基于有源光环路串行计数的大尺寸测量系统及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大尺寸测量技术是制造和安装高精度大型机械加工零部件的基础支撑技术之一,长期以来一直是困扰计量工作者的技术难题。本文在详细地分析和比较了现有各种测量原理和技术的前提下,就大尺寸光学测量方法进行了深入系统地研究。在脉冲激光测距原理的基础上,建立了单次多测量方法的数学模型和基于有源光环路结构的串行计数大尺寸测量系统。分析了系统色散引起的激光脉冲展宽,以及被测对象粗糙表面反射引起的脉冲展宽和衰减对大尺寸测量系统性能的限制,研究了解决方案。在有源光环路噪声分析的基础上,建立了大尺寸测量系统等效模型,并进行了仿真研究以优化系统结构。通过理论推导和实验验证相结合的方式分析了环路损耗等参数对系统性能的影响,最终确定了以有源光环路的自脉冲代替外部输入激光脉冲构建大尺寸测量系统,以保证测量精度。本系统在提高测量精度的同时,还保留了脉冲激光测距抗干扰能力强和便携的优势,可以降低大型机械加工零部件制造和安装成本,提高效率,具有广阔的应用前景。主要的研究内容有:
     首先,研究测量激光脉冲飞行时间新方法——单次多测量的数学模型。把激光脉冲飞行时间测量精度依赖于计数脉冲频率转换为更便于控制的时钟脉冲的相移。这样可以绕过电子瓶颈对时钟频率的限制,提高激光脉冲飞行时间测量精度,满足大尺寸测量对高精度的要求。
     其次,研究可实现性强的测量系统——串行计数系统。设计以掺铒光纤放大器为核心的有源光环路结构,实现大尺寸测量激光脉冲的循环复制,以确保与单次多测量原理保持一致。在有源光环路噪声分析的基础上建立系统等效模型,并通过该模型的仿真研究优化系统结构。
     然后,设计实验系统,研究光环路损耗、输入激光脉冲功率和光放大器泵浦功率等参数对大尺寸测量系统性能的影响,确定系统最佳工作条件。并通过实验研究比较外部输入激光脉冲方案和自脉冲方案的系统结构和性能差异,以进一步提高测量精度。
     最后,分析系统的误差种类和来源,根据系统结构特点运用差分测量算法,将系统测量和自校准、自误差补偿有机地结合在一起,使系统能够动态地误差补偿和校准,保证校准过程更方便;配合事件记录得到的冗余数据,共同补偿由于色散、光纤和逆反射器折射率及环境温度等因素引起的确定性和随机性误差,保证系统测量精度。
Large-scale metrology is one of the basic supporting techniques for manufacturing and installing large-scale mechanical parts with high precision, and one technical challenge to metrologists. Deep and systematical research on optical methods of large-scale metrology is performed after analysis and comparison of present measuring principles and technologies. The mathematical model of the new method named multiple-flight-in-single-shot is established, which is based on the principle of pulsed laser ranging. And the serial counting system of large-scale metrology, based on the structure of an active optical loop, is under research. Performance limitations, from pulse broadening caused by dispersions and from pulse broadening and loss caused by rough surface reflections of objects, are analyzed and resolved. The equivalent model of the large-scale metrology system is created by analyzing noises of active optical loops, and simulated in order to optimize systematic structures. Performance influences of optical loop loss and other factors are profoundly analyzed theoretically and experimentally. And self-pulsation replaces the input pulse in order to improve accuracy further. Measurement precision is promoted, and the high noise immunity and portability of pulsed laser ranging are reserved. The producting and installing costs could be decreased and the efficiency increased with great application prospects. The main contents are discribed as follow:
     First, the new method’s mathematical model of multiple-flight-in-single-shot is established. The clock pulse frequency, which restricts the precision of the time-of-flight measuement, is converted into other physical quantities of the phase shifts. Precision could be promoted further by bypassing the electrical bottleneck of the clock frequency, and meet demand of the large-scale metrology for high accuracy.
     Second, the serial counting system is designed with high feasibility. Cyclic replication, of a laser pulse for large-scale metrology, is realized by the structure of the active optical loop with the core of an Er-doped fiber amplifier, in order to keep coincidence with the principle. The equivalent model is established by analyzing noises of the active optical loop. And structure optimizations are achieved through the model simulation.
     Then, experiment system is set up. Performance influences from optical loop loss, input pulse power and pumping power are profoundly analyzed in order to find best conditions for system. Comparison between two system schemes, of the input laser pulse and self-pulsations, is performed through experimental researchs in order to improve precision further.
     Last, the types and sources of errors are analyzed. Differential measurement algorithm is used according to the structural features, which endows the system with the functions of self-calibration and self errors correction. So, the system could be calibrated by itself easily and correct errors dynamically. Differential algorithm and redundant data obtaining by events recording, jointly correct deterministic and random errors caused by dispersions, refract index of optical fibers and retro-reflector, and surrounding temperature, and so on, to keep best performance.
引文
1 W. T. Estler, K. L. Edmundson, G. N. Peggs, et al. Large-Scale Metrology - An Update. CIRP Annals - Manufacturing Technology. 2002, 51(2): 587-609
    2吴晓峰,张国雄.现代大尺寸空间测量方法.航空制造技术. 2006, (10): 68-70
    3叶声华,王伸,曲兴华.精密测试技术展望.中国机械工程. 2000, 11(3): 262-263
    4于鹏,高峰,郭为忠,等.新型大锻件尺寸在线测量系统的关键技术研究.机械设计与研究. 2008, 24(3): 89-92
    5张福民,曲兴华,戴建芳,等.现场大尺寸测量量值溯源.天津大学学报. 2008, 41(10): 1167-1171
    6叶声华.邾继贵.张滋黎,等.大空间坐标尺寸测量研究的现状与发展.计量学报. 2008, 29(z1): 1-6
    7 H. Kunzmann, T. Pfeifer, J. Flügge. Scales vs. Laser Interferometers Performance and Comparison of Two Measuring Systems. CIRP Annals - Manufacturing Technology. 1993, 42(2): 753-767
    8 D. A. Jackson. Monomode Optical fiber interferometers for precision measurement J. Phys. E. Sci. Instrum. 1985, 18: 981-1001
    9 C. R. Steinmetz. Performance evaluation of laser displacement interferometry on a precision coordinate measuring machine. Industrial Metrology. 1990, 1(3): 165-191
    10 B. K. A. Ngoi, K. Venkatakrishnan, B. Tan. Laser scanning heterodyne-interferometer for micro-components. Optics Communications. 2000, 173(1-6): 291-301
    11 H. K. Teng, K. C. Lang. Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression. Optics Communications. 2007, 280(1): 16-22
    12 H. F. F. Castro, M. Burdekin. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer. International Journal of Machine Tools and Manufacture. 2003, 43(9): 947-954
    13 Y. J. Rao, D. A. Jackson. Recent progress in fibre optic low-coherence interferometry. Meas. Sci. Technology. 1996, 7(7): 981-999
    14张玉贵,段发阶,钟明,等.大量程光纤干涉测距中的三级量程倍增技术.光电子·激光.2005, 16(7): 825-829
    15段发阶,杨蓓,叶声华.大量程光纤准白光干涉绝对测距技术.科学技术与工程. 2002, (04): 56-58
    16洪海涛,俞朴,叶声华.光纤干涉测距中光程定位的研究.光学学报. 2000, (02): 97-101
    17黄绍梅,段发阶,叶声华.光纤干涉测距中的量程倍增系统.光学学报. 2000, (04) : 514-517
    18段发阶,杨蓓,谢娟.一种新型光纤干涉测距系统及其定位信号处理.计量学报. 2002, 23(3): 178-191
    19黄绍梅,叶声华,段发阶.光纤干涉测距仪中倍增光纤长度的自标定.中国激光. 2000, 27(9): 805-808
    20孙杰,刘铁根,张以谟,等.白光干涉零光程差位置的五步测量法.光电子·激光. 2003, 14 (12): 1319-1323
    21杨天博,郭宏,李达.白光扫描干涉测量算法综述.光学技术. 2006, 32(1): 115-117
    22邓罗根.多波长激光绝对距离干涉计量术的原理与发展.激光技术. 1997, 21(2): 65-72
    23 W. Cuypers, N. VanGestel, A. Voet, et al. Optical measurement techniques for mobile and large-scale dimensional metrology. Optics and Lasers in Engineering. 2009, 47: 292-300
    24王林,赵洪志,赵洋,等.大尺寸绝对距离测量的现状及发展.光学技术. 1997, (2): 47-49,52
    25 G. L. Bourdet, A. G. Orszag. Absolute distance measurements by CO2 laser multiwavelength interferometry. Appl. Opt. 1979, 18(2): 225-227
    26 G. L. Bourdet, M. A. Franco, A. M. Raafat, et al. Absolute distance measurement by infrared heterodyne interferometry. J. Opt. Soc. Am. 1982, 72: 1754
    27 C. W. Gillard, N.E. Buholz. Progress in absolute distance interferometry. Opt. Eng. 1983, 22: 348-353
    28 A. Lewis. Measurement of length, surface form and thermal expansion coefficient for length bars up to 1.5 m using multiple-wavelength phase-stepping interferometry. Meas Sci Technol. 1994, 5(6): 694-703
    29 D. T. Zou, Q. Tian, J. W. Liang, et al. Two approaches for absolute distance interferometry by synthetic wavelengths of an infrared dual-line He-Ne laser. Chinese Journal of Lasers. 1992, 19(1): 31-37
    30 Y. Y. Jin, S. L. Zhang, Y. Li, et al. Zeeman-Birefringence He-Ne dual frequency lasers. Chinese Physics Letters. 2001, 18(4): 533-536
    31 S. L. Zhang, H. Guo, K. L. Li. Laser longitudinal mode splitting phenomenon and its applications in laser physics and active metrology sensors. Optics and Lasers in Engineering. 1995, 23(1):1-28
    32周肇飞,袁家勤,黄仲平. He-Ne激光器的双纵模热稳频系统.仪器仪表学报. 1988, 9(4): 374-380
    33 Z. F. Zhou, T. Zhang, W Huang, et al. Precision ranger for measuring large mechanical components. Applied Optics. 2004, 43(25): 4816-4820
    34 C. W. Gillard, N.E. Buholz. Progress in absolute distance interferometry. Opt. Eng. 1983, 22: 348-353
    35武勇军,李达成.线性调频半导体激光绝对测长技术.航空计测技术. 1993, 28(4): 2-4
    36 T. Kubota, M. Nara, T. Yoshino. Interferometer for measuring displacement and distance. Optics Letters. 1987, 12(5): 310-312
    37 J. Thiel, T. Pfeifer, M. Hartmann. Interferometric measurement of absolute distances of up to 40 m. Measurement. 1995, 16(1): 1-6
    38邵宏伟,方占军,王强,等.新型长距离无导轨激光干涉仪.计量学报. 2007, 28(2): 110-113
    39 K. H. Chen, J. H. Chen, S. H. Lu, et al. Absolute distance measurement by using modified dual-wavelength heterodyne Michelson interferometer Optics Communications. 2009, 282(9): 1837-1840
    40 H. J. Yang, S. Nyberg, K. Riles. High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions. Nuclear Instruments and Methods in Physics Research A. 2007, 575: 395-401
    41 K. Lau, R. Hocken. A survey of current robot metrology methods. Ann. CIRP. 1984, 33(2): 485-488
    42 H. V. Brussel. Evaluating and testing of robots. Ann. CIRP. 1990, 39(2): 657-662
    43 K. Lau, R. J. Hocken, W. C. Haight. Automatic laser tracking interferometer system for robot metrology. Precision Engineering. 1986, 8(1): 3-8
    44 J. R. Mayer, G. A. Parker. Optical considerations in a 3-D laser tracking instrument. Proc. of 6th Int. Conf. Robot Vision and Sensor controls. Paris, France, 1986: 217
    45 J. R. Mayer, G. A. Parker. A portable instrument for 3-D dynamic robot measurement using triangulation and laser tracking. IEEE Tran. on Robotics and Automation. 1994, 10(4): 504-516
    46张国雄,林永兵,李杏华,等.四路激光跟踪干涉三维坐标测量系统.光学学报. 2003, 23(9): 1030-1036
    47 C. S. Fraser. A resume of some industrial applications of photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing. 1993, 48(3): 12-23
    48 Z. Z. Wei, G. J. Zhang. Inspecting verticality of cylindrical workpieces via multi-vision sensors based on structured light. Opt. Laser. Eng. 2005, 43(10): 1167-1178
    49 P. Arias; C. Ordó?ez, H. Lorenzo, et al. Low-cost documentation of traditional agro-industrial buildings by close-range photogrammetry. Building and Environment. 2007, 42(4): 1817-1827
    50 C. Ordó?ez, B. Riveiro, P. Arias. Application of Close Range Photogrammetry to Deck Measurement in Recreational Ships. Sensors. 2009, 9: 6691-6702
    51 T. ?zel. Precision tracking control of a horizontal arm coordinate measuring machine in the presence of dynamic flexibilities. The International Journal of Advanced Manufacturing Technology. 2006, 27: 960-968
    52 T. ?zel. Precision Tracking Control of a Horizontal Arm Coordinate Measuring Machine. Proceedings of 2003 IEEE Conference on Control Applications. 2003, 1: 103-108
    53吴晓峰,张国雄.室内GPS测量系统及其在飞机装配中的应用.航空精密制造技术. 2006, 42(5): 1-5
    54秦世伟,谷川. Indoor GPS技术及其在工业领域中的应用.铁道勘察. 2008, (3): 31-34
    55 O. Basir, X. H. Yuan. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory. Information Fusion. 2007, 8(4): 379-386
    56 F. W, Acerbi-Junior, J. G. P. W. Clevers, M. E. Schaepman. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. International Journal of Applied Earth Observation and Geoinformation. 2006, 8(4): 278-288
    57 K. H. Ruhm. Sensor fusion and data fusion-mapping and reconstruction. Measurement. 2007, 40(2): 145-157
    58 R. C. Luo, C. C. Yih, L. S. Kuo. Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sensors Journal. 2002, 2(2): 107-119
    59 J. Kalisz. Review of Methods for Time Interval Measurements with Picosecond Resolution. Metrologia. 2004, 41:17-32
    60 J. Kalisz, M. Pawlowski, R. Pelka. A method for autocalibration of the interpolation time intervaldigitizer with picosecond resolution. J. Phys. E: Sci. Instrum. 1985, 18: 444-452
    61 J. Kalisz, M. Pawlowski, R. Pelka. Error analysis and design of the Nutt time-interval digitizer with picosecond resolution. J. Phys. E: Sci. Instrum. 1987, 20: 1330-1341
    62 K. R. Raisanen, T. Rahkonen, J. Kostamovaara. High-procision time-to-digital converter for pulsed time-of-flight laser radar applications. IEEE Trans. Instrum. Meas. 1998, 47: 521-536
    63 D. Bloyet, M. Tripon. A digital TDC with a reduced number of delay line cells. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2002, 486(3): 803-812
    64 Z. Marek, C. Dariuz, K. Marcin, et al. High-resolution time-interval measuring system implemented in single FPGA device. Measurement. 2004, 35(2): 311-317
    65 R. Szplet, J. Kalisz, R. Szymanowski. Interpolationg time counter with 100ps resolution on a single FPGA device. IEEE Trans. Instrum. Meas. 49: 879-883
    66 M. Mota, J. Christiansen. A high-resolution time interpolator based on a delay loop and an RC delay line. IEEE J. Solid State Circuits. 1999, 34(10): 1360-1366
    67 T. Xia, J. C. Lo. Time-to-Voltage Converter for On-Chip Jitter Measurement. IEEE Trans. On Instrumentation and Measurement. 2003, 52(6): 1738-1748
    68 P. Dudek, S. Szczepanske, J. V. Hatfield. A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE J. Solid State Circuits. 2000, 35: 240-247
    69 P. M. Levine, G. W. Roberts. High-resolution flash time-to-digital conversion and calibration for system-on-chip. IEE Proceedings on Computers and Digital Techniques. 2005, 152(3): 415-426
    70 I. Prochazka, P. Panek. Progress in sub-picosecond timing system development. 16th International Workshop on Laser Ranging. Poznan, Poland, 2008
    71 M. Collins, B. Al-Hashimi, P. Wilson. On-chip timing measurement architecture with femtosecond resolution. Electronics Letters. 2006, 42(9): 528-530
    72 N.M. Oldham, J.A. Kramar, P.S. Hetrick, etal. Electronic Limitations in Phase Meters for Heterodyne Interferometry. Precision Engineering. 1993, 15(3):173-179
    73 S. F. Qiu, G. Fan. Applications of fiber delay line in radar. Optical Technique. 2003, 39(4): 429-431
    74 F. Sanchez, P. L. Boudec, P. L. Fran?ois, et al. Effects of ion pairs on the dynamics of erbium-doped fiber lasers. Phys. Rev. A. 1993, 48(3): 2220-2229
    75 E. Lacot, F. Stoeckel, M. Chenevier. Dynamics of an erbium-doped fiber laser. Phys. Rev. A. 1994, 49(5): 3997-4008
    76 A. Agnesi. Kerr-lens modelocking of solid-state lasers and unidirectional ring cavities. IEEE J. of Quantum Electronics. 1994, 30(4): 1115-1121
    77 J. Garduno, M. Mohebi, N. Jamasbi. Kerr lens mode-locked Ti sapphire ring laser. Proc. SPIE. 1999, 3572: 228-231
    78 A. Kasper and K. J. Witte. 10-fs pulse generation from a unidirectional Kerr-lens mode-locked Ti: sapphire ring laser, Opt. Lett. 1996, 21(5): 360-362
    79蓝信钜.激光技术.第二版.北京:科学出版社, 2005: 156-158
    80 P. Palojarvi, T. Ruotsalainen, J. Kostamovaara. A new approach to avoid walk error in pulsed laser rangefinding. IEEE Intern. Sympos. On Circu. And Systems Pro. 1999, 1:258-261
    81 W. A. Kielek. Random error in timing using weak light pulse, photomultiplier, and threshold crossing detection. IEEE Trans. Inst. And Meas. 1998, 47(2): 543-550
    82 M. L. Simpson, M. J. Paulus. Discriminator design considerations for time-interval measurement circuits in collider detector systems. IEEE Trans. Nucl. Sci. 1998, 45(1): 98-104
    83 G. P. Agrawa. Nonlinear fiber optics. 4th edition. USA: San Diego : Academic Press, 2009: 25-45
    84 M. J. Wang, Z. S. Wu, Y. L. Li. Investigation on the Scattering characteristics of Gaussian Beam from Two Dimensional Dielectric Rough Surfaces based on the Kirchhoff approximation. Progress In Electromagnetics Research B. 2008, 4: 223-235
    85 E.Desurvire. Erbium-doped fiber amplifiers: principle and applications. New York: John Wiley & Sons, 1994: 74-85
    86李双刚,聂劲松,孙晓泉.大气折射和色散对激光传输的影响.量子电子学报. 2004, 21(5): 679-682
    87王佳,俞信.自由空间光通信系统中光脉冲展宽问题的研究.光学技术. 2009, 35(1): 80-83
    88 E. Desurvire, H. J. Shaw, M.Tu. Signal-to-noise ratio in Raman active fiber systems: application to recirculating delay lines. Journal of Lightwave Technology. 1986, 4(5): 560-566
    89 N. A. Olsson. Lightwave systems with optical amplifiers. IEEE J. Lightwave technology. 1989, 7(7): 1071-1082
    90 G. P. Agrawal. Fiber-optic communication systems. 3rd Edtion. New York: John Wiley & Sons, 2002: 261-265
    91 C. Mazzali, H. L. Fragnito. Recirculating loop for experimental modeling of long haul communication systems. SBMO/IEEE MTT-s International Microwave and Optoelectronics Conference Proceedings. 1997, 2: 447-452
    92 I. I. Zolotoverkh, N. V. Kravtsov, E. G. Lariontsev, et al. Relaxation oscillations in a self-modulated solid-state ring laser. Optics Communications. 1994, 113(1-3): 249-258
    93 R. Ibrahim, Y. Gottesman, B. E. Benkelfat et al. Erbium Doped Fiber Characterization Dynamic Study of Laser Ring Cavity Based on a General Model. J. of Lightwave Technology. 2007, 25(7): 1919-1825
    94 M. Dinand, Ch. Schutte. Theoretical modeling of relaxation oscillations in Er-doped waveguide lasers. J. of Lightwave Technology. 1995, 13(1): 14-23
    95 C. R. Giles, E. Desurvire. Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers. J. Lightwave Technology. 1991, 9(2): 147-154
    96 M. J. F. Digonnet. Rare-earth-doped fiber lasers and anmplifiers. 2nd edition. USA: Marcel Dekker Inc., 2001: 422
    97 S. Namiki, H. A. Haus. Noise of the stretched pulse fiber laser. I. Theory. IEEE J. Quant. Electron. 1997, 33(5): 649-659
    98 C. X. Yu, S. Namiki, H. A. Haus. Noise of the stretched pulse fiber laser. II. Experiments. IEEE J. Quant. Electron. 1997, 33(5): 660-668
    99 G. Suha, M. E. Fermann, D. J. Harter. Time-domain jitter measurements of ultrafast lasers. Conference on Lasers and Electro-Optics. San Francisco, CA 1998
    100 S. Namiki, C. X. Yu, H. A. Haus. Observation of nearly quantum-limited timing jitter in an all-fiber ring laser. J. Opt. Am. B. 1996, (13): 2817-2823
    101 S. Gee, S. Ozharar, F. Quinlan, et al. Attosecond timing jitter actively modelocked semiconductor fiber ring laser with normal net cavit. Conference on Lasers and Electro-Optics (CLEO). Baltimore, Maryland, 2007
    102 M. E Grein, H. A. Haus, Y. Chen, et al. Quantum-limited timing jitter in actively modelocked lasers. IEEE J. Quant. Electron. 2004, 40(10): 1458-1470
    103 S. Gee, F. Quinlan, S. Ozharar, et al. Ultralow noise modelocked optical pulse trains from a slab coupled optical waveguide amplifier (SCOWA) based external cavity laser. Optics Letters. 2005, 30(20): 2742-2744
    104 S. Gee, S. Ozharar, J. J. Plant, et al. Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser. Optics Letters. 2009, 34(3):.238-240
    105费业泰.误差理论与数据处理.第5版.北京:机械工业出版社, 2004: 9-12
    106林永兵,张国雄,李真.猫眼逆反射器的设计与优化.光学学报. 2002, 22(10): 1245-1250
    107刘欣丽,张国雄,李杏华.激光跟踪测量系统中的光学误差分析.光学技术. 2004, 30(2): 245-247
    108 W. H. Wing. On the aberration of light from a moving retroreflector. Optics Communications. 2003, 220(1-3):1-6
    109 D. Ren, K. M. Lawton, J. A. Miller. Application of cat's-eye retroreflector in micro-displacement measurement. Precision Engineering. 2007, 31: 68-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700