城市地下空间开发的地质环境识别评价与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地质环境影响着地下空间资源的质量特征与开发难度。对地下空间开发难度的科学评估,需要以城市三维地质建模和关键影响因素的识别评价为基础。而城市地质建模,则要以关键工程地质层组及其工程特性的把握为基础,目前国内外在这方面的研究还处于起步阶段。本次研究以苏州城市地调和国家国际合作项目(城市地下资源与可持续开发-中瑞典型城市对比研究)为依托,围绕城市地下空间开发的地质环境识别评价与建模研究这一主题,需在以下几个方面开展工作:一方面,借助现场监测、室内土工试验、模型试验等对城市地质体中关键层组的工程特性展开多尺度试验研究、内在结构的精细化识别;另一方面,借助计算机的三维可视化建模技术来模拟城市地质环境、分析地层条件、解决实际工二程问题,并利用GIS系统对各种地质环境要素制约下的地下空间开发难度做出评价。本次研究工作通过大量钻孔数据的统计分析,多尺度试验技术的应用、城市地质体的三维地质建模、ArcGIS的空间统计分析功能对上述研究目标展开了全面细致的工作,得到了以下主要研究成果:
     (1)综合考虑沉积时代、成因类型、沉积环境及土性特征等要素,对苏州东部堆积平原区进行了工程地质层组划分,并对城市地质体的关键持力层组和软弱敏感层进行了判识;确定了上述层组的土体代表参数,并利用递推空间法对水平及竖向的土层自相关距离进行了求取;根据工程地质分区受控要素,将苏州城市规划区划分为两大工程地质分区;基于岩土体的分布特征及其工程特性,对两大工程地质分区各亚区的场地建设条件、地下空间开发的利用形式、开发过程中可能遇到的地质问题、规避地质灾害的措施进行了讨论;
     (2)采用自由活塞薄壁取样器和冷冻掰断-粘贴法,制作了用于微观结构分析的土样。基于扫描电镜图像的处理分析,对苏州软弱敏感层的软土微观尺度结构特征进行了对比研究,得到了原状土天然状态下的微观结构类型,颗粒排列的定向特征,颗粒偏心度,定向概率熵等量化指标,为深入理解其基本工程性质,建立土体沉积环境、微观结构与宏观工程特性的联系提供了重要的试验依据;考虑到目前用于地下工程围岩热物性测试的试验技术存在取样难、扰动强、误差大、无法有效反映地层复杂地质条件(比如地层组合等)的缺点,对基于扫描电镜图像的土体结构数值建模技术进行了研究,探讨了土体内在结构对其宏观热物性的影响;自行研发了基于微观结构分析的室内模型试验取土方法与取土装置,以便无扰动条件下从模型箱中取出土样进行导热特性测试(对土体扰动敏感)和微观结构研究;
     (3)收集了大量能用于工程地质层组层序分析、建立层序标准体系的钻孔资料和地层剖面资料,通过统一各层组顶、底板标高,选用普通克里金插值以及有块金指数变差模型进行了地质建模。建立的苏州东部平原区三维地质模型可为城市地下空间开发和具体工程问题的解决提供三维可视化支持。在地质建模软件Geolep-3D中对模型空间数据进行提取,转换成ArcGIS软件中的Shapefile文件,并利用ArcGIS的绘图、统计分析等功能对苏州基坑建设过程中的流砂问题、盾构隧道施工问题进行了评价;
     (4)结合苏州现阶段地质调查的重点区域与关键地质要素,确定了地形地貌、建筑场地类别、不良岩土体条件、水文地质特征、地质灾害等五个方面为地下空间开发难度评估的主题层。运用层次分析法(AHP)、专家调查法确定各了指标因素的权重,基于目标线性加权函数建立了数学评估模型,分别对苏州浅层(0-15m)、次浅层(15-30m)的地下空间开发难度进行了评估。
Urban geological environment gives rise to a lot of restriction on the underground space development and its quality characteristic. In addition, a scientific assessment requires the support of unban geological modeling, as well as the identification of key impact factors. In order to establish the sound geological model, we should make a clear recognition of key underground stratum and understand its geotechnical engineering characteristics. However, research of this aspect is still in the initial stage at present. Therefore, based on the Suzhou Geological Survey and Sino-Swiss Cooperation Project (comparison between Sino-Swiss typical cities for sustainable underground exploration in urban areas), we need to carry out following work oriented by the subject of this research. First up, we need to take in-situ monitoring, indoor soil tests and model tests to realize multi-scale experimental study, including the study of engineering properties and inner structures of key strata. On the other hand,3-D visualizing modelling technology is also necessary to simulate the urban geological environment, conditions of strata, solution of engineering problems. Then geological and environmental evaluation for the underground space development is also indispensable. Therefore, based on the analysis of massive boreholes'data, application of multi-scale experimental tests and3-D urban geological modelling and spacial analysis functions by software ArcGIS, we can get following research results:
     (1) Taking into full account of the sedimentary environment and history, formation origin and soil characteristics and other factors from the geological survey in Suzhou City, engineering geological strata groups of soil mass on the eastern plains area were divided, as well as key bearing strata group and weak-sensitive strata were also indentified. Then the representative value of key bearing strata and weak-sensitive strata were predicated. In addition, horizontal and vertical spacial self-correlation distance was also calculated by using the Space Recursive Method. According to the dominant impact factors for engineering geological division, we could divide the urban planning area into two parts. It was based on the distribution characteristics of soil and rock mass and other engineering features. As for each sub-area, we have also made a detailed discussion on the site construction conditions, underground space utilization modes, potential geological hazards. And the corresponding countermeasures were also put forward.
     (2) A free piston thin wall sampler and frozen snapping-paste method were used to obtain undisturbed specimens for miro-structure analysis. Based on the analysis of digital images by Scanning Electron Microscope (SEM), comparative studies of two soft soil layers were carried out to analyze the natural microstructure characteristics, particles'orientation characteristics, eccentricity, orientation probability entropy and other quantitative indicators. Such a work was useful for better understanding the basic engineering properties of soft soil in Suzhou City, as well as providing important experimental data to establish the relationship between the sedimentary environment, micro-structure and macro-engineering properties. Considering the current thermal testing defects (sampling difficulty and disturbance, great errors, bad reflection of compounded formation with complex geological conditions) on surrounding rocks of underground engineering, we develop a numerical modeling technology to simulate the impact effects of soil micro-structures on its macro thermal properties. Besides, we have also designed a new sampling device and method for soil indoor model tests, in order to obtain undisturbed soil specimens for micro-structure analysis and thermal conductivity tests.
     (3) A lot of boreholes and stratigraphic profiles had been collected and classified in need, which could be consistent with the establishment and analysis the geological strata groups sequence. After unifying the top and bottom elevation for each stratum, ordinary kriging interpolation method and nugget-exponential model variogram were used to establish the geological model. The geological model of Suzhou Eastern Plain area can be utilized to solve the engineering problems of underground space exploration in the visual three-dimensional space. Beyond that, the spatial data could be extracted from the computed model by the geological modeling software Geolep-3D. Then the data were imported into ArcGIS, in order to convert the data to Shapefile file format. By utilizing of the function of chart drawing and statistical analysis in ArcGIS, the problems in the process of foundation pit and shield tunnelling construction were analyzed.
     (4) Topography conditions, types of construction sites, unfavorable geotechnical problems, hydro-geological characteristics and geological hazards were considered as the main indexes of the thematic layer for geo-environmental suitability evaluation. Furthermore, both the Analytical Hierarchy Process (AHP) and expert questionnaires survey methods were utilized to calculate the weights of evaluation indexes. At last, the mathematical evaluation model was established by massive aim linear weight function method to evaluate the exploration difficulty at the depth from0~15m (shallow depth) and15-30m (sub-shallow depth).
引文
[1]王国强,刘刚,吴道祥,单灿灿,丁振杰.城市地质环境与环境地质问题[J].合肥工业大学学报(社会科学版),2007,21(4):19-24.
    [2]A. Parriaux, L. Tacher, P. Joliquin. The hidden side of cities-towards three-dimensional land planning[J]. Energy and Buildings,2004,36(4):335-341.
    [3]李从先,张桂甲.晚第四纪长江三角洲高分辨层序地层学的初步研究[J].海洋地质与第四纪地质,1996,16(3):13-22.
    [4]莫群欢,季良华,庄永乐,王富葆,曹琼英,李弘.上海市第四系的工程地质研究[J].高校地质学报,1999,5(4):467-472.
    [5]Salah Bishir,罗国煜,阎长虹,陈征宙.南京市地基稳定性区划图[J].高校地质学报,1997,3(1):62-76.
    [6]杨永鹏.杭嘉湖东部平原工程地质分区特性[J].浙江水利水电专科学校学报,2000,12(3):62-76.
    [7]汤连生,廖化荣,廖志强,万军伟.珠江三角洲环境地质分区及其特征[J].中山大学学报(自然科学版),2004,43(s1):229-233.
    [8]李晓昭,罗国煜,龚洪祥,严三保,张迪.上体工程地质层组的划分[J].岩土力学,2004,25(5):759-763.
    [9]周游.水文地质条件工程地质分区在工程中的应用[J].铁道勘察,2010,(6):61-65.
    [10]李广信.理论土力学与实验土力学的关系(大会特邀报告)[C]//第25届全国土工测试学术研讨会论文集.杭州:浙江大学出版社,2008.
    [11]陈云敏,陈仁朋,詹良通.岩土工程的多尺度试验(大会特邀报告)[C]//第25届全国土工测试学术研讨会论文集.杭州:浙江大学出版社,2008.
    [12]单红仙,刘媛媛,贾永刚,许国辉水动力作用对黄河水下三角洲粉质土微结构改造研究[J].岩土工程学报,2004,26(5):654-658.
    [13]张宏,柳艳华,石名磊.海陆交互相黏性土工程特性及微结构特征[J].土木建筑与环境工程,2009,31(6):47-52.
    [14]刘维正,石名磊.低路堤下长江漫滩相沉积土的工程特性评价[J].东南大学学报(自然科学版),2008,38(5):844-849.
    [15]孔令荣,黄宏伟,P. Y. HICHER,张冬梅.上海淤泥质黏土微结构特性及固结过程中的结构变化研究[J].岩土力学,2008,29(12):3287-3292.
    [16]刘文白,魏晓添,赵玉同.软黏土上覆硬土层极限承载力室内模型试验研究[J].水运工程,2011,(5):119-123.
    [17]刘文白,徐海侠.砂土宏观力学特性与细观结构的相关性试验研究[J].武汉理工大学学报 (交通科学与工程版),2011,35(4):683-686.
    [18]刘文白,田桥.上拔荷载作用下的土体细观结构分析[J].岩石力学与工程学报,2007,26(s2):4311-4318.
    [19]张莎莎,谢永利,杨晓华,戴志仁.典型天然粗粒盐渍土盐胀微观机制分析[J].岩土力学,2010,31(1):123-127.
    [20]Hu Zenghui, Li Xiaozhao, Zhao Xiaobao, Xiao Lin, Wu Wei. Numerical analysis of factors affecting the range of heat transfer in earth surrounding three subways. Journal of China University of Mining & Technology,2008,18(1):67-71.
    [21]王明华,白云.三维地质建模研究现状与发展趋势[J].土工基础,2006,20(4):68-70.
    [22]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003.
    [23]刘修国,朱良峰,尚建嘎,花卫华.面向城市地质信息平台的3维技术研究[J].地理信息世界,2005,3(2):26-30.
    [24]李亦纲,曲国胜,陈建强.城市钻孔数据地下三维地质建模软件的实现[J].地质通报,2005,24(5):470-475.
    [25]王永立,雷磊,齐波.3D GIS支持下的城市地质调查[J].分析研究,2008,3(1):14-17.
    [26]宋大各,胡卸文.三维建模技术在城市环境地质评价中的应用[J].四川水利,2008,(4):61-63.
    [27]Raymond L. Sterling, Susan R. Nelson. Planning for underground space:a case study for Minneapolis, Minnesota,1982.
    [28]J.Zhao and K.W.lee. Construction and Utilization of Rock Caverns in Singapore, Part C:Planning and location Selection [J]. Tunnelling and Underground Space Technology,1996, 11(1):81-84.
    [29]Kimmo Ronka, Jouko Ritila and Kari Rarhala. Underground Space in Land Use Planning [J]. Tunnelling and Underground Space Technology,1998,13(1):39-49.
    [30]J.Edelenbos, R.Monnikhof, J.Hassnoot, et al. Strategic Study on the Utilization of Underground Space in the Netherlands [J]. Tunnelling and Underground Space Technology,1998, 13(2):159-165.
    [31]Rienzo F, Oreste P, Pelizza S.3D GIS SupportingUnderground Urbanisation in the City of Turin [C].11th ACUUS international conference-underground space:expanding the frontiers. Greek: The associated research centers for urban underground space,2007:397-402.
    [32]祝文君,童林旭.北京旧城区浅层地下空间资源调查[C].中国土木工程学会隧道及地下工程学会第七届年会暨北京西单地铁车站工程学术讨论会论文集(下),1992,中国,北京.
    [33]潘丽珍,李传斌,祝文君.青岛市城市地下空间开发利用规划研究[J].地下空间与工程学报,2006,2(7):1093-1099.
    [34]童林旭,祝文君.城市地下空间资源评估与开发利用规划[M].北京:中国建筑工业出版社,2009.
    [35]彭苗枝,包海玲,刘道彬,于利刚.地下空间上程地质适宜性灰色评估[J].采矿技术,2010, 10(3):114-116.
    [36]廖崇高,李天华.西南某山区机场的工程地质分区及其评价[J].地质找矿论丛,2011,26(3):350-353,358.
    [37]裴向军,黄润秋,裴钻,董秀军.强震触发崩塌滚石运动特征研究[J].工程地质学报,2011,19(4):498-504.
    [38]周念清,傅莉,赵在立,秦敏.田湾核电工程场地风化囊体工程特性研究[J].水文地质工程地质,2009,(2):57-61.
    [39]孟繁有,德勒达尔,石新璞,李新兵.阜康断裂带侏罗系地层层序及砂层组划分[J].新疆石油天然气,2006,2(3):1-5.
    [40]王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征[J].地理研究,2001,20(2):161-169.
    [41]刘军熙,阎长虹,许宝田。苏通大桥地基中敏感优势层工程地质问题分析[J].地质论评,2005,51(6):719-723.
    [42]李小勇,谢康和,曾国熙.岩土参数试验数据的可靠性检验和估值方法研究[J].土工基础,2000,14(3):34-39.
    [43]易念平,刘建章,马福荣,张信贵.可靠性分析在岩土工程中的应用[J].工程建设,2006,38(2):1-6.
    [44]Vanmarcke E H. Probability modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, ASCE,1977,103(11):1227-1246.
    [45]高大钊.岩土工程设计安全度指标及其应用[J].工程勘察,1996(1):1-6.
    [46]李小勇,谢康和,曾国熙.土性指标相关距离性状的研究[J].土木工程学报,2003,36(8):91-108.
    [47]黄广龙,龚晓南,肖溟.土性参数的随机场模型及桩体沉降变异特性分析[J].岩土力学,2000,21(4):311-315.
    [48]罗琴,李耀东,田茂华.土性参数空间变异性研究[J].水利与建筑工程学报,2008,6(2):114-117.
    [49]倪万魁,牛富俊,刘东燕.黄土土性的空间自相关性研究[J].西安工程学院学报,2002,24(2):4-8.
    [50]薛必芳.南京河西地区土体自相关距离的研究[J].安徽建筑,2001,(6):114-116.
    [51]冷伍明.基础工程可靠度分析与设计理论[M].长沙:中南大学出版社,2000.
    [52]M.M.Carroll. Foundations of Solid Mechanics[J]. Applied Mechanics Reviews,1985,38(10): 1256-1260.
    [53]Karner Stephen L, Chester Frederick M, Chester Judith S. Towards a general state-variable constitutive relation to describe granular deformation[J]. Earth and Planetary Science Letters, 2005,237(3):940-950.
    [54]郭见扬.土体的工程地质特性及其研究现况-第三次全国工程地质大会论文综述.[J].岩土 力学,1989,10(2):47-54.
    [55]王清,肖树芳,王凤艳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,28(2):148-153.
    [56]肖琳,杨成奎,胡增辉,李晓昭,李茉.地铁隧道围岩内温度分布规律的模型试验及其热导率反算研究[J].岩土力学,2010,31(s2):86-91.
    [57]秦立科,李云璋,胡伟.非饱和黄土结构性定量试验研究[J].岩土力学,2011,34(s1):265-269.
    [58]刘海刚.薄壁取土器的结构及取样过程分析[J].岩土工程学报,1990,12(6):76-83.
    [59]白冰,周健.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显微学报,2001,20(2):154-160..
    [60]李生林,秦素娟,薄遵昭,施斌.中国膨胀土工程地质研究[M].南京,江苏科学技术出版社,1992.
    [61]唐朝生,施斌,王宝军.基于SEM土体微观结构研究中的影响因素分析[J].岩土工程学报,2008,30(4):560-565.
    [62]L Cao, WB Liu, XZ Li, XB Zhao, H Zhang. Micro Mechanics Study of Granular Soil Based on the Confined Compression Tests [C]. Proceedings of the International Symposium on Geomechanics and Geotechnics:From Micro to Macro,2010(1):421-425. Shanghai, China.
    [63]钱家欢,殷宗泽.土工原理与计算(第二版)[M].中国水利水电出版社,1996,5.
    [64]袁聚云,杨熙章,赵锡宏,董建国.上海软土各向异性性状的试验研究[J].大坝观测与土工测试,1996,20(2):10-14.
    [65]吴燕开,刘松玉,洪振舜.土层工程性质与其沉积环境关系分析研究[J].工程地质学报,2004,12(3):263-267.
    [66]施斌,王宝军,姜洪涛.击实粘性土微结构特性的定量评价[J].科学通报,1996,41(5):438-441.
    [67]杨达源,陈可锋,舒肖明.深海氧同位素第3阶段晚期长江三角洲古环境初步研究[J].第四纪研究,2004,24(5):525-530.
    [68]Eisenatein Z, Ezzeldine Q. The effect of tunneling technology on ground control [J]. Tunnelling and Under Ground Space Technology,1992,7(3):273-279.
    [69]张三定,王小波.武汉地铁二号线土体热参数研究[J].南水北调与水利科技,2009,7(1):35,86-88.
    [70]陈善雄,陈守义.砂土热导率的实验研究[J].岩土工程学报,1994,16(5):47-53.
    [71]涂新斌,戴福初.土体一维传热方程解析解及热扩散系数测定[J].岩土工程报,2008,30(5):652-657.
    [72]Xiaozhao LI, Liang CAO, Lin XIAO, Gaofeng ZHAO. The Experimental Study of the Soil Thermal Conductivity Based on the Analysis of Actual Internal Fabric[J]. Advanced Material Research, Doi:10.4028/www.scientific.net/AMR.261-263.1826.
    [73]刘文白,曹亮,周健,史旦达,张辉.细观结构观测固结仪:中国,(ZL 200920072242.6)[P].2010-03-31.
    [74]曹亮,刘文白,李晓昭,赵晓豹,李业勋.基于数字图像的砂土压缩变形模式的试验研究[J].岩土力学,2012,33(4):18-24.
    [75]曹亮,刘文白,李晓昭,赵晓豹,张辉.侧限压缩下砂土的细观力学特性及其形态分析[J]地质论评,2011,57(4):591-599.
    [76]刘文白,李业勋,曹亮.单调荷载下的砂土宏观和细观力学性状关联度试验研究[J].岩土工程学报,2011,33(2):220-226.
    [77]周健,余荣传,贾敏才.基于数字图像技术的砂土模型试验细观结构参数测量[J].岩土工程学报,2006,28(12):2047-2052.
    [78]刘海刚.薄壁取土器的结构及取样过程分析[J].岩土工程学报,1990,12(6):76-83.
    [79]张剑锋,俞灿明.薄壁原状取土器系列化问题的探讨[J].工程勘察,1985,(2):25-28.
    [80]闫澍旺,侯晋芳,程栋栋.真空预压有效加固深度的探讨[J].水利学报,2007,38(7):774-778.
    [81]殷静,刘曙光,董志良.真空预压地基出水量现场试验研究及分析[J].地下空间与工程学报,2011,7(2):286-290.
    [82]魏波,贺怀建.真空-堆载联合预压处理软基效果的室内试验研究[J].岩土力学,2003,10(24):553-556.
    [83]孙立强,闫澍旺,李伟,吴坤标.超软土真空预压室内模型试验研究[J].岩土力学,2011,32(4):984-990.
    [84]程玉祥,杜东菊.真空预压处理吹填土的微结构特征试验[J].煤田地质与勘探,2010,38(4):52-55.
    [85]武伟,李晓昭,肖琳,胡增辉.地铁工程设计中围岩传热量的计算方法[J].地下空间与工程学报,2008,4(1):89-93.
    [86]胡增辉,李晓昭,赵晓豹,肖琳,武伟.隧道围岩温度场分布的数值分析及预测[J].地下空间与工程学报,2009,5(5):867-872.
    [87]Tacher, L., I. Pomian-Srzednicki, and A. Parriaux, Geological uncertainties associated with 3-D subsurface models [J]. Computers & Geosciences,2006,32(2):212-221.
    [88]林思能.计算机辅助编制采掘计划系统中的地质信息环境[J].广东工学院学报,1994,11(2):61-66.
    [89]杨东来,张永波,王新春.地质体三维建模方法与技术指南[M].北京:地质出版社,2007.
    [90]李晓军,王长虹,朱合华Kriging插值方法在地层模型生成中的应用[J].岩土力学,2009,30(1):157-162.
    [91]张芳,王军辉.普通Kriging方法建立宏观地层的验证与评价[J].计算机工程与应用,2010,46(20):234-236.
    [92]Edzer J. Pebesma, Cees G. Wesseling. Gstat:a program for geostatistical modelling[J], prediction and simulation. Computers & Geosciences,1998,24(1):17-31.
    [93]朱凤贤,周翠英.地层数字制图中纵、横分界线控制搜索新算法[J].岩土力学.2009,30(7):1955-1959.
    [94]陈国良,刘修国,盛谦等.一种基于交叉剖面的地质模型构建方法[J].岩土力学.2011,32(8):2409-2415.
    [95]朱良峰,潘信.河流侵淤作用下三维地层模型的构建[J].岩土力学.2005,26(s):65-68.
    [96]Wang, B.J., Shi B., Song, Z. A simple approach to 3D geological modeling and visualization[J]. Bulletin of Engineering Geology and the Environment.2009,68:559-565.
    [97]张芳,朱合华,吴江斌.城市地下空间信息化研究综述[J].地下空间与工程学报,2006,2(1):5-9.
    [98]A. Marache, D. Breysse, C. Piette, P. Thierry. Geotechnical modeling at the city scale using statistical and geostatistical tools:The Pessac case (France), Engineering Geology,2009,107: 67-76.
    [99]Q. Wu, H. Xu, X. k. Zou. An effective method for 3D geological modeling with multi-source data integration, Computers & Geosciences,2005,31:35-43.
    [100]金江军,潘懋,屈红刚,王占刚,明镜.三维地质建模及其在地下空间开发中的应用[J].国土资源信息化,2007,(3):26-29.
    [101]张新宇,陈殿友,杨天行ARC/VIEW中Shapefile数据结构剖析及格式转换[J].吉林大学学报(信息科学版),2003,21(4):399402.
    [102]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(]):112-113.
    [103]张忠苗,谢志专,刘俊伟,俞峰.淤质与粉质互层土中管桩沉桩过程的土压力[J],浙江大学学报(工学版),2011,45(8):1430-1434,1440.
    [104]周龙茂.流砂对基坑工程的影响及预防[J].西部探矿工程,2001,(6):29-30.
    [105]杨建民,郑刚.基坑降水中渗流破坏归类及抗突涌验算公式评价[J].岩土力学,2009,30(1):261-264.
    [106]夏莎丽.苏州轨道交通苏-塔区间隧道设计方案[J].中国市政工程,2011,(2):39-41,46.
    [107]浦伟庆.城市地下空间防洪与对策研究[J].水运工程,2008,(10):223-229.
    [108]苏明金,许光泉,李佩全,刘泽功,严家平,黄向菁,宗云峰.克立格插值法在矿井生产中的应用[J].中国煤炭,2010,36(3):68-71.
    [109]俞志新,李艳,黄明祥.地统计克立格插值法在工程土方计算中的应用[J].浙江水利科技,2003,(04):37-47.
    [110]李兆平,刘军,李名淦.采用矿山法构筑区间盾构隧道渡线段的方案探讨[J].岩土力学,2007,28(6):1156-1160.
    [111]王恩福,谢周敏,赵国存,刘德权.地基基础与建筑场地类别划分[J].防灾减灾工程学报, 2005,25(1):74-80.
    [112]梁建文,张炳政,巴振宁.层状场地中透镜体对地震动影响的基本规律[J].地震工程与工程振动,2009,29(5):1-12.
    [113]张凌,施斌,王宝军.GIS环境中砂土液化评价方法[J].水文地质工程地质,2000,(5):15-16,25.
    [114]王军辉,周宏磊,韩煊,王法.北京市地下空间运营期主要水灾水害问题分析[J].地下空间与工程学报,2010,6(2):224-229.
    [115]孔军,赵超阳.AHP方法在地下空间合理开发项目上的应用[J].山东建筑工程学院学报.1994,9(4):27-34.
    [116]彭建,柳昆,郑付涛,李晓军;彭芳乐.基于AHP的地下空间开发利用适宜性评价[J].地下空间与工程学报,2010,6(4):688-694.
    [117]王应明,徐南荣.群体判断矩阵及其权向量的最优传递矩阵求法[J].系统工程理论与实践,1991,(4):70-74.
    [118]梁杰,侯志伟.AHP法专家调查法与神经网络相结合的综合定权方法[J].系统工程理论与实践,2001,(3):59-63.
    [119]郭建民,祝文君.基于层次分析法的地下空间资源潜在价值评估[J].地下空间与工程学报,2005,1(5):655-659,664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700