深部岩石蠕变特性试验及锚固围岩变形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭开采逐步向深部发展,在复杂的应力环境下,深井围岩的流变特性将更加显著,矿山岩层支护控制难度大大增加。本文采用室内试验、理论分析、数值模拟研究为一体的方法,对加锚岩体的蠕变特性和锚固支护变形机理进行了研究。
     应用RLJW-2000型流变试验机,对加锚前后的深井粉砂岩、红砂岩进行了室内长时蠕变试验。试验结果表明,加锚使岩石的蠕变应力阀值提高30%σc左右,且在各应力水平阶段蠕变量均得到明显控制;加锚后试件的长期强度增加了5%-10%σc破坏后仍具有一定的承载能力。
     建立了加锚体的蠕变本构模型,推导出了加锚广义开尔文体(B-K)和加锚伯格斯体(B-B)的模型解答,从力学原理的角度说明了锚杆对岩体蠕变变形的控制机理。同时,进行了FLAC软件的二次开发,将2个新的锚固本构模型编译到可调用的动态链接库中,通过数值模型计算表明,锚固本构模型与FLAC锚杆单元作用效果比较相似,并且简化了计算工作量,大大提高了数值软件的运行效率。
     自主设计了流变拉拔试验装置,在实验室内进行了大量的锚固系统拉拔流变试验,对锚杆与粘结材料界面、基体与粘结材料界面之间的剪应力分布情况进行了同步测试。试验结果表明,锚固界面剪应力分布不均匀,沿轴向呈先增后减的分布形式;两个界面之间的剪应力传递存在不同程度的衰减,但剪应力分布特征基本相近;在长期荷载作用下锚固界面应力的变化与时间相关,影响明显区域主要集中在锚固段的拉拔端和中部;界面失效是锚固系统破坏的主要类型。
     提出了锚固界面剪应力传递时效性模式,将锚固系统的流变破坏分为粘弹、粘塑、粘脱三个特征阶段。通过试验监测发现,在长期受力状态下,锚杆端头位移经历了弱蠕变和强蠕变两个阶段,锚杆位移的强蠕变与锚固界面的粘脱阶段相对应。
     较系统的进行了巷道长期稳定性预测研究,采用遗传算法开发了GA-FLAC反分析系统,实现了围岩流变参数的智能反演;采用遗传规划方法开发了GP模型分析系统,对锚固系统失稳破坏的非线性过程进行了模型识别。进化算法的应用提高了反演识别的准确性,从而使深井围岩流变失稳预测结果更加科学和客观。
With the gradual development of deep coal mining, the rheological behaviors of deep well's rock are more significant in a complex stress environment and the mine strata support is more difficult. In this paper, integrated approaches of laboratory tests, theoretical analysis and numerical simulation were adopted to study anchored rock creep properties and anchor support deformation mechanism.
     Laboratory creep tests of anchored and non-anchored deep pink sandstone, red sandstone were done by using RLJW-2000 rheological testing machine for a long time. The results showed that, bolted rock creep stress threshold was increased by 30% ofσc around, and creep value at each stress level stage was controlled markedly; anchored specimen's long-term strength was increased by 5%~10% ofσc, it still had a certain load-bearing capacity after destroyed.
     Anchored body's creep constitutive model was established, model answers of anchored Generalized Kelvin (B-K) and anchored Burgers (B-B) were derived, the control mechanism of bolted rock creep deformation was illustrated from the view of mechanical rationale. At the same time, FLAC software redevelopment was carried out, in which two new anchored constitutive models were compiled into Dynamic Link Libraries, numerical calculations showed that, the results of anchored constitutive model and bolt unit in FLAC were quite similar, but the calculation workload with the new model was simplified, and the software's run efficiency was greatly improved.
     A rheological pull test device was independently designed, a large number of anchored system pulling rheological tests had been done in the laboratory. At the same time, the shear stress distribution on the interface between anchor and bonding material, matrix and bonding material was also investigated. The results showed that, anchorage shear stress distribution on the interface was uneven:first increased and then decreased along the axial direction; then shear stress transmission on the interfaces had different degrees of decay, but the characteristics of shear stress distribution were similar; the anchorage stress on the interface changes were related with time under actions of long-term loads, the significantly affected areas were mainly concentrated in the drawing section and the central section of anchor segments; interface failure was the main type of anchored system damage.
     Shear stress transmission aging pattern of anchorage interface was proposed, rheological damage of anchored system was divided into three characteristic stages of visco-elastic, visco-plastic and visco-off. Through the testing surveillance, we found that the bolt ends' displacements were experienced two stages of weak creep and strong creep, bolt displacements'strong creep was corresponded to visco-off phase of anchorage interface.
     The long-term stability prediction of roadway was carried out, GA-FLAC anti-analysis system was developed by using Genetic Algorithm, the rheological parameters'smart inversion of surrounding rocks was realized; GP model analysis system was developed by using Genetic Programming method, model identification about the non-linear process of anchored system's instability failure was done. The application of Evolutionary Algorithms improved the accuracy of inversion recognition, made results of deep rock's rheological instability predictions more scientific and objective.
引文
1.朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M],北京:科学出版社,2002
    2.谭云亮,刘传孝.巷道围岩稳定性预测与控制[M],徐州:中国矿业大学出版社,1999
    3.贾明魁.锚杆支护煤巷冒顶成因分类新方法[J],煤炭学报,2005,30(5):568-570
    4.何炳银.锚索支护巷道的冒顶事故分析及其预防[J],中国煤炭,2008,34(7):51-54
    5.陈优良,孙长龙.锚网梁索联合支护冒顶事故分析与对策[J],煤矿开采,2005,10(6):54-56
    6.花俊华,王浩朋,杨文辉,等.煤巷锚网梁索联合支护冒顶事故分析与对策[J],煤炭技术,2006,25(8):23-25
    7.邵轩,王会然,胡绍勇,等.对一起锚网巷道冒顶事故的处理及原因分析[J],煤矿开采,2006,11(5):66-67
    8.侯万国,罗迎社.流变学进展[M],济南:山东大学出版社,2006
    9.周德培.流变力学原理及其在岩土工程中的应用[M],成都:西南交通大学出版社,1995
    10.陈卫忠.节理岩体损伤断裂时效机理及其工程应用[D],湖北武汉:中国科学院武汉岩土力学研究所,1997
    11.孙钧.岩土材料流变及其工程应用[M],北京:中国建筑工业出版社,1999
    12.孙钧.岩石流变力学及其工程应用研究的若干进展[J],岩石力学与工程学报,2007,26(6):1081-1106
    13.谢和平.深部高应力下的资源开采—现状、基础科学问题与展望[A].第175次香山科学会议[C],北京:中国环境科学出版社,2002,179-191
    14.何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J],岩石力学与工程学报,2005,24(16):2803-2813
    15.周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J],力学进展,2005,35(1):91-99
    16.B·里文.煤矿锚杆支护技术的进展[J],中国煤炭,1999,25(8):52-55
    17.郭颂.美国煤巷锚杆支护技术概况[J],煤炭科学技术,1998,26(4):50-54
    18. Elizabeth Hollenbeck, Rudolf Marloth, Omar S Es-Said. Case study-seams in anchor studs[J], Engineering Failure Analysis,2003,10:209-213
    19. A Serrano, C Olalla. Tensile resistance of rock anchors[J], International Journal of Rock Mechanics and Mining Sciences,1999,36:449-474
    20. J C Galvez, M Elices, M A Olivares. Damage tolerance of an anchor head in a post-tensioning anchorage system[J], Engineering Failure Analysis,2006, (13):235-246
    21.程良奎.岩土锚固研究与新进展[J],岩石力学与工程学报,2005,24(21):3803-3811
    22.康红普.煤矿深部巷道锚杆支护理论与技术研究新进展[J],煤矿支护,2007,(2):1-8
    23.黄福昌,张英民,李士岗.兖州矿区煤巷锚网支护技术[M],北京:煤炭工业出版社,2000
    24.何满潮,黄福昌,闫吉泰.世纪之交软岩工程技术现状与展望[M],北京:煤炭工业出版社,1999
    25.王泽进,鞠文君.我国煤巷锚杆支护技术的新进展[J],煤炭科学技术,2000,28(9):4-6
    26.姚爱敏,孙世国,刘玉福.锚杆支护现状及其发展趋势[J],北方工业大学学报,2007,19(3):90-94
    27.杨德传.煤巷锚杆支护应用现状研究理论及当前研究重点[J],煤矿开采,2005,10(6):13-15
    28.程良奎.范景伦,等.岩土锚固[M],北京:中国建筑工业出版社,2003
    29.邹志晖,汪志林.锚杆在不同岩体中的工作机理[J],岩土工程学报,1993,16(5):71-78
    30.侯朝炯,勾攀峰.巷道锚杆支护围岩强度机理研究[J],岩石力学与工程学报,2000,19(3):342-345
    31.杨双锁,张百胜.锚杆对岩土体作用的力学本质[J],岩土力学,2003,24(supp):279-282
    32.陈洪凯,唐红梅,王蓉,等.锚固岩体参数的等效研究方法[J],应用数学与力学,2001,22(8):862-867
    33.孙建生,涌井哲夫,樱井春辅.一个新的节理岩体力学模型及应用[J],岩石力学与工程学报,1994,13(3):193-204
    34.叶金汉.裂隙岩体的锚固特性及其机理[J],水利学报,1995,(9):68-74
    35.朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J],岩石力学与工程学报,2001,20(5):720-725
    36.杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J],岩土工程学报,1995,17(1):9-16
    37.李术才,陈卫忠,朱维申.加锚节理岩体裂纹扩展失稳的突变模型研究[J],岩石力学与工程学报,2003,22(10):1661-1666
    38.宋扬.锚杆阻止离层扩展的力学模型[J],山东科技大学学报(自然科学版),2000,19(增):1-2
    39.谭云亮,王春秋,顾士坦.锚杆加固巷道顶板稳定性潜力机理分析[J],岩石力学与工程学报,2003,22(增1):2210-2213
    40. Lutz, Gergeley, Hanson, et al. Stress Distribution in Rock Anchors[J], Canadian Geotechnical Journal,1971,(8):588-592
    41.顾金才,沈俊.单根预应力锚杆加固范围研究[J],防护工程,1991,(1):67-73
    42.程良奎,胡建林.土层锚杆的几个力学问题[A],岩土工程中的锚固技术[C],北京:人民交通出版社,1996
    43. Woods R I, Barkhordari K. The influence of bond stress distribution on ground design[A], Symp on Ground Anchorages and Anchored Structures[C], London:Themas Telford,1997,300-306
    44.王建宁.按共同变形原理计算地锚工程中黏结型锚头内力[A],岩土锚固工程新技术[C],北京:人民交通出版社,1998,52-63
    45.范宇洁.岩锚体中界面开裂滑移判据[J],地下空间,2000(2):117-121
    46.张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J],岩土工程学报,2002,24(2):188-192
    47.朱焕春,荣冠,肖明,等.张拉荷载下全长粘结锚杆工作机理试验研究[J],岩石力学与工程学报,2002,14(3):379-384
    48. Phillips SHE. Factors affecting the design of anchorages in rock[M], London:cementation Research Ltd, 1970
    49.王明恕,何修仁,郑雨天.全长锚固锚杆的力学模型及其应用[J],金属矿山,1983,(4):21-24
    50.刘宏文.全长锚杆的受力分析[J],阜新矿业学院学报,1989,8(1):92-99
    51.杨更社,何唐镛.全长锚固锚杆的托板效应[J],岩石力学与工程学报,1991,10(3):236-245
    52.尤春安.锚固系统应力传递机理理论及应用研究[D],山东泰安:山东科技大学,2004
    53. MARANINI E, BRIGNOLI M. Creep behavior of a weak rock:experimental characterization[J], International Journal of Rock Mechanics and Mining Sciences,1999,36(1):127-138
    54. FUJII Y, KIYAMA T, ISHIJIMA Y, et al. Circumferential strain behavior during creep tests of brittle rocks[J], International Journal of Rock Mechanics and Mining Sciences,1999,36(3):323-337
    55.杨建辉,魏培君.横向变形独立发展现象分析[J],河北煤炭建筑工程学院学报,1995,(4):33-37
    56.徐平,夏熙伦.三峡工程船闸区花岗岩蠕变特性试验研究[J],长江科学院学报,1995,12(2):23-29
    57.徐平,夏熙伦.三峡工程花岗岩蠕变断裂与Ⅰ-Ⅱ型断裂试验研究[J],长江科学院学报,1995,12(3):31-36
    58.李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J],岩石力学与工程学报,1995,14(1):39-47
    59.陈智纯,缪协兴,赵鹏.软岩流变过程中的超常现象分析[J],煤炭学报,1995,20(2):135-138
    60.陈有亮,孙钧.岩石的流变断裂特性[J],岩石力学与工程学报,1996,15(4):323-327
    61.杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究[J],地质灾害与环境保护,1996,7(2):12-24
    62.孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J],同济大学学报,1997,25(2):127-133
    63.张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究[J],岩土力学,1997,18(1):60-64
    64.邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J],岩石力学与工程学报,1998,17(4):358-365
    65.朱子龙,李建林,王康平.三峡工程岩石拉剪断裂试验研究[J],武汉水利电力大学(宜昌)学报,1998,20(1):1-6
    66. Wu Shenxing. Dynamic experimental study of bond-slip between bars and the concrete in Xiao wan arch dam[A], New Developments in Dam Engineering-Wieland[C], London:Taylor and Francis Group,2004, 951-959
    67.张曾荣,何绍勋,奚小双.望湘花岗岩高温高压流变实验[J],中南工业大学学报,1999,30(3):221-224
    68.张学忠,王龙,张代钧,等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J],重庆大学学报(自然科学版),1999,22(5):99-103
    69.丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J],长江科学院院报,2000,17(4):30-33
    70.李建林.岩石拉剪流变特性的试验研究[J],岩土工程学报,2000,22(3):299-303
    71.彭苏萍,王希良,刘咸卫,等.“三软”煤层巷道围岩流变特性试验研究[J],煤炭学报,2001,26(2):149-152
    72.朱定华,陈国兴.南京红层软岩流变特性试验研究[J],南京工业大学学报,2002,24(5):77-79
    73.朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J],岩石力学与工程学报,2002,21(12):1791-1796
    74.陈沅江,潘长良,王文星.软岩流变的一种新的试验研究方法[J],力学与实践,2002,24(4):42-45
    75.曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J],重庆大学学报,2002,25(7):96-98
    76.赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J],岩土力学,2003,24(4):583-586
    77.姚爱军,黄福昌,张宗社.宽厚煤柱煤岩体流变力学特性试验研究[J],中国矿业,2003,12(2):52-55
    78.陈有亮.岩石蠕变断裂特性的试验研究[J],力学学报,2003,35(4):480-484
    79.巫德斌,徐卫亚,朱珍德,等.泥板岩流变试验与粘弹性本构模型研究[J],岩石力学与工程学报, 2004,23(8):1242-1246
    80.陈记.岩石节理面剪切流变的试验研究[J],淮海工学院学报(自然科学版),2004,13(4):74-77
    81.徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J],岩石力学与工程学报,2005,24(增2):5536-5542
    82.徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J],岩土力学,2005,26(4):531-537
    83.岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J],河南理工大学学报,2005,24(4):271-274
    84.宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J],水文地质工程地质,2005,(3):94-96
    85.范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J],岩土工程学报,2005,27(11):1273-1276
    86.崔希海,付志亮.岩石流变特性及长期强度的试验研究[J],岩石力学与工程学报,2006,25(5):1021-1024
    87.崔希海,高延法,李进兰.岩石扰动蠕变试验系统的研发[J],山东科技大学学报(自然科学版),2006,25(3):36-38
    88.李铀,朱维申,彭意,等.某地红砂岩多轴受力状态蠕变松弛特性试验研究[J],岩土力学,2006,27(8):1248-1252
    89.冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析[J],岩石力学与工程学报,2006,25(6):1204-1209
    90.陈占清,李顺才,茅献彪,等.饱和含水石灰岩散体蠕变过程中孔隙度变化规律的试验[J],煤炭学报,2006,31(1):26-30
    91.梁卫国,徐素国,赵阳升,等.盐岩蠕变特性的试验研究[J],岩石力学与工程学报,2006,25(7):1386-1390
    92.陈锋,李银平,杨春和,等.云应盐矿盐岩蠕变特性试验研究[J],岩石力学与工程学报,2006,25(增1):3022-3027
    93.何学秋,薛二龙,聂百胜,等.含瓦斯煤岩流变特性研究[J],辽宁工程技术大学学报,2007,26(2):201-203
    94.范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J],岩石力学与工程学报,2007,26(7):1381-1385
    95.付志亮,高延法,宁伟,等.含油泥岩各向异性蠕变研究[J],采矿与安全工程学报,2007,24(2):353-356
    96.崔希海,李进兰,牛学良,等.岩石扰动流变规律和本构关系的试验研究[J],岩石力学与工程学报,2007,26(9):1875-1881
    97.程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价[J],岩石力学与工程学报,2008,27(5):865-872
    98.张玉军.锚固岩体流变特性的模型试验及理论研究[D].上海:同济大学,1992
    99.陈安敏,顾金才,沈俊,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究[J],岩石力学与工程学报,2002,21(2):251-256
    100. E A Dickin, M Laman. Uplift response of strip anchors in cohesionless soil[J], Advances in Engineering Software,2007, (38):618-625
    101. Preecha Soparat, Pruettha Nanakorn. Analysis of anchor bolt pullout in concrete by the element-free Galerkin method[J], Engineering Structures,2008, (30):3574-3586
    102. M El Sawwaf, A Nazir. The effect of soil reinforcement on pullout resistance of an existing vertical anchor plate in sand sand[J], Computers and Geotechnics,2006, (33):167-176
    103. Nak Kyung Kim, Jong Sik Park, Sung Kyu Kim. Numerical simulation of ground anchors[J], Computers and Geotechnics,2007, (34):498-507
    104. Priyanka Ghosh. Seismic vertical uplift capacity of horizontal strip anchors using pseudo-dynamic approach[J], Computers and Geotechnics,2009, (36):342-351
    105. M. A. Alqedra, A F Ashour. Prediction of shear capacity of single anchors located near a concrete edge using neural networks[J], Computers and Structures,2005, (83):2495-2502
    106. Ahmed Elrefai, Jeffrey S West, Khaled Soudk. Performance of CFRP tendon-anchor assembly under fatigue loading[J], Composite Structures,2007, (80):352-360
    107. William Remus, Jeffrey Kottemann. Anchor-and-adjustment behavior in a dynamic decision environment[J], Decision Support Systems,1995, (15):63-74
    108.陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M],北京:中国水利水电出版社,2009
    109.张亚欧,谷志飞,宋勇.ANSYS7.0有限元分析实用教程[M],北京:清华大学出版社,2004
    110.陈火红.Marc二次开发指南[M],北京:科学出版社,2004
    111.彭涛,何满潮,马伟民.煤矿软岩的粘土矿物成分及特征[J],水文地质工程地质,1995,(2):40-48.
    112.李洪志.中国煤矿膨胀型软岩工程地球化学研究[J],地学前缘,1996,3(1):99-104
    113.林育梁.软岩工程力学若干理论问题的探讨[J],岩石力学与工程学报,1999,18(6):690-693
    114.李大伟,侯朝炯.低强度软岩巷道大变形围岩稳定控制试验研究[J],煤炭科学技术,34(3):36-39
    115.杨建平,陈卫忠,郑希红.含软弱夹层深部软岩巷道稳定性研究[J],岩土力学,2008,29(10):2864-2867
    116.何满朝.深部开采工程岩石力学现状及其展望[A],第八次全国岩石力学与工程学术大会论文集[C],北京:科学出版社,2004,88-94
    117.何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J],工程地质学报,2000,8(1):46-62
    118.何满潮.中国煤矿软岩工程地质力学研究进展[J],煤,2000,9(1):6-11
    119.何满潮,晏玉书,王同良,等.软岩的概念及其分类[A],世纪之交软岩工程技术现状与展望[C],北京:煤炭工业出版社,1999
    120.钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J],岩石力学与工程学报,2008,27(6):1278-1284
    121.李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J],岩石力学与工程学报,2008,27(8):1545-1553
    122.王明洋,宋华,郑大亮,等.深部巷道围岩的分区破裂机制及“深部”界定探讨[J],岩石力学与工程学报,2006,25(9):1771-1776
    123.高召宁,孟祥瑞.深井高应力软岩巷道围岩变形破坏及支护对策[J],中国煤炭,2007,33(1):8-11
    124.尹光志,王登科,张东明.高应力软岩下矿井巷道支护[J],重庆大学学报(自然科学版),2007,30(10):87-91
    125.占丰林,刘湘萍,李春超.高温后裂隙岩体锚杆锚固相似模拟试验研究[J],采矿技术,2007,7(1):48-55
    126.李祖伟,何川,汪波,等.锚杆补强对缺陷病害隧道结构承载力影响的模型试验研究[J],铁道建筑,2007,(2):39-42
    127.朱维申,李勇,张磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J],岩石力学与工程学报,2008,27(7):1308-1314
    128.吴德海,曾祥勇,邓安福,等.单锚锚杆加固碎裂结构岩体模型试验研究[J],地下空间,2003,23(2):158-161
    129.李勇.新型岩土相似材料的研制及在分岔隧道模型试验中的应用[D],山东济南:山东大学,2006
    130.温暖冬.裂隙岩体锚固方式优化的试验与数值模拟研究[D],山东济南:山东大学,2007
    131.陈浩.地下工程围岩与支护体相互作用的模型试验研究与理论分析[D],湖北武汉:中国科学院武汉岩土力学研究所,2008
    132.张强勇,张建国,杨文东,等.软弱岩体蠕变模型辨识与参数反演[J],水利学报,2008,39(1):66-72
    133.秦玉春.长大深埋隧道围岩非定常剪切蠕变模型初探[D].南京:河海大学,2007
    134.曾宪明,范俊奇,汪剑辉,等.锚固类结构诸界面剪应力相互作用关系与设计方法问题研究[J],预应力技术,2006,(5):8-16
    135.曾宪明,杜云鹤,范俊奇,等.锚固类结构第二交结面剪应力演化规律、衰减特性与计算方法探讨[J],岩石力学与工程学报,2005,24(Suppl):4612-4625
    136.曲光,李新元.新型玻璃钢锚杆力学性能试验研究[J],煤炭科学技术,2007,35(4):63-68
    137.李树清.葛泉矿软岩大巷底鼓机理及控制研究[D],湖南长沙:中南大学,2004
    138.杨慧明.基于复合材料模型的锚固机理研究[D],山东青岛:山东科技大学,2006
    139. Kalman Kovari. History of the sprayed concrete lining method—Part Ⅱ:milestones up to the 1960s [J], Tunnelling and Underground Space Technology,2003,18(1):71-83
    140. Bhawani Singh, M. N. Viladkar, N. K. Samadhiya, Sandeep. A semi-empirical method for the design of support systems in underground openings [J], Tunnelling and Underground Space Technology,1995, 10(3):375-383
    141. H. Akgun, M. K. Kockar. Design of anchorage and assessment of the stability of openings in silty sandy limestone:a case study in Turkey [J], International Journal of Rock Mechanics and Mining Sciences,2004,41(1):37-49
    142. Denise Bernaud, Samir Maghous, Patrick de Buhan, Eduardo Couto. A numerical approach for design of bolt-supported tunnels regarded as homogenized structures [J], Tunnelling and Underground Space Technology,2009,24(5):533-546
    143. Sun Xiaoming, Cai Feng, Yang Jun, et al. Numerical simulation of the effect of coupling support of bolt-mesh-anchor in deep tunnel[J], Mining Science and Technology,2009,19(3):352-357
    144. Guo Zhibiao, Guo Pingye, Huang Maohong, et al. Stability control of gate groups in deep wells[J], Mining Science and Technology,2009,19(2):155-160
    145. Huang Ziping, Einar Broch, Lu Ming. Cavern roof stability—mechanism of arching and stabilization by rockbolting[J], Tunnelling and Underground Space Technology,2002,17(3):249-261
    146. Yang Shutong, Wu Zhimin, Hu Xiaozhi, et al. Theoretical analysis on pullout of anchor from anchor-mortar-concrete anchorage system[J], Engineering Fracture Mechanics,2008,75 (5):961-985
    147. I.W. Farmer. Stress distribution along a resin grouted rock anchor[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1975,12(11):347-351
    148. L.P. Yap, A.A. Rodger. A study of the behavior of vertical rock anchors using the finite element method[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1984,21(2):47-61
    149. B. Benmokrane, A. Chennouf, H. S. Mitri. Laboratory evaluation of cement-based grouts and grouted rock anchors[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1995,32(7):633-642
    150. A.P.S. Selvadurai.Mechanics of a rock anchor with a Penny-shaped basal crack[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1993,30(7): 1285-1290
    151. C. Li, B. Stillborg. Analytical models for rock bolts[J], International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1013-1029
    152. A.P.S. Selvadurai. Some results concerning the viscoelastic relaxation of prestress in a surface rock anchor[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1979,16(5):309-317
    153. A. P. S. Selvadurai. The time-dependent response of a deep rigid anchor in a viscoelastic medium[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1978,15(1):11-19
    154. Hesham Diab, Zhishen Wu, Kentaro Iwashita. Short and long-term bond performance of prestressed FRP sheet anchorages[J], Engineering Structures,2009,31(5):1241-1249
    155. Nicolae Cristescu. Viscoplastic creep of rocks around a lined tunnel[J], International Journal of Plasticity,1988,4(4):393-412
    156. G.N. Boitnott. Experimental characterization of the nonlinear rheology of rock[J], International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4),379-383
    157. Ardeshir Afrouz, Jon M. Harvey. Rheology of rocks within the soft to medium strength range[J], International Journal of Rock Mechanics Denise Bernaud and Mining Sciences & Geomechanics Abstracts,1974,11(7):281-290
    158. Y Fujii, T Kiyama, Y Ishijima, J Kodama. Circumferential strain behavior during creep tests of brittle rocks[J], International Journal of Rock Mechanics and Mining Sciences,1999,36(3):323-337
    159. Geraldine Fabre, Frederic Pellet. Creep and time-dependent damage in argillaceous rocks[J], International Journal of Rock Mechanics and Mining Sciences,2006,43(6):950-960
    160. Enrico Maranini, Tsutomu Yamaguchi. A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J], Mechanics of Materials,2001,33(5):283-293
    161.刘波,韩彦辉.FLAC原理、实例与应用指南[M],北京:人民交通出版社,2005
    162.艾德才,迟丽华,等.C++程序设计简明教程[M],北京:中国水利水电出版社,2004
    163.苏长龄.C++程序设计教程[M],北京:中国水利水电出版社,2004
    164.王珊珊,臧冽,张志航.C++程序设计教程[M],北京:机械工业出版社,2006
    165.钱能.C++程序设计教程[M],北京:清华出版社,1999
    166.张基温.C++程序设计基础[M],北京:高等教育出版社,1996
    167.徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)[J],岩石力学与工程学报,2006,25(3):441-442
    168.褚卫江,徐卫亚,杨圣奇,等.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J],岩土力学,2006,27(6):2005-2010
    169.胡军,朱巨建.应变软化模型在FLAC3D二次开发中的应用[J],水利能源科学,2009,27(3):120-123
    170.丁秀丽,刘建,白世伟,等.岩体蠕变结构效应的数值模拟研究[J],岩石力学与工程学报,2006,25(Supp2):3642-3648
    171.张强勇,向文,朱维申.三维加锚弹塑性损伤模型在溪洛渡地下厂房工程中的应用[J],计算力学学报,2000,17(4):475-482
    172.曹文贵,方祖烈.模拟锚杆支护的大变形锚杆单元模型之研究[J],中国矿业,1999,8(3):43-46
    173.张玉军,刘谊平.锚固正交各向异性岩体的三维粘弹-粘塑性有限元分析[J],岩石力学与工程学报,2002,21(12):1770-1775
    174.陈胜宏,熊文林.加锚节理岩体流变模型及三维弹粘塑性有限元分析[J],水利学报,1998,(9):41-47
    175.王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J],力学进展,1998,(4):488-498
    176.吕爱钟.岩石力学反分析[M],北京:煤炭工业出版社,1998
    177.赵同彬,谭云亮,刘传孝.基于遗传算法的巷道位移反分析研究[J],岩土力学,2004,25(S1):107-109
    178.周宝生,朱维申.巷道围岩参数的人工神经网络预测[J],岩土力学,1999,20(1):22-25
    179.吕爱钟.地下巷道弹性位移反分析各种优化方法的探讨[J],岩土力学,1996,17(2):29-34
    180.徐卫亚,刘世军.岩石力学参数的非线性随机反分析[J],岩土力学,2001,(4):432-435
    181.王小平,曹立明.遗传算法理论、应用及软件实现[M],西安:西安交通大学出版社,2002
    182.周维垣.高等岩石力学[M],北京:水利电力出版社,1990,23-60
    183.吴立军.宏观尺度位移反演分析研究及其多尺度问题探讨[D],辽宁大连:大连理工大学,2002
    184.高玮,郑颖人.岩土力学反分析及其集成智能研究[J],岩土力学,2001,22(1):114-120
    185.徐干成,白洪才,郑颖人,等.地下工程支护结构[M],北京:中国水利水电出版社,2002,1-8
    186.赵同彬,谭云亮,张玉明,施龙青.巷道工程位移反分析的可反演性评价研究[J],采矿与安全工程学报,2006,23(2):224—227
    187.云庆夏.进化算法[M],北京:冶金工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700