better performance.
引文
[1]蒲明,马建国.2010我国油气管道新进展[J].国际石油经济,2011(3):26-34.
    [2]王晓香.我国天然气工业和管线钢发展展望[J].焊管,2010,33(3):5-9.
    [3]王茂堂,牛冬梅,王丽,赵书远.高强度管线钢的发展和挑战[J].焊管,2006,29(5):9-16.
    [4]李鹤林.天然气输送钢管研究与应用中的几个热点问题[J].中国机械工程,2001,12(13):349-352.
    [5]田瑛,甄建超,孙春良等.我国油气管道建设历程及发展趋势[J].石油规划设计,2011,22(4):4-8.
    [6]孔令然. X80管线钢的研究与应用[J].科技情报开发与经济,2011,21(36):120-123.
    [7]戚爱华.我国油气管道运输发展现状及问题分析[J].国际石油经济,2009,12(17):57-59
    [8] Ishikawa N. Ultra-High-Strength Linepipe X100-X120[J]. Welding International,2011,25(9):657-662.
    [9]李鹤林,吉玲康,田伟.高钢级钢管和高压输送:我国油气输送管道的重大技术进步[J].中国工程科学,2010,12(5):84-90.
    [10]中国石油天然气股份有限公司管道项目部. Q/SY GJX0103-2007西气东输二线管道工程用热轧钢板技术条件[S].廊坊:[出版社不详],2007.
    [11] Hulka K, Gray J M, Heisterkamp F. Metallurgical Concept and Full Scale Testing of a HighToughness, H2S Resistant0.03%C-0.10%Nb Steel [R]. Niobium Technical Report NbTR16/90,Brazil, Sao Paulo: CBMM,1990.
    [12] Stalheim D G, Jansto S G. The Role of Niobium in High Strength Oil and Gas TransmissionLinepipe Steels [C]//Proceedings of the Biennial International Pipeline Conference, Beijing: IPC,2007,3(Part A):99-106
    [13] Miao C L, Shang C J, Zhang G D, et al. Recrystallization and Strain Accumulation Behaviors ofHigh-Nb-bearing Line Pipe Steel in Plate and Strip Rolling [J]. Materials Science andEngineering A,2010,527:4985-4992.
    [14] Stalheim D G. The Use of High Temperature processing (HTP) Steel for High Strength Oil andGas Transmission Pipeline Application [J].钢铁,2005,40(增刊):699-704.
    [15]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1-11
    [16]王仪康,杨柯,单以银,等.我国高压输送管线钢的发展[C]//WTO与管道建设+2002石油天然气管道建设与技术论坛文集.北京:石油工业出版社,2002:18-38.
    [17] American Petroleum Institute. API Spec5L (the39th Edition) Specification for Line Pipe [S].Washington DC: API Publishing Services,2012.
    [18]潘家华.全球能源变换及管线钢的发展趋势[J].焊管,2008,31(1):9-11.
    [19]焦百泉.管线钢性能的发展[J].焊管,1999,22(4):1-7.
    [20]辛稀贤.管线钢的焊接[M].西安:陕西科学技术出版社,1997:1-6
    [21] Gerdemann, F, Meuser H, Grimpe F, Stallybrass C, Frommert M. Microstructure and MechanicalProperties of Heavy Plate Optimized for Low-Temperature Service[C]//2011InternationalSymposium on the Recent Developments in Plate Steels, Colorado:[s.n.],2011.
    [22]黄志潜.国外管道技术的发展现状和几点建议[J].焊管,2000,23(3):1-21.
    [23] Tamehiro H, Yoshino T, Nakasugi N, Abe M. Recent Progress in High-Strength Low-Ally Linepipe [C]//Pan Jiahua. Proceedings of the International Symposium On Structural Technique ofPipeline Engineering, Beijing: China Building Industry Press,1992:9-14.
    [24]李鹤林,李霄,吉玲康,陈宏达.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,30(5):5-11.
    [25] Gray J M. Modern Pipeline Technology-specification Trends and Production Experience[C]//HSLS Steels’2000, Liu Guoquan et al. Beijing: Metallurgical Industry Press,2000:71-79.
    [26] Coldren A P, Mihelich J L. Acicular Ferrite HSLA Steels for Line Pipe [J]. Metal Science andHeat Treatment,1977,19(7-8):559-572.
    [27]高惠临,张骁勇,冯耀荣,霍春勇,吉玲康,李为卫.管线钢的研究进展[J].机械工程材料,2009,33(10):1-4.
    [28]王伟,严伟,胡平,王松涛,单以银,杨柯.抗大变形管线钢的研究进展[J].钢铁研究学报,2011,23(2):1-5.
    [29] Ishikawa N, Shikanai N, Kondo J. Development of Ultra High Strength Linepipes WithDual-Phase Microstructure for High Strain Application [R]. JFE Technical Report,2008(12):15-28.
    [30] Smith Y E, Coldren A P, Crydrman R L. Toward Improved Ductility and Toughness [C]//AnnArbor, MI: Climax Molybdenum Co.,1971:119-130.
    [31] Smith Y E, Coldren A P, Crydrman R L. High-Strength, Ductile Mn-Mo-Nb Steels With aStructure of Acicular Ferrite [J]. Metal Science and Heat Treatment,1976,18(1-2):59-65.
    [32] Xiao Fu-ren, Liao Bo, Shan Yi-Yin, Qiao Gui-Ying, Zhong Yong, Zhang Chunling, Yang Ke.Challenge of Mechanical Properties of an Acicular Ferrite Pipeline Steel. Materials Science andEngineering A,2006,431(1-2):41-52
    [33] Yoo Jang-Yong, Ahn Seong-Soo, Seo Dong-Han, Song Woo-Hyun, Kang Ki-Bong. NewDevelopment of High Grade X80to X120Pipeline Steels [J]. Materials and ManufacturingProcesses,2011,26(1):154-160.
    [34] Okatsu M, Hoshino T, Amano K, Ihara K, Makina T, Kawabata F. Metallurgical and MechanicalFeatures of X100Linepipe Steel [C]//Proceeding of the International Pipe Dreamer’s Conference,Japan, Okohama:[s.n.],2002:363-272.
    [35]王晓香.从2006年微合金钢应用国际研讨会看国际高钢级管线钢的发展动向(一)[J].焊管,2006,29(4):8-15.
    [36] Stalheim D G. The Us e of H igh Temperature Processing (HTP) Steel for High Strength Oil andGas Transmissi on Pipelin e Applications [J].微合金化技术,2005,5(4):36-40.
    [37]聂文金,王志福,李冉,李玉藏,张晓兵.采用OHTP工艺生产西气东输二线用22mm厚X80钢板[J].钢铁,2009,44(8):76-80.
    [38]谭峰亮,刘清友,贾书君,雷霆.含铌抗大变形管线钢奥氏体的连续冷却转变[J].钢铁研究学报,2012,24(7)::35-39.
    [39]王晓香.我国油气长输管线用焊接钢管生产技术的发展与展望[J].钢管,2004,33(3):7-13.
    [40]兰兴昌,张海军,于百勤,余大典.大口径直缝埋弧焊管成型技术的进步[J].钢管,2006,35(1):26-31.
    [41]张远生,李延丰.大口径直缝埋弧焊钢管生产线简介[J].焊管,2001,24(6):35-37.
    [42] Efimenko L A, Elagina O Yu, Shkapenko A A, Ilyukhin V Yu. Effect of Strain Ageing ofHigh-strength Pipe Steels on Their Weldability [J]. Chemical and Petroleum Engineering,2011,47(5-6):358-363.
    [43] Baron A A. The Generalized Diagram of Fracture Toughness for Pipeline Steels [J]. InternationalJournal of Pressure Vessels and Piping,2012,98:26-29.
    [44] Wang Ling, Jia Pu-rong. Study on Bauschinger Effect in X80Steel under Axial Loading andBending[J]. Advanced Materials Research,2011,197-198:1686-1689.
    [45] Batte A D, Boothby P J, Rothwell A B. Understanding the Weldability of Niobium-BearingHSLA Steels [C]//Proceedings of the International Symposium Niobium2001, Orlando:[s.n.],2001:931-958.
    [46] Moeinifar S, Kokabi A H, MadaahHosseini H R. Role of Tandem Submerged Arc WeldingThermal Cycles on Properties of the HAZ in X80Microalloyed Linepipe Steel [J]. Journal ofMaterials Processing Technology,2011,211:368-375.
    [47] Bonnevie E. Morphological Aspects of Martensite-Austenite Constituents in Intercritical andCoarse Grained Heat Affected Zones of Structural Steels [J]. Materials Science and EngineeringA,2004,385:352-358.
    [48] Penniston C, Collins L, Hamad F. Effects of Ti, C and N on Weld HAZ Toughness of HighStrength Line Pipe [C]//Proceedings of the Biennial International Pipeline Conference, Beijing:IPC,2009(3):75-83.
    [49] Gladman T. The Physical Metallurgy of Microalloyed Steels [M]. London: The Institute ofMaterials,2002:137-184.
    [50] Shintaku Y, Fujiwara K, Okaguchi S, Arimochi K. Chemical Composition and InclusionsControl for Improving HAZ Toughness in Large Heat Input Welding [J]. Welding in the World,2008,52(SPEC):627-631.
    [51] Wang H R, Wang W. Simple Model for Austenite Grain Growth in Microalloyed Steels [J].Materials Science and Technology,2008,24(2):228-232.
    [52] Kirkwood P R. A Viewpoint on the Weldability of Modern Structural Steels [C]//Proc Int Sympof Welding Metallurgy of Structural Steels, Denver: ICP CO,1987:21-45.
    [53] Kirkwood P. Niobium and Heat Affected Zone Mythology [C]//Weldability Seminar in2011,Brazil, Sao Paulo: CBMM,2011.
    [54] An Gyu-baek, Nam Seong-kil, Jang Tae-won. Effect of Weld HAZ Softening on Tensile Strengthof Welded Joint with Weld HAZ Softening [J]. Materials Science Forum,2008,580-582:589-592.
    [55]付俊岩,王伟哲,侯豁然,等.铌钢春秋[M].北京:冶金工业出版社,2009:1-5.
    [56]孟繁茂,付俊岩.现代铌钢长条材[M].北京:冶金工业出版社,2006:3-11
    [57]侯自勇,许云波,王佳夫,等.一种高Nb-IF钢的组织和织构特征[J].东北大学学报(自然科学版),2012,33(2):203-208.
    [58]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:1-97.
    [59]聂雨青,康跃丰.铌氮微合金化及HRB400NbN钢筋开发[J].金属材料与冶金工程,2011,39(1):8-10.
    [60] Siciliano F, Stalheim D G, Bordignon P, Gray J M. For Steel Plant How to Produce HTPLinepipe Steel [J]. Microalloying Technology,2007,7(4):18-43
    [61] Medina S F. Hernandez C A. General Expression of the Zener-Hollomon Parameter as aFunction of the Chemical Composition of Low Alloy and Microalloyed Steels [J]. ActaMetallurgica,1996,44:137-148.
    [62] Cho S H, Kang K B, Jonas J J. Mathematical Modeling of the recrystallization Kinetics of NbMicroalloyed steels [J]. ISIJ International,2001,41(7):766-773.
    [63] Gomez M, Medina S F. Quispe A, et al. Static Recrystallization and Induced Precipitation in aLow Nb Microalloyed Steel [J]. ISIJ International,2002,42(4):423-431.
    [64]王晓香.加快新一代高钢级HTP管线钢管开发迎接新一轮管线建设高潮[J].钢管,2006,35(6):1-3.
    [65]黄一新.南钢HTP工艺试制高铌X80管线钢的组织性能研究[J].江苏冶金,2007,35(4):1-4.
    [66]许云波,肖宝亮,刘振宇,王国栋,邹天来.低成本高性能新型管线钢的研究与工业化[J].钢铁,2008,43(6):66-69.
    [67]郑磊,高珊,章传国,张备,李延丰.西气东输二线用高Nb X80级管线钢宽厚板的开发[J].焊管,2009,32(4):25-34.
    [68] Johansen T H. The Solubility of Niobium (Columbium) Carbide in Gamma Iron [J]. Transactionsof the Metallurgical Society of AIME,1967,239(10):1651-1658.
    [69] Sharma R C, Lakshmanan V K, Kirkaldy J S. Solubility of Niobium Carbide and NiobiumCarbonitride in Alloyed Austenite and Ferrite [J]. Metallurgical Transactions A,1984,15(3):545-553.
    [70]雍岐龙,马鸣图,吴宝榕.微合金钢——物理和力学冶金[M].北京:机械工业出版社,1989:65-341.
    [71] Xiao Fu-ren, Cao Ya-bin, Qao Gui-ying, Zhang Xiao-bing, Liao Bo. Quantitative Research onEffectiveness of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in NbSteels [J]. Journal od Iron and Steel Reserch, International,2012,19(11):52-56.
    [72] Hutchinson C R, Zurob H S, Sinclair C W, et al. The Comparative Efectiveness of Nb Soluteand NbC Precipitates at Impeding Grain-boundary Motion in Nb Steels [J]. Scripta Materialia.2008,59:635-637.
    [73]付立铭,单爱党,王巍.低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J].金属学报,2010,46(7):832-837.
    [74] Cao Ya-bin, Xiao, Fu-ren, Qiao Gui-ying, Zhang Xiao-bing, Liao Bo. Quantitative Research onEffects of Nb on Hot Deformation Behaviors of High-Nb Microalloyed Steels [J]. MaterialsScience and Engineering A,2011,530:277-284.
    [75] Cao Ya-bin, Xiao Fu-Ren, Qiao Gui-Ying, Huang Chuan-Jun, Zhang Xiao-Bing, Wu Zhi-Xiong,Liao, Bo. Strain-induced Precipitation and Softening Behaviors of High Nb Microalloyed Steels.Materials Science and Engineering A,2012,552:502-513.
    [76] Chen G A, Yang W Y, Guo S Z, et al. Effect of Nb on the Transformation Kinetics of LowCarbon (manganese) Steel during Deformation of Undercooled Austenite [J]. Journal ofUniversity of Science and Technology Beijing,2006,13(5):411-415.
    [77]曹雅彬.高Nb微合金钢中Nb的溶解/析出及其对组织演变影响的研究[D].秦皇岛:燕山大学材料学工学博士学位论文,2011.
    [78]缪成亮,尚成嘉,王学敏,张龙飞, Mani Subramanian.高Nb X80管线钢焊接热影响区显微组织与韧性[J].金属学报,2010,46(5):514-516.
    [79] Moon J, Kim S, Jeong H, Lee J, Lee C. Influence of Nb Addition on the Particle Coarsening andMicrostructure Evolution in a Ti-containing Steel Weld HAZ [J]. Materials Science andEngineering A,2007,454-455:648-653.
    [80] Poole W J, Militzer M, Fazeli F, Maalekian M, Penniston C, Taylor D. Microstructure Evolutionin the HAZ of Girth Welds in Linepipe Steels for the Arctic [C]//Proceedings of the8thInternational Pipeline Conference, Calgary Alberta: IPC,2010(2):317-320.
    [81]中国石油工业标准化委员会译.管线钢管规范(API Spec5L44版)[S].北京:[出版社不详],2007.
    [82] Knauf G. Pipeline safety Full scale behavior of high strength steels [C]//Proceedings ofSymposium on X80Grade Steel and Linepipes, Beijing:[s.n.],2004:229-243.
    [83] Alan G. X80design, construction and operation [C]//Proceedings of symposium on X80gradesteel and line pipe, Beijing:[s.n.],2004:143-198.
    [84]石川信行,冈津光浩,近藤丈. X80级管线钢的生产和应用[J].焊管,2005,28(3):43-49.
    [85]吉玲康,谢丽华,杨肃等.高钢级管线管试样形状对拉伸性能试验结果的影响[J].石油机械,2006,34(1):11-15.
    [86]吴忧,袁志善,刘志强. X80级管线钢管板状与圆棒试样屈服强度差异分析[J].焊管,2008,31(3):73-75
    [87]中国石油天然气股份有限公司管道建设项目经理部. Q/SY GJX0104-2007西气东输二线管道工程用直缝埋弧焊管技术条件[S].廊坊:[出版社不详],2007.
    [88]兰亮云,邱春林,赵德文.高钢级管线钢的常规TMCP工艺与HTP工艺[J].轧钢,2009,26(5):39-42.
    [89] Sowerby R, Uko D K, Tmoita Y. A Review of Certain Aspects of the Bauschinger Effect inMetals [J]. Materials Science and Engineeing A,1979,41(1):43-51.
    [90]廖波,肖福仁.针状铁素体管线钢组织及韧性强韧化机理研究[J].材料热处理学报,2009,30(2):57-62.
    [91]王伟,朱林,胡平,单以银,杨柯.针状铁素体管线钢的组织结构及其与力学性能的关系研究[J].焊管,2009,32(11):21-28.
    [92] Knauf G, Hohl G, Knoop F M. The Effect of Specimen Type on Tensile Test Results and ItsImplications for Linepipe Testing [R].[s.n.]:3R International,2001:10-11.
    [93]吉玲康.螺旋缝埋弧焊管拉伸性能测试中的包申格效应[J].石油工业技术监督,2005(1):24-28.
    [94]高惠临.管线钢、组织性能及焊接行为[M].西安:陕西科技出版社,1995:24-24,46-63.
    [95]高颖.大口径直缝焊管JCO成形过程理论分析与计算机仿真[D].秦皇岛:燕山大学材料加工工学博士学位论文,2011:56-57.
    [96]王春明,吴杏芳. X70管线钢微观组织分析[J].鞍钢技术,2004(4):21-25.
    [97]吴金辉,李云龙,王长安等.制管预应变对管线钢拉伸性能的影响[J].焊管,2011,34(3):33-37.
    [98]赵明纯,肖福仁,单以银等.超低碳针状铁素体型管线钢的显微组织特征及强韧性行为[J].金属学报,2002,38(3):283-287.
    [99]郑磊,高珊.高韧性针状铁素体型X80级管线钢的试制[J].焊管,2005,28(3):21-24.
    [100]冯耀荣,高惠临,霍春勇等.管线钢显微组织的分析与鉴别[M].西安:陕西科学技术出版社,2008,3-7.
    [101] Xiao Furen, Liao Bo, Ren Deliang, Shan Yiyin, Yang Ke. Acicular Ferritic Microstructure of aLow-carbon Mn-Mo-Nb Microalloyed Pipeline Steel [J]. Materials Characterization,2005,54(4-5):305-14.
    [102] Sloterdijk W, Nederlandse Gasunie N V. Effect of Tensile Properties on the Safety of Pipelines
    [C]//EPRG25Anniversary Meeting, Brussels:[s.n.],1997:67-76.
    [103]刘瑞堂,刘文傅,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社,2011:46-48.
    [104] pistone V. Toughness Necessary to Prevent Ductile Fracture Propagation [C]//EPRG25Anniversary Meeting, Brussels:[s.n.],1997:87-98.
    [105]朱维斗,李年,冯耀荣.金属材料的均匀变形容量与变形硬化指数和屈强比的关系[C]//石油管工程应用基础研究论文集,北京:石油工业出版社,2001:161-166.
    [106]李晓红,樊玉光,辛希贤. X80管线钢真实应力屈强比的测定及对管道安全性的影响[J].机械工程材料,2005,29(9):45-47.
    [107]张涵,王立柱,常荣玲,孙灵丽,曾志.高Nb成分X80级管线钢焊接性分析[J].焊管,2008,30(3):17-19.
    [108] Cochrane R C. HAZ Microstructure and Properties of Pipeline Steels[C]//Weldability Seminar in2011, Brazil, Sao Paulo: CBMM,2011.
    [109]林慧国.钢的奥氏体转变曲线——原理、测试与应用[M].北京:冶金工业出版社,1988:227.
    [110] Shia Y W, Han Z X. Effect of Weld Thermal Cycle on Microstructure and Fracture Toughness ofSimulated Heat-affected Zone for a800MPa Grade High-strength Low Aalloy Steel [J]. Journalof Materials Processing Technology,2008,207:30-38.
    [111] Suzuki S, Kamo T, Komizo Y. Influence of Martensitic Islands on Fracture Behavior of HighHeat Input Weld HAZ [J]. Welding International,2009,23:397-406.
    [112] Lambert-Perlade A, Gourgeus A F, Besson J, et al. Mechanisms and Modeling of CleavageFracture in Simulated Heat-affected Zone Microstructures of a High-strength Low Alloy Steel [J].Metallurgical Materials Transactions A,2004,35:1039-1052.
    [113] Yuan S Q, Liang G L. Dissolving Behaviour of Second Phase Particles in Nb-Ti MicroalloyedSteel [J]. Materials Letters.2009,63:2324-2326.
    [114] Guagnelli M, Di Schino A, Cesile M C, et al. Effect of Nb Microalloying on the Heat AffectedZone Microstructure of X80Large Diameter Pipeline after in Field Girth Welding[C]//Weldability Seminar in2011, Brazil: CBMM,2011.
    [115] Suzuki S. Niobium in structural steels [C]//Jansto S G, Patel J. Niobium Bearing Structural Steels.Warrendale: TMS,2010:259-261.
    [116]王晓敏.工程材料学[M].北京:机械工业出版社,1999:52.
    [117] Nie W J, Wang Z F, Li R, Liu Z X, Zhang X B. The Production of X80Pipeline Steel Plate forthe Second West-to-East Natural Gas Transmission Pipeline with Optimized High TemperatureProcess (OHTP)[C]//Proceedings of International Pipeline Steel Forum, Beijing: CNPC,2008.
    [118] Bordbar S, Alizadeh M, Hojjat Hashemi S. Effects of MicrostructureAalteration on CorrosionBehavior of Welded Joint in API X70Pipeline Steel [J]. Materials and Design,2013,45:597-604.
    [119]乔桂英,廖波,钟雅丽,曹雅彬等.一种测量钢中固溶铌和非固溶铌含量的方法:中国,201010192938. X [P].2012-12-11.
    [120]曹雅彬,肖福仁,乔桂英,张晓兵,廖波.含Nb微合金钢中固溶Nb与非固溶Nb的定量测定与应用[J].燕山大学学报(自然科学版),2011,35(4):319-322.
    [121] Zheng S H, Wu Q S, Huang Q Y, Liu S J, Han Y Y. Influence of Different Cooling Rates on theMicrostructure of the HAZ and Welding CCT Diagram of CLAM steel [J]. Fusion Engineeringand Design,2011,86:2616-2619.
    [122] Heisterkamp F, Hulka K, Batte A D. Heat Affected Zone Properties of Thick SectionMicroalloyed Steels a Perspective [C]//The Metallurgy and Qualification of MicroalloyedSteel Weldments, Florida: AWS,1990:659-681.
    [123] Banerjee K, Militzer M, Perez M, Wang X, Nonisothermal Austenite Grain Growth Kinetics in aMicroalloyed X80Linepipe Steel [J]. Metallurgical Materials Transactions A,2010,41:3161-3172.
    [124] Liu Q Y, Sun X J, Jia S J, Zhang L L, Huang G J, Ren Y. Austenitization Behaviors of X80Pipeline Steel With High Nb and Trace Ti Treatment [J]. Journal of Iron and Steel Research,International,2009;16(6):58-62.
    [125] Coldren A P, Cryderman R L. Molybdenum-Containing Steels for Gas and Oil IndustryApplications [R]. A State-of-the-Art-Review, Climax Molybdenum Co.,1976.
    [126] Tanaka T. Controlled Rolling of Steel Plate and Strip [J]. International Metal Review,1981,264:185-212.
    [127] Kong J H, Zhen L, Guo B, Li P H, Wang A H, Xie C S. Influence of Mo Content onMicrostructure and Mechanical Properties of High Strength Pipeline Steel [J]. Materials andDesign,2004,25:723-728.
    [128] Araki T, Kozasu I, Tankechi H, Shibata K, Enomoto M, Tamehiro H, Atlas for BainiticMicrostructures, Continuous-cooled Zw Microstructures of Low-carbon Steel [M]. Tokyo: ISIJ,1992. p.4-5.
    [129] Moeinifar S, Kokabi A H, Madaah Hosseini H R. Influence of Peak Temperature duringSimulation and Real Thermal Cycles on Microstructure and Fracture Properties of the ReheatedZones [J]. Materials and Design,2010,31:2948-2955.
    [130] Moeinifar S, Kokabi A H, Madaah Hosseini H R. Effect of Tandem Submerged Arc WeldingProcess and Parameters of Gleeble Simulator Thermal Cycles on Properties of the IntercriticallyReheated Heat Affected Zone [J]. Materials and Design,2011,32:869-876.
    [131] Wang X, Xiao F R, Fu Y H, Chen X W, Liao B. Material Development for Grade X80Heavy-wall Hot Induction Bends [J]. Materials Science and Engineering A,2011,530:539-547.
    [132] Zhao Ming-Chun, Hanamura T, Qiu Hai, Nagai K, Shan Yi-Yin.Yang Ke. Difference in the Roleof Non-quench Aging on Mechanical Properties between Acicular ferrite and Ferrite-pearlitePipeline Steels [J]. ISIJ International,2005,45:116-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700