日侧极向运动极光结构的观测特征及其产生机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳风能量和动量可以通过日侧极隙区直接注入到地球磁层,不同能量的沉降粒子可以沿着磁力线直接映射到极区电离层,激发出各种不同的瞬态极光现象。通过对日侧极光的光谱、强度和动力学特征的研究,寻找与磁层边界层之间的内在联系,进而可以反映日侧磁层的动力学过程。本文通过分析中国北极黄河站高分辨率的地基多波段极光观测数据,并结合太阳风和粒子的探测卫星和地基雷达的协同观测数据,详细研究了日侧极光的光谱、形态和运动特征,尤其详细阐述了“极向运动极光结构(PMAFs)”的观测特征及其产生机制。主要结果归纳如下:
     1)利用2003-2009年的北极黄河站极光观测,结合DMSP卫星粒子沉降探测,对磁正午附近的极光强度与沉降粒子沉降能量之间的关系进行了定量研究。统计结果表明,在10-13MLT,630.0nm的极光发光占主导,以低能粒子沉降为主;而在13-14MLT,I(630.0nm)/I(427.8nm)极光强度比值降低,沉降粒子能量较高。另外,利用极光强度与沉降电子的能通量以及极光强度比值与平均能量之间的函数关系,初步建立了北极黄河站磁正午附近极光强度与沉降粒子能量关系的反演参数模型,为空间天气的监测提供服务。
     2)联合地基极光、ESR和SuperDARN雷达等观测,研究了发生在2003年12月22日0900-1010UT时间段内极区电离层极光和等离子体的变化特征。结果表明,在不同行星际磁场(IMF)条件下,黄河站极光ASI均观测到了一系列PMAFs,且这些PMAFs都伴随有明显的粒子沉降特征。在IMF北向时,该粒子沉降能达到更低的电离层E区,而此时PMAFs相应位置的高纬电离层出现了一个典型反向对流涡,这是高纬(尾瓣)重联的典型特征之一,这些结果表明北向IMF条件下的这些PMAFs与高纬重联有关。而在IMF南向时,黄河站观测到的PMAFs可跨越更广的地磁纬度,表明其演化时间亦较长,其相应区域的电离层特征也表明该PMAFs由日侧磁层顶低纬磁重联所产生。
     3)利用北极黄河站6年高分辨率的地基多波段极光观测数据,统计研究了PMAFs与太阳风和IMF条件的依赖性关系。统计结果表明PMAFs大多发生在南向IMF条件下,并且大的IMF|Bx|更易触发PMAFs。从PMAFs发生率随MLT的分布以及对IMF的响应看,PMAFs在磁正午附近存在个弱的活动区,且呈现出与IMF By有关的午前-午后的不对性分布。我们首次发现这种与IMF By有关的午前-午后不对性在Bz正向比Bz负向时更明显,这可能与尾瓣重联有关。午前扇区和午后扇区的PMAFs的分布峰值在IMF时钟角90°和270°附近,这对应着午前/午后的反平行重联,而在磁正午扇区的PMAFs可能对应日下点的分量重联。统计结果还表明PMAFs不太可能是由太阳风动压脉动引起的,更可能是由脉动重联引起的。
     4)更进一步地,我们统计分析了稳定IMF条件下的PMAFs的位置分布与IMFBz和By分量的依赖性关系。我们发现大多数PMAFs发生在南向IMF条件下,而发生的地磁纬度也更低,且PMAFs呈现的与IMF By有关的午前-午后的不对性分布在Bz>0比Bz <0时更明显。在Bz <0时,PMAFs分布覆盖的MLT扇区更广泛,这些表明重联X线可能呈现“S”型分布;然而,在Bz>0,PMAFs在By>0时主要分布午前扇区,而在By <0时主要发生在午后,这可能与高纬重联的效应有关,这些结果与电离层对流的理论模型很大程度上是一致的。本文对PAMFs的观测特征和产生机制进行了系统研究,揭示了一些新特征,并对PMAFs的产生机制形成了一些新的认识。但是由于日侧PMAFs及其动力学过程的复杂性,PMAFs的精细结构,详细的演化过程以及伴随的极区电离层响应等仍有待进一步深入研究。
Solar wind energy and momentum can access the magnetosphere via the daysidepolar region, where field lines map directly to the dayside magnetopause and boundarylayers and various auroral transients occur with different spectrum, luminosity anddynamics. These dynamic processes manifest the intrinsic relation between the auroralcharacteristics and magnetospheric boundary layers.Based on the high temporal resolution auroral observation data obtained from thethree-wavelength all-sky imagers at Yellow River Station in the Arctic, together with thesatellites’ observations for particles and solar wind and the radars’ observations, westudy the dayside poleward moving auroral forms (PMAFs) as well as its generationmechanisms. PMAF is one of the primary auroral forms in the magnetic local time(MLT) range of0900-1500MLT. The main results are summarized as follows:
     1) We investigated the quantitative relationship between the auroral intensities and theenergy features of the precipitated particles near magnetic noon by using auroraldata and particles data from DMSP satellites. Our statistical results indicated thatthe soft auroral electron precipitation was dominated during10-13MLT,corresponding to630.0nm auroral emissions. The auroral intensity ratioI(630.0nm)/I(427.8nm) decreased as the intensity of427.8nm increased over13-14MLT, suggesting the energy of the precipitated particles increased. In addition, theintensity of427.8nm depended on the total energy flux of the precipitating electronsand the I(630.0nm)/I(427.8nm) ratio related to the average energy. We have built aparameter model of auroral emissions and particle precipitation near magnetic localnoon at YRS, which may benefit monitor the space weather service in the future.
     2) Using auroral data at YSR together with the ESR radar and SuperDARN radars, weinvestigated the dayside PMAFs and the associated plasma features in the polarionosphere under different interplanetary magnetic field (IMF) conditions, between0900and1010UT on22December2003. Simultaneous optical and ESRobservations revealed that all of these PMAFs were clear associated with pulsedplasma precipitations. During northward IMF, the plasma can precipitate into loweraltitudes and reach the ionopheric E-region, and there is a reverse convection cellassociated with these PMAFs, which is one of the typical signatures in the polarionosphere of the dayside high-latitude (lobe) reconnection. These results indicatethat the PAMFs may due to the high-latitude reconnection. During southward IMF,the PAMFs observed at YRS show larger latitudinal motion, indicating a longermean lifetime, and the associated ionopheric features indicate that the PMAFs were generated by the dayside magnetopause low-latitude reconnection.
     3) We examined the dependence of the PMAF occurrence on solar wind conditions inthe MLT range of0900-1500MLT. It was found that most PMAF events occurredduring southward IMF and the PMAFs show a tendency to occur preferentiallyunder large IMF|Bx|conditions. The MLT dependence of PMAFs presents aremarkable tendency of decreasing in the midday sector, showing a clear IMFBy-related prenoon-postnoon asymmetry. For the first time, we found, however,that the asymmetry is more evident during conditions of Bz>0than Bz <0,suggesting the importance of the effect of the lobe reconnection. It is worth notingthat the PMAFs occurrence maximized when the IMF clock angle was near90°inthe prenoon and near270°in the postnoon, which might due to theprenoon/postnoon anti-parallel reconnection. We also found that62.12%PMAFsoccurred during the clock angle of90°-270°in the midday sector, which might dueto component reconnection.The dependence of PMAFs in the midday sector mightdue to component reconnection. Our statistical results suggest that the PMAFs arenot caused by the solar wind pressure pulses, but by bursts of magneticreconnection.
     4) Further, we statistically investigated the dependence of location of PMAFs on theIMF Bz and By components as a function of MLT and MLAT under stable IMFconditions. It was found that more PMAFs occurred in lower latitude for Bz <0andthere was less evident IMF By-related prenoon-postnoon asymmetry for Bz>0than for Bz <0. We found that the PMAFs distributed over a wide range of MLTwhen Bz <0, which indicates that the reconnection X-line might spread like an ‘S’shape. However, during northward IMF, PMAFs were observed predominantlyprenoon for IMF By>0and postnoon for IMF By <0associating with the effect ofthe high-latitude reconnection, which is highly consistent with the theoreticalconvection model.In this thesis, the features and mechanism of the PAMFs have been systematicallystudied. We revealed some new features and formed some new understanding aboutPMAFs. It is so complicated for the dayside PMAFs and their dynamic effect that thefine structures, detailed evolution and the associated polar ionosperic responses stillneed to be further studied.
引文
1. Akasofu, S. I.(2007), Exploring the secret of the aurora, New York, USA:Springer.
    2. Kamide, Y and A. Chian (2007), Handbook of the solar-terrestrial environment,New York, USA: Springer.
    3. Sandholt, P. E., H. C. Carlson and A. Egeland (2002), Dayside and polar capaurora, The Netherlands: Kluwer Academic Publishers.
    4. Akasofu, S. I.(1991), Auroral phenomena, in Auroral physics, edited by C.-I.Meng, M. J. Rycroft and L. A. Frank, Cambridge, England.
    5. Parker, E. N (1963), Interplanetary dynamical processes, New York,USA: Wiley.
    6. Gold, T.(1959), Origin of the radiation near the earth discovered by means ofsatellites, Nature,183,355.
    7. Frey, H. U.(2007), Localized aurora beyond the auroral oval, Reviews ofGeophysics,45,8755-1209.
    8.刘振兴(2005),太空物理学:哈尔滨工业大学出版社.
    9. Chapman, S. and V. C. Ferraro (1931), A new theory of magnetic storms, Terr.Magn. Atmosph. Elec.,36(77),171-186.
    10. Smith, M. F. and M. Lockwood (1996), Earth's magnetospheric cusps, Reviewsof Geophysics,34(2),233-260.
    11. Newell, P. T., C.-I. Meng and D. G Sibeck (1989), Some low-altitude cuspdependencies on the interplanetary magnetic field, J. Geophys. Res.,94(A7),8921-8927.
    12. Axford, W. I. and C. O. Hines (1961), A unifying theory of high-latitudegeophysical phenomena and geomagnetic storms, Canadian Journal of Physics,39,1433-1464.
    13. Dungey, J. W.(1961), Interplanetary magnetic field and the auroral zones,Physical Review Letters,6(2),47-48.
    14. Dungey, J. W.(1963), The structure of the exosphere, or adventures in velocityspace, in Geophysics, in The Earth's Environment, edited by C. DeWitt, J.Hiebolt and A. Lebeau, Gordon and Breach, New York.
    15.徐文耀(2003),地磁学:地震出版社.
    16.张清和(2008),日侧磁层顶磁重联过程的卫星和地面联合观测研究,西安电子科技大学.
    17. Snekvik, Kristian (2009), Observations of field aligned currents in the plasmasheet, University of Bergen.
    18. Cowley, S. W. H. and M. Lockwood (1992), Excitation and decay of solarwind-driven flows in the magnetosphere-ionosphere system, Ann. Geophys.,10,103-115.
    19. Siscoe, G. L. and T. S. Huang (1985), Polar cap inflation and deflation, J.Geophys. Res,90(A1),543-547.
    20. Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer and P. C.Hedgecock (1978), The frontside boundary layer of the magnetosphere and theproblem of reconnection, J. Geophys. Res,83(A7),3195-3216.
    21. Russell, C. T. and R. C Elphic (1978), Initial ISEE magnetometer results.magnetopause observations., Space Sci. Rev.,22,681-715.
    22. Hu, H., T. K. Yeoman, M. Lester, R. Liu, H. Yang and A. Grocott (2006),Dayside flow bursts and high-latitude reconnection when the IMF is stronglynorthward, Ann. Geophys.,24,2227-2242.
    23. Milan, S. E., M Lester, S. W. H. Cowley and M. Brittnacher (2000), Daysideconvection and auroral morphology during an interval of northwardinterplanetary magnetic field, Ann. Geophys.,18,436-444.
    24. Reiff, P. H. and J. L. Burch (1985), IMF By-dependent plasma flow andbirkeland currents in the dayside magnetosphere:2.A global model fornorthward and southward IMF, J. Geophys. Res.,90(A2),1595-1609.
    25. Gonzalez, W. D. and F. S. Mozer (1974), A quantitative model for the potentialresulting from reconnection with an arbitrary interplanetary magnetic field, J.Geophys. Res.,79,4186.
    26. Sonnerup, B. U. O.(1974), Magnetopause reconnection rate, J. Geophys. Res.,79(10),1546-1550.
    27. Crooker, N. U.(1979), Dayside merging and cusp geometry, J. Geophys. Res.,84(A3),951-959.
    28. Luhmann, J. G., R. J. Walker, C. T. Russell, N. U. Crooker, J. R. Spreiter and S.S. Stahara (1984), Patterns of potential magnetic field merging sites on thedayside magnetopause, J. Geophys. Res.,89(A3),1739-1742.
    29. Moore, T. E., M.-C Fok and M. O. Chandler (2002), The dayside reconnection Xline, J. Geophys. Res.,107(A10),1332.
    30. Pu, Z. Y., X. G. Zhang, X. G. Wang, J. Wang, X. Z. Zhou, M. W. Dunlop, et al.(2007), Global view of dayside magnetic reconnection with the dusk-dawn IMForientation: A statistical study for Double Star and Cluster data, Geophys. Res.Lett.,34(20), L20101.
    31. Zhang, Q. H., B. C. Zhang, R. Y. Liu, M. W. Dunlop, M. Lockwood, J. Moen, etal.(2011), On the importance of interplanetary magnetic field∣By∣on polarcap patch formation, J. Geophys. Res.,116, A05308.
    32. Smith, A. M., S. E. Pryse and L. Kersley (2000), Polar patches observed by ESRand their possible origin in the cusp region, Ann. Geophys.,18(9),1043-1053.
    33. Kamide, Y. and A. D. Richmond (1982), Ionospheric conductivity dependence ofelectric fields and currents estimated from ground magnetic observations, J.Geophys. Res.,87(A10),8331-8337.
    34. Heelis, R. A., P. H. Reiff, J. D. Winningham and W. B. Hanson (1986),Ionospheric convection signatures observed by DE2during northward int, J.Geophys. Res.,91(A5),5817-5830.
    35. Weimer, D. R.(1995), Models of high-latitude electric potentials derived with aleast error fit of spherical harmonic coefficients, J. Geophys. Res.,100(A10),19595-19607.
    36. Kamide, Y., B. H. Ahn, S. I. Akasofu, W. Baumjohann, E. Friis-Christensen, H.W. Kroehl and A. N. Zaitzev (1982), Global distribution of ionospheric andfield-aligned currents during substorms as determined from six IMS meridianchains of magnetometers: initial results, J. Geophys. Res.,87(A10),8228-8240.
    37. Greenwald, R. A., K. B. Baker, J. R. Dudeney, M. Pinnock, T. B. Jones, E. C.Thomas, et al.(1995), DARN/SuperDARN: A global view of the dynamics ofhigh-latitude convection, Space Sci. Rev.,71,761-796.
    38. Ruohoniemi, J. M. and R. A. Greenwald (1998), Large-scale imaging ofhigh-latitude convection with Super Dual Auroral Radar Network HF radarobservations, J. Geophys. Res,103,20797-20811.
    39. Huang, C.-S., G. J. Sofko, A. V. Koustov, D. A. Andre, J. M. Ruohoniemi, R. A.Greenwald and M. R. Hairston (2000), Evolution of ionospheric multicellconvection during northward interplanetary magnetic field with|Bz/By|>1, J.Geophys. Res.,105(A12),27095-27107.
    40. Ruohoniemi, J. M. and R. A. Greenwald (2005), Dependencies of high-latitudeplasma convection: Consideration of interplanetary magnetic field, seasonal, anduniversal time factors in statistical patterns, J. Geophys. Res.,110(A9).
    41. Feldsten, Y. I. and G. V. Starkov (1967), Dynamics of auroral belt and polargeomagnetic disturbances, Planet. Space Sci.,15(2),209-229.
    42.胡泽骏(2008),午后“热点”区域的极光形态及其形成机制研究,武汉大学、中国极地研究中心.
    43. Stormer, C.(1955), The polar aurora, Oxford: Clarendon Press.
    44. Akasofu, S. I.(1964), The development of the auroral substorm, Planet. SpaceSci.,12,273-282.
    45. Akasofu, S. I. and J. R. Kan (1980), Dayside and nightside auroral arc systems,Geophys. Res. Lett.,7(10),753-756.
    46. Meng, C.-I. and R Lundin (1986), Auroral morphology of the midday oval, J.Geophys. Res.,91(A2),1572-1584.
    47. Newell, Patrick T. and Ching-I. Meng (1992), Mapping the dayside ionosphereto the magnetosphere according to particle precipitation characteristics, Geophys.Res. Lett.,19(06),609-612.
    48. Simmons, D. A. R.(1998), A classification of auroral types, Journal of theBritish Astronomical Association,108(5),247-257.
    49. Yang, H., N. Sato, K. Makita, A. Kadokura, M. Ayukawa, H. Q. Hu, et al.(2000),Synoptic observations of auroras along the postnoon oval_a survey with all skyTV observations at Zhongshan Antarctica, J. Atmos. Sol.-Terr. Phys.,62,787-797.
    50. Sandholt, P. E., C. J. Farrugia and W. F. Denig (2004), Detailed daysideauroral morphology as a function of local time for southeast IMF orientation:implications for solar wind-magnetosphere coupling, Ann. Geophys.,22,3537-3560.
    51. Sandholt, P. E., C. J. Farrugia, J. Moen and S. W. H. Cowley (1998), Daysideauroral configurations: Responses to southward and northward rotations of theinterplanetary magnetic field, J. Geophys. Res.,103(A9),20279-20295.
    52. ieroset, M., P. E. Sandholt, W. F. Denig and S. W. H. Cowley (1997),Northward Interplanetary magnetic field cusp aurora and high-latitudemagnetopause reconnection, J. Geophys. Res.,102(A6),11349-11362.
    53. Sandholt, P. E., C. J. Farrugia, M. Oieroset, P. Stauning and S. W. H. Cowley(1996), Auroral signature of lobe reconnection, Geophys. Res. Lett.,23(14),1725-1728.
    54. Hu, Z. J., H. Yang, D. Huang, T. Araki, N. Sato, M. Taguchi, et al.(2009),Synoptic distribution of dayside aurora: Multiple-wavelength all-sky observationat Yellow River Station in Ny-lesund, Svalbard, J. Atmos. Sol.-Terr. Phys.,71(8-9),794-804.
    55. Pedersen, Todd. R. and Elizabeth A. Gerken (2005), Creation of visibleartificial optical emissions in the aurora by high-power radio waves, Nature,433,498-500.
    56. Lorentzen, D. A., J. Moen, K. Oksavik, F. Sigernes, Y. Saito and M. G. Johnsen(2010), In situ measurement of a newly created polar cap patch, Journal ofGeophysical Research,115, A12323.
    57. Kivelson, M. G. and V. Russell (1995), Introduction to space physics, New York:Cambridge Press.
    58. Christensen, A. B., L. R. Lyons, J. H. Hecht, G. G. Sivjee, R. R. Meier and D. G.Strickland (1987), Magnetic field-aligned electric field acceleration and thecharacteristics of the optical aurora, J. Geophys. Res.,92(A6),6163-6167.
    59. Christensen, A. B., M. H. Rees, G. J. Romick and G. G. Sivjee (1978), OI (7774A) and OI (8446A) emissions in aurora, J. Geophys. Res.,83(A4),1421-1425.
    60. Rees, M. H. and D. Luckey (1974), Auroral electron energy derived from ratioof spectroscopic emissions,1. Model computations, J. Geophys. Res.,79(34),5181-5186.
    61. Rees, M. H. and D. Lummerzheim (1989), Characteristics of auroral electronprecipitation derived from optical spectroscopy, J. Geophys. Res.,94(A6),6799-6815.
    62. Rees, M. H. and R. G. Roble (1986), Excitation of O (1D) atoms in aurorae andemission of the forbidden OI6300A line, Canadian Journal of Physics,64,1608-1613.
    63. Hardy, D. A., M. S. Gussenhoven and E. Holeman (1985), A statistical model ofauroral electron precipitation, J. Geophys. Res.,90(A5),4229-4248.
    64. Newell, P. T. and J. M. Ruohoniemi (2004), Maps of precipitation by sourceregion,binned by IMF,with inertial convection streamlines, J. Geophys. Res.,109(A10206).
    65. Newell, P. T. and C.-I. Meng (1994), Ionospheric projections of magnetosphericregions under low and high solar wind pressure conditions, J. Geophys. Res.,99(A1),273-286.
    66. Rees, M. H., D. Lummerzheim, R. G. Roble, J. D. Winningham, J. D. Cravenand L. A. Frank (1988), Auroral energy deposition rate, characteristic electronenergy, and ionospheric parameters derived from Dynamics Explorer1images, J.Geophys. Res.,93(A11),12841-12860.
    67. Rees, M. H., G. J. Romick, H. R. Anderson and Jr. R. T. Casserly (1976),Calculation of auroral emissions from measured electron precipitation:Comparison with observation, J. Geophys. Res.,81(28),5091-5096.
    68. Vorobjev, V. G., G. Gustafsson, G. V. Starkov, Y. I. Feldstein and N. F.Shevnina (1975), Dynamics of day and night aurora during substorms, Planet.Space Sci.,23(2),269-278.
    69. Sandholt, P. E., C. S. Deehr, A. Egeland, B. Lybekk, R. Viereck and G. J.Romick (1986), Signatures in the dayside aurora of plasma transfer from themagnetosheath, J. Geophys. Res.,91(A9),10063-10079.
    70. Lockwood, M., P. E. Sandholt and S. W. H. Cowley (1989), Dayside auroralactivity and magnetic flux transfer from the solar wind, Geophys. Res. Lett.,16(1),33-36.
    71. Sandholt, P. E., M. Lockwood, T. Oguti, S. W. H. Cowley, K. S. C. Freeman, B.Lybekk, et al.(1990), Midday auroral breakup events and related energy andmomentum transfer from the magnetosheath, J. Geophys. Res.,95(A2),1039-1060.
    72. Sandholt, P. E. and P. T. Newell (1992), Ground and satellite obervations of anauroral event at the cusp/cleft equatorward boundary, J. Geophys. Res.,97(A6),8685-8691.
    73. Lockwood, M., H. C. Carlson and P. E. Sandhold (1993), Implications of thealtitude of transient630-nm dayside auroral emissions, J. Geophys. Res.,98(A9),15571-15587.
    74. Moen, J., M. Lockwood, P. E. Sandholt, U. P. Lovhaug, W. F. Deing, A. P. Eykenand A Egeland (1996), Variability of dayside high latitude convection associatedwith a sequence of auroral transients, J. Atmos. Terr. Phys.,58(1-4),85-96.
    75. Fasel, Gerard J.(1995), Dayside poleward moving auroral forms: A statisticalstudy, J. Geophys. Res.,100(A7),11891-11905.
    76. Lockwood, M., S. W. H. Cowley, P. E. Sandhold and R. P. Lepping (1990), TheIonospheric signatures of flux transfer events and solar wind dynamic pressurechanges, J. Geophys. Res.,95(A10),17113-17135.
    77. Lui, A. T. Y. and D. G. Sibeck (1991), Dayside auroral activities and theirimplications for impulsive entry processes in the dayside magnetosphere, J.Atmos. Terr. Phys.,53(3/4),219-229.
    78. Lemaire, J. and M. Roth (1978), Penetration of solar wind plasma elements intothe magnetosphere, J. Atmos. Terr. Phys.,40(3),331-335.
    79. Wei, C. Q., L.C. Lee and A. L. La Belle-Hamer (1990), A Simulation Studay ofthe Vortex Structure in the Low-Latitude Boundary Layer, J. Geophys. Res.,95(A12),20793-20807.
    80. Yamauchi, M. and R. Lundin (1994), Classification of large-scale andmeso-scale ion dispersion patterns observed by Viking over the cusp-mantleregion, Physical signatures of magnetospheric boundary layer processes,99-109.
    81. Woch, J. and R Lundin (1992), Signatures of transient boundary layer processesobserved with Viking, J. Geophys. Res.,97(A2),1431-1447.
    82. Hasegawa, H., M. Fujimoto, T. D. Phan, H. Reme, A. Balogh, M. W. Dunlop, etal.(2004), Transport of solar wind into Earth's magnetosphere through rolled-upKelvin-Helmholtz vortices, Nature,430(7001),755-758.
    83. Hu, Ze-Jun, H. Yang, J. Liang, D. Han, D. Huang, H. Hu, et al.(2010), The4-emission-core structure of dayside aurora oval observed by all-sky imager at
    557.7nm in Ny-lesund, Svalbard, J. Atmos. Sol.-Terr. Phys.,72(7-8),638-642.
    84. Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher and G. Parks (1997),Synoptic auroral distribution: A survey using Polar ultraviolet imagery, J.Geophys. Res.,102(A12),27197-27205.
    85. Lyatsky, W. and D Sibeck (1997), Central plasma sheet disruption and theformation of dayside poleward moving auroral events, J. Geophys. Res.,102(A8),17625-17630.
    86. Kozlovsky, A. and J. Kangas (2002), Motion and origin of noon high-latitudepoleward moving auroral arcs on closed magnetic field lines, J. Geophys. Res.,107(A2), SMP1.1-1.13.
    87. Karlson, K. A., M. Oieroset, J. Moen and P. E. Sandhold (1996), A statisticalstudy of flux transfer event signatures in the dayside aurora: The IMF By-relatedprenoon-postnoon asymmetry, J. Geophys. Res.,101(A1),59-68.
    88. Drury, E. E., S. B. Mende, H. U. Frey and J. H. Doolittle (2003), SouthernHemisphere poleward moving auroral forms, J. Geophys. Res.,108(A3),1114.
    89. Gosling, J. T., M. F. Thomsen, S. J. Bame and R. C. Elphic (1990), Plasma flowreversals at the dayside magnetopause and the origin of asymmetric polar capconvection, J. Geophys. Res.,95(A6),8073-8084.
    90. Sandholt, P. E., C. J. Farrugia, S. W. H. Cowley and M Lester (2001), Daysideauroral bifurcation sequence during By-dominated interplanetary magnetic field:Relation with merging and lobe convection cells, J. Geophys. Res.,106(A8),15429-15444.
    91. Yeoman, T. K., M Lester, S. W. H. Cowley, S. E. Milan, J. Moen and P. E.Sandholt (1997), Simultaneous observations of the cusp in optical,DMSP andHF radar data, Geophysical Research Letters,24(17),2251-2254.
    92. Provan, G., T. K. Yeoman and S. Milan (1998), CUTLASS Finland radarobservations of the ionospheric signatures of flux transfer events and theresulting plasma flows, Annale Geophysicae,16,1411-1422.
    93. Provan, G., T. K. Yeoman and S. W. H. Cowley (1999), The influence of theIMF By component on the location of pulsed flows in the dayside ionosphereobserved by an HF radar, Geophys. Res. Lett.,26(4),521-524.
    94. Milan, S. E., M Lester, S. W. H. Cowley and M. Brittnacher (2000), Convectionand auroral response to a southward turning of the IMF: Polar UVI, CUTLASS,and IMAGE signatures of transient magnetic flux transfer at the magnetopause,J. Geophys. Res.,105(A7),15741-15755.
    95. Thorolfsson, A., J.-C. Cerisier, M. Lockwood, P. E. Sandholt, C. Senior and MLester (2000), Simultaneous optical and radar signatures of poleward-movingauroral forms, Ann. Geophys.,18,1054-1066.
    96. Lockwood, M., I. W. McCrea, S. Milan, J. Moen, J.-C. Cerisier and A.Thorolfsson (2000), Plasma structure within poleward-moving cusp/cleft auroraltransients:EISCAT Svalbard radar observations and an explanation in terms oflarge local time extent of events, Ann. Geophys.,18,1027-1042.
    97. Oksavik, K., J. Moen and H. C. Carlson (2004), High-resolution observations ofthe small-scale flow pattern associated with a poleward moving auroral form inthe cusp, Geophys. Res. Lett.,31, L11807.
    98. Oksavik, K., J. Moen, H. C. Carlson, R. A. Greenwald, S. E. Milan, M. Lester, etal.(2005), Multi-instrument mapping of the small-scale flow dynamics relatedto a cusp auroral transient, Ann. Geophys.,23,2657-2670.
    99. Moen, J., K. Okasvik and H. C. Carlson (2004), On the relationship between ionupflow events and cusp auroral transients, Geophys. Res. Lett.,31, L11080.
    100. Moen, J., H. C. Carlson, Y. Rinne and Skj veland (2012), Multi-scale featuresof solar terrestrial coupling in the cusp ionosphere, Journal of Atmospheric andSolar-Terrestrial Physics,87-88,11-19.
    101. Rinne, Y., J. Moen, K. Okasvik and H. C. Carlson (2007), Reversed flowevents in the winter cusp ionosphere observed by the European IncoherentScatter (EISCAT) Svalbard radar, J. Geophys. Res.,112(A10313).
    102. Moen, J., Y. Rinne, H. C. Carlson, K. Oksavik, R. Fujii and H. Opgenoorth(2008), On the relationship between thin Birkeland current arcs and reversedflow channels in the winter cusp/cleft ionosphere, J. Geophys. Res.,113(A9).
    103. Sandholt, P. E. and C. J. Farrugia (2007), Role of poleward moving auroralforms in the dawn-dusk auroral precipitation asymmetries induced by IMF By, J.Geophys. Res.,112, A04203.
    104. Sandholt, P. E. and C. J. Farrugia (2007), Poleward moving auroralforms(PMAFs) revisited: responses of aurorae, plasma convection and Birkelandcurrents in the pre-and postnoon sectors under positive and negative IMF Byconditions, Ann. Geophys.,25,1629-1652.
    105. Zhang, Q. H., M. W. Dunlop, M. Lockwood, R. Y. Liu, H. Q. Hu, H. G. Yang, etal.(2010), Simultaneous observations of reconnection pulses at Cluster and theireffects on the cusp aurora observed at the Chinese Yellow River Station, J.Geophys. Res.,115(A10).
    106. Zhang, Q. H., M. W. Dunlop, R. Y. Liu, H. G. Yang, H. Q. Hu, B. C. Zhang, et al.(2011), Coordinated Cluster/Double Star and ground-based observations ofdayside reconnection signatures on11February2004, Ann. Geophys.,29(10),1827-1847.
    107. Wild, J. A., S. W. H. Cowley, J. A. Davies, H. Khan, M. Lester, S. E. Milan, et al.(2001), First simultaneous observations of flux transfer events at the hig-latitudemagnetopause by the Cluster spacecraft and pulsed radar signatures in theconjugate ionosphere by the CUTLASS and EISCAT radars, Ann. Geophys.,19,1491-1508.
    108. Taguchi, S., K. Hosokawa, Y. Ogawa, T. Aoki and M. Taguchi (2012), Doublebursts inside a poleward-moving auroral form in the cusp, J. Geophys. Res.,117(A12).
    109. Lockwood, M., H. Opgenoorth, A. P. Van Eyken, A. Fazakerley, J. M. Bosqued,W. Denig and M. F. Marcucci (2001), Coordinated Cluster,ground-basedinstrumentation and low-altitude satellite observations of transientpoleward-moving events in the ionosphere and in the tail lobe, Ann. Geophys.,19,1589-1612.
    110. Moen, J., A. P. van Eyken and H. C. Carlson (2001), EISCAT Svalbard Radarobservations of ionospheric plasma dynamics in relation to dayside auroraltransients, J. Geophys. Res.,106(A10),21453-21461.
    111. Pitout, F., P. E. Newell and S. C. Buchert (2002), Simultaneous high-andlow-latitude reconnection: ESR and DMSP observations, Ann. Geophys.,20,1311-1320.
    112. Pitout, F., J. M. Bosqued, D. Alcayde, W. F. Deing and H. Reme (2001),Observations of the cusp region under northward IMF, Ann. Geophys.,19,1641-1653.
    113. Sandholt, P. E., C. J. Farrugia, W. F. Denig, S. W. H. Cowley and M. Lester(2003), Spontaneous and driven cusp dynamics: Optical aurora, particleprecipitation, and plasma convection, Planet. Space Sci.,51(12),797-812.
    114. Hu, Z. J., H. G. Yang, D. S. Han, D. H. Huang, B. C. Zhang, H. Q. Hu and R. Y.Liu (2012), Dayside auroral emmissions controlled by IMF: a survey for daysideauroral excitation at557.7and630.0nm in Ny-lesund, Svalbard, J. Geophys.Res.,117, A02201.
    115. Liu, R.-Y., Y.-H. Liu, Z.-H. Xu, H.-Q. Hu, H.-G. Yang, B.-C. Zhang, etal.(2005), The Chinese ground-based instrumentation in support of thecombined Cluster/Double Star satellite measurements, Ann. Geophys.,23,2943-2951.
    116. Liu, R. Y. and H. G. Yang (2011), Progress in the polar upper atmosphericphysics research in China, Chinese Journal of Polar Research.(in Chinese),23(4),241-258.
    117. Liu, X. C., G. X. Chen, W. Y. Xu, A. M. Du, Y. Y. Wu, B. Chen, et al.(2008),Relationships of the auroral precipitating particle power with AE and Dst indices,Chinese Journal of Geophysics (in Chinese),51(4),968-975.
    118. Xing, Zanyang, Huigen Yang, Desheng Han, Zhensen Wu, Junming Liu, ZejunHu, et al.(2012), Simultaneous optical and radar observations of polewardmoving auroral forms under different IMF conditions, Advances in PolarScience,23(4),204-210.
    119. Shunlin, Liu, Han Desheng, Hu Hongqiao, Huang Dehong, Zhang Beichen andYang Huigen (2008), Prospect of China' s Auroral Fine-structure ImagingSystem(CAFIS) at Zhongshan station in Antarctica, ADVANCES IN POLARSCIENCE,19(2),261-266.
    120. Chisham, G., M. Lester, S. E. Milan, M. P. Freeman, W. A. Bristow, A. Grocottand A. D. M. Walker (2007), A decade of the Super Dual Auroral Radar Network(SuperDARN): scientific achievements, new techniques and future directions,Surveys in Geophysica,28(1),33-109.
    121. Wannberg, G., I. Wolf, L.-G. Vanhainen, K. Koskenniemi, J. Rottger, M. Postila,et al.(1997), The EISCAT Svalbard radar: A case study in modern incoherentscatter radar system design, Radio Sci.,32,2283-2307.
    122. Wang, Qian, Jimin Liang, Ze-Jun Hu, Hai-Hong Hu, Heng Zhao, Hong-Qiao Hu,et al.(2010), Spatial texture based automatic classification of dayside aurora inall-sky images, Journal of Atmospheric and Solar-Terrestrial Physics,72(5-6),498-508.
    123. Eather, R. H. and S. B. Mende (1972), Systematics in auroral energy spectra, J.Geophys. Res.,77(4),660-673.
    124. Gattinger, R. L. and A. Vallance Jones (1972), The intensity ratios of auroralemission features, Ann. Geophys.,28,91-97.
    125. Hecht, J. H., A. B. Christensen, D. J. Strickland and R. R. Meier (1989),Deducing composition and incident electron spectra from ground-based auroraloptical measurements: variations in oxygen density, J. Geophys. Res.,94(A10),13553-13563.
    126. Jones, A. Vallance, R. L. Gattinger, P. Shih, J. W. Meriwether, V. B. Wickwarand J. Kelly (1987), Optical and radar characterization of a short-lived auroralevent at high latitude, J. Geophys. Res.,92(A5),4575.
    127. Solomon, S. C., P. B. Hays and V. J. Abreu (1988), The Auroral6300AEmission: Observations and Modeling, J. Geophys. Res.,93(A9),9867-9882.
    128. Heikkila, W. J., J. D. Winningham, R. H. Eather and S.-I. Akasofu (1972),Auroral emissions and particle precipitation in the noon sector, J. Geophys. Res.,77(22),4100-4115.
    129. Xing, Z. Y., H. G. Yang, D. S. Han, Z. S. Wu, Z. J. Hu, Q. H. Zhang, et al.(2012),Poleward moving auroral forms (PMAFs) observed at the Yellow River Station:A statistical study of its dependence on the solar wind conditions, J. Atmos.Sol.-Terr. Phys.,86,25-33.
    130. Yang, Huigen, Ruiyuan Liu and Sato Natsuo (1997), Intensity correction inall-sky auroral image projection transform, Chin. Sci. Bull.,42(8),700-703.
    131. Gazey, N. G. J., P. N. Smith, R. P. Rijnbeek, M. Buchau and M. Lockwood(1996), The motion of auroral arcs within convective plasma flow, in ThirdInternational Conference on Substorms, edited, pp. ESA SP-389, France.
    132. Newell, P. E., W. J. Burke, E. R. Sanchez, C.-I. Meng, M. E. Greenspan and C.R. Clauer (1991), The low-latitude boundary layer and the boundary plasmasheet at low altitude: prenoon precipitation regions and convection reversalboundaries, J. Geophys. Res.,96(A12),21013-21023.
    133. Knight, S.(1973), Parallel electric fields, Planet. Space Sci.,21,741-750.
    134. Lockwood, M., C. J. Davis, M. F. Smith, T. G. Onsager and W. F. Denig (1995),Location and characteristics of the reconnection X line deduced fromlow-altitude satellite and ground-based observations2.Defense MeteorologicalSatllite Program and European Incoherent Scatter data, J. Geophys. Res.,100(A11),21803-21813.
    135. Moen, J., P. E. Sandholt, M. Lockwood, W. F. Denig, U. P. L vhaug, B. Lybekkand E. Friis-Christensen (1995), Events enhanced convection and relateddayside auroral activity, J. Geophys. Res.,100(A12),23917-23934.
    136. Nishitani, N., T. Ogawa, M. Pinnock, M. P. Freeman, J. R. Dudeney, J. P. Villainand H Matsumoto (1999), A very large scale flow burst observed by theSuperDARN radars, J. Geophys. Res.,104(A10),22469-22486.
    137. Zhang, Q. H., R. Y. Liu, M. W. Dunlop, J. Y. Huang, H. Q. Hu, M. Lester, et al.(2008), Simultaneous tracking of reconnected flux tubes: Cluster and conjugateSuperDARN observations on1April2004, Ann. Geophys.,26,1545-1557.
    138. Whalen, J. A., J. Buchau and R. A. Wagner (1971), Airbourne ionospheric andoptical observations of noontime aurora, J Atmos Terr Phys,33,661.
    139. Murphree, J. S., L. L. Cogger, C. D. Anger, S. Ismail and G. G. Shepherd (1980),Large scal6300A,5577A,3914A dayside auroral morphology, Geophys Res Lett,7(4),239-242.
    140. Milan, S.E., M. Lester, S. W. H. Cowley, J. Moen, P. E. Sandhold and C. J.Owen (1999), Meridian-scanning photometer, coherent HF radar, andmagnetometer observations of the cusp: a case study, Ann Geophys,17,159-172.
    141. Safargaleev, V., A. Kozlovsky, T. Sergienko, T. K. Yeoman, M. Uspensky, D. M.Wright, et al.(2008), Optical, radar, and magnetic observations ofmagnetosheath plasma capture during a positive IMF Bz impulse, Ann Geophys,26,517-531.
    142. Lockwood, M. and J. Moen (1999), Reconfiguration and closure of lobe flux byreconnection during northward IMF: possible evidence for signatures incusp/cleft auroral emissions, Ann Geophys,17,996-1011.
    143. Rinne, Y., J. Moen, H. C. Carlson and M. R. Hairston (2010), Stratification ofeast-west plasma flow channels observed in the ionospheric cusp in response toIMF By polarity changes, Geophys Res Lett,37, L13102.
    144. Baker, K. B., J. R. Dudeney, R. A. Greenwald, M. Pinnock, P. T. Newell, A. S.Rodger and C.-I. Meng (1995), HF radar signatures of the cusp andlow-latitude boundary layer, J. Geophys. Res.,100(A5),7671-7695.
    145. Fasel, G. J., J. I. Minow, R. W. Smith, C. S. Deehr and L.C. Lee (1992), Multiplebrightenings of transient dayside auroral forms during oval expansions, Geophys.Res. Lett.,12(24),2429-2432.
    146. Mende, S. B., H. U. Frey, J. McFadden, C. W. Carlson, V. Angelopoulos, K. H.Glassmeier, et al.(2009), Coordinated observation of the daysidemagnetospheric entry and exit of the THEMIS satellites with ground-basedauroral imaging in Antarctica, J. Geophys. Res.,114, A00C23.
    147. Lockwood, M.(1997), Relationship of dayside auroral precipitations to theopen-closed separatrix and the pattern of convective flow, J. Geophys. Res.,102(A8),17475-17487.
    148. Sandholt, P. E., W. F. Denig, C. J. Farrugia, B. Lybekk and E. Trondsen (2002),Auroral structure at the cusp equatorward boundary: Relationship with theelectron edge of low-latitude boundary layer precipitation, J. Geophys. Res.,107(A9),1235.
    149. Sandholt, P. E. and C. J. Farrugia (2002), Monitoringmagnetosheath-magnetosphere interconnection topology from the aurora, Ann.Geophys.,20,629-637.
    150. Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher and G. Parks (1998),Characteristics of the solar wind controlled auroral emissions, J. Geophys. Res.,103(A8),17543-17557.
    151. Cogger, L. L., J. S. Murphree, S. Ismail and C. D. Anger (1977), Characteristicsof dayside5577A and3914A Aurora, Geophys. Res. Lett.,4(10),413-416.
    152. Davis, C. J. and M. Lockwood (1996), Predicted signatures of pulsedreconnection in ESR data, Ann. Geophys.,14,1246-1256.
    153. Maynard, N. C., W. J. Burke, Y. Ebihara, D. M. Ober, G. R. Wilson, K. D.Siebert, et al.(2006), Characteristics of merging at the magnetopause inferredfrom dayside557.7-nm all-sky images: IMF drivers of poleward moving auroralforms, Ann. Geophys.,24,3071-3098.
    154. Yang, Qiuju, Jimin Liang, Zejun Hu, Zanyang Xing and Heng Zhao (2012),Automatic recognition of poleward moving auroras from all-sky imagesequences based on HMM and SVM, Planetary and Space Science,69(1),40-48.
    155. Moen, J., H. C. Carlson and P. E. Sandholt (1999), Continuous observation ofcusp auroral dynamics in response to an IMF By polarity change, Geophys ResLett,26(9),1243-1246.
    156. Moen, J., M. Lockwood, K. Okasvik, H. C. Carlson, W. F. Denig, A. P. VanEyken and I. W. McCrea (2004), The dynamics and relationships of precipitation,temperature and convection boundaries in the dayside auroral ionosphere,Annale Geophysicae,22,1973-1987.
    157. Marcucci, M. F., I. Coco, D. Ambrosino, E. Amata, S. E. Milan, M. B.Bavassano Cattaneo and A. Retinò (2008), Extended SuperDARN and IMAGEobservations for northward IMF: Evidence for dual lobe reconnection, J.Geophys. Res.,113, A02204.
    158. Smith, M. F. and M. Lockwood (1990), The pulsating cusp, Geophys. Res. Lett.,17(8),1069-1072.
    159. Farrugia, C. J., P. E. Sandholt, W. F. Dening and R. B. Torbert (1998),Observation of a correspondence between poleward moving auroral forms andstepped cusp ion precipitation, J. Geophys. Res.,103(A5),9309-9315.
    160. Sibeck, D. G.(1990), A model for the transient magnetospheric response tosudden solar wind dynamic pressure variations, J. Geophys. Res.,95(A4),3755-3771.
    161.陈相材,韩德胜,胡泽骏,刘建军,胡红桥,邢赞扬, et al.(2012),日侧弥散极光对太阳风动压增强的响应,极地研究,24(3),274-283.
    162. Fillingim, M. O., G. K. Parks, H. U. Frey, T. J. Immel and S. B. Mende (2005),Hemispheric asymmetry of the afternoon electron aurora, Geophys. Res. Lett.,32(3), L03113.
    163. Milan, S. E., T. K. Yeoman, M. Lester, J. Moen and P. E. Sandholt (1999),Post-noon two-minute period pulsating aurora and their relationship to thedayside convection pattern, Ann Geophys,17(7),877-891.
    164. Zhang, Q. H., B. C. Zhang, M. Lockwood, H. Q. Hu, J. Moen, J. M. Ruohoniemi,et al.(2013), Direct observations of the evolution of polar cap ionization patches,Science,339(6127),1597-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700