基于SPPs波导的光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体激元(Surface Plasmon Polaritons,SPPs)是束缚在金属/介质界面的一种电磁波模式,具有透射增强、亚波长局域等特点,使得在亚波长尺度的金属结构中对光场实现局域化和导波成为可能,从而为提高光子器件的集成度带来了新的契机。近几年,金属介质亚波长SPPs波导成为一个研究热点,被认为是实现光电纳米集成的主导技术。
     论文首先介绍SPPs基本理论,包括色散特性、特征参数、激发方式等相关物理机制,这是进行SPPs相关研究的理论基础;接着对金属Drude模型以及分析SPPs模场分布的FDTD数值计算方法做了详细介绍,这对进行SPPs器件研究具有重要意义。在此基础上,本文对以下问题作了重点研究:
     1.构造了金属三角形结构,利用FDTD方法模拟了光照射此结构激发SPPs的情况,观察并分析了SPPs的传播过程。
     2.研究了金属/介质界面SPPs的干涉理论,推导了金属三角形结构SPPs干涉相消条件,并在FDTD仿真实验中观察到了此干涉相消现象。
     3.在对SPPs激发和干涉理论深入研究的基础上,设计了基于三角形的光控光开关器件,利用信号光和调制光所激发的SPPs的干涉相消作用,实现了对光的控制。整个结构尺寸仅为1.8 m m′1m m ( x′z方向) ,消光比约为23 dB ,开光时间仅为0.9 fs。
     基于SPPs的光开关可以在小于衍射极限的亚波长范围内实现对光的控制功能,可应用于高速大容量的光纤通信系统中,是未来集成光器件的重要研究方向。
Surface Plasmon Polaritons(SPPs)are a special kind of electromagnetic field, which are confined to the interface of metal and dielectric materials. With the properties of transmission enhancement, sub-wavelength localization, making the possibility of in subwavelength scale metal structures achieve light field localization and guided waves, so as to bring new opportunities to raise the level of integration of photonic devices. Recently, based on SPPs metal/dielectric subwavelength waveguides become one of hot issue researches, which is seen as one of the leading technology to intergrating optical and electronic devices in the future.
     In this thesis, we present the basic theory of SPPs, such as dispersion relations, characteristic parameters, SPPs stimulating method, related physical mechanism and so on. This is the theoretical basis about research of SPPs. Furthermore, we describe details of metal dispersion model and FDTD numerical calculation method which is used to analyze of SPPs mode field distribution. This is of great significance to investigate the properties of the SPPs-based devices.
     The main research work includes the following aspects:
     1.We designed the metal triangle structure, using FDTD method to analyzed the situation of the excitation and the propagation of SPPs when light illuminate the structure.
     2.We studied the theory of the interference of SPPs on the metal / dielectric surface and deduced metal triangle structure SPPs interference cancellation conditions. We observed this interference cancellation phenomenon in FDTD simulation experiments.
     3.On the basis of deeply study near-field excitation of SPPs and SPPs interference theory, we designed the optical switch device structures based on metal triangle. With interference cancellation of SPPs excited by the signal and the modulated light, we realized the control of light on or off. The entire structure size is only 1.8 m m′1 m m, extinction ratio of the optical switch is 23dB, and the switching time is up to 0.9 fs.
     SPPs-based optical switch can control light in subwavelength, and can be applied to high-speed large-capacity optical fiber communication system. So it is an important research direction in the field of integrated optics.
引文
[1]朱星.近场光学与近场光学显微镜[J].长江大学学报(自然科学版),1997,33:3.
    [2]王桂英.近场光学理论初探[J].物理学报,1997,46:11.
    [3] Wood,R.W.On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J].Proc.Phys.Soc., London,1902,18:269-275.
    [4] U.Fan.The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces[J].Opt. Soc. Am.,1941,31:213-222.
    [5] R.H.Ritchie. Plasma losses by fast electrons in thin films[J].Phys,1957,106(5):874-881.
    [6] C.J.Powell,J.B.Swan.Origin of the characteristic electron energy losses in magnesium[J]. Phys.Rev.,1959,116(1):81-83.
    [7] E.A.Stern,R.A.Ferrell. Surface Plasma Oscillations of degenerate electron gas[J].Physical. Review,1960,120(l): 130-136.
    [8] D.A.Weitz,S.Garoff,J.I.Gersten,A.Nitzan. The enhancement of Raman scattering resonance Raman scattering and fluorescence from molecules absorbed on a rough silver surface [J].Chem.Phy,1983,78(9):5324-5338.
    [9] T.W.Ebbesen,H.F.Lezec,T.Thio & p.A.Wolff. Extraordinary optical transmission through sub-wavelength hole arrays [J].Nature,1998,391:667-669.
    [10] W.L.Barnes,T.W.Ebbesen. Surface Plasmon Subwavelength Opticas[J]. Nature,2003,424: 824-830
    [11] H.Raether. Surface plasmons on smooth and rough surfaces and on gratings[M].Springer, Berlin,1988.
    [12]顾本源.表面等离子体亚波长光学原理和新颖效应[J].物理,2007年36卷04期,280-287.
    [13]汪国平.表面等离子体激元纳米集成光子器件.物理学与高新技术,2006年35卷06期,502-506.
    [14]雷建国等.表面等离子体激元的若干应用.中国光学与应用光学,2010年第3卷05期,433-437.
    [15] E.Kusunoki,T.Yotsuya,J.Takahara and T.Kobayashi. Propagation properties of guided waves in Index-guided two-dimensional optical waveguides[J].Appl.Phys.Lett.,2005,86(21): 211101.
    [16] K.Tanaka and M.Tanaka. Simulations of nanometric optical circuit based on surface plasmon polariton gap waveguide [J].Appl.Phys.Lett.,2003,82(8):1158-1160.
    [17] D.F.P.Pile,T.Ogawa,K.C.Vernon, T.Okamoto and M. Fukui. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide[J].Appl.Phys.Lett.,2005, 87(26):261114.
    [18] B.Wang and G.P.Wang. Simulation of nanoscal interferometer and array focusing by metal hetewaveguides.Opt.Express.,2005,13(26):10558-10563.
    [19] S.I.Bozhevolnyi,V.S.Volkov,E.Devau,T.W.Ebbesen. Channel plasmon-polariton guiding by sub wavelength metal grooves[J].Phys.Rev.Lett.,2005,95(4):046802.
    [20] S.I.Bozhevolnyi, V.S.Volkov, E.Devaux, J.Y.Laluet and T.W.Ebbesen. Channel plasmon sub wavelength waveguide component including interferometers and ring resonators[J]. Nature, 2006,4440(7083):508-511.
    [21]朱采莲等.光纤表面等离子波传感器中共振波长的理论计算[J].传感技术学报,2004第1期,136-139.
    [22]杨勇等.基于表面等离子体的微纳光刻技术[J].微电子技术,2008年12期.
    [23] E.Ozbay.Plasmonics merging photomics and electronics at nanoscscale dimensiona[J]. Science, 2006, 311:189-193.
    [24]王庆艳.基于金属表面等离子激元控制光束的新进展[J].光学技术,2009年2期.
    [25] W.L.Barnes,A.Dereux and T.W.Ebssesen.Surface plasmon subwavelength optics.Nature, 2003,424:824.
    [26] Stefan, A. Plasmonics fundamentals and applications [M].Springer, 2006
    [27]李继军.表面等离子激元基本特征研究[J].长江大学学报(自然版)理工卷,2007, 4(4): 47-49.
    [28]王振林.表面等离激元研究新进展[J].物理学进展,2009,第29卷第三期,290-291.
    [29] E.Kretschmann, H.Raether. Radiative decay of non-radiative surface plasmons excited by light[J].Naturforschung,1968,23A:2153-2136.
    [30] Otto,A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection [J], Z.Phys.,1968, 216:398-412.
    [31] H.Ritchier, T.Arakawae, J.Cowan. Surface plasmon resonance effect in grating diffraction [J].Phys.Rev.Lett.,1968,21(22):1530-1533.
    [32] Barnes,W.L. Top review fluorescence near interfaces: the role of photonic modedensity[J]. Mod.Opt.,1998,4(4),661-699.
    [33] A.Bouhelier,G.P.Wiederrecht.Surface plasmon rainbow jets[J].Opt.Letter.,2005,30(8):884.
    [34]曹庄琪.《导波光学》[M].北京,科学出版社,2007,150-160.
    [35] Palik. Handbook of Optical Constants of Solids [M].Vol.1 AP, 1985.
    [36] Marvin, J.Weber, Handbook of optical materials [M]. 2002.
    [37]高本庆.《时域有限差分方法》[M].北京,国防工业出版社,1995.
    [38]葛德彪,闫玉波.《电磁波时域有限差分方法》[M].西安,西安电子科技大学出版社,2002.
    [39] S.K.Gray,T.Kupka. Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinder [J]. Phys,2003,68:045415-045432.
    [40] A.vial,A.S.Grimault,D.Macias,etal. Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method [J]. Phys,2005, 7l: 085416-085422.
    [41] K.S.Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Thns,Antemlas Propagat,1966,14:302-320.
    [42]胡秋友,程福臻,刘之景.《电磁学》[M].北京:高等教育出版社,1994.
    [43]王蔷,李国定.《电磁场基础理论》[M].北京:清华大学出版社,2005,231-234.
    [44]吴小倩.基于FDTD的由粗到细网格逐步逼近计算电磁场.科技通报, 2006年5期.
    [45]张清和.时域有限差分法中的吸收边界条件[J].三峡大学学报(自然科学版).2004:464-466.
    [46] Mur,G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J].IEEE, EMC,1981,23(4):377-382.
    [47] J.P.Berenger. Perfectly matched layer for the FDTD solution of wave-structure interaction problem[J].IEEE Transactions on Antennas Propagation,1996, AP-44:1-12.
    [48] J.P.Berenger. A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,2:114-132.
    [49] Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain method [M]. Artech House,Norwood,MA,2000.
    [50] M.Brodwin, E.Numerical. Solutions of steady state electromagnetic scattering problems using the time-dependent Maxwell’s equation[J].IEEE Transaction on Microwave Theory and Techniques,1975,23:623-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700