PD对MODS模型大鼠的抗氧化应激、炎症反应和凋亡的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多器官功能障碍综合征(multiple organ dysfunction syndrome,MODS)是重症监护病房(intensive care unit, ICU)患者发病和死亡的一个重要原因。MODS的成年患者在ICU中的发生率为11%~40%,在我国归因于MODS的总死亡率超过了60%。目前对于MODS的共识认为它是一种连续的生理紊乱状态,但对于这种状态的发病机制尚未完全明了。现有观点认为MODS与炎症反应、自由基生成增加和肠道菌群移位等有关。缺血再灌注损伤和严重脓毒症是MODS最常见的致病原因之一。MODS的治疗主要集中在支持性治疗,如增加氧输送,营养支持等。开发一种以减少氧化应激和调节炎症反应为靶点的药物可能是一种具有前景的研究方向。
     虎杖苷(3,4’,5-三羟基芪-3-葡萄糖甙,Polydatin,PD)是单晶体药物,它是从中国传统中药虎杖分离出来的(图1)。我们实验组以往工作表明,在严重失血性休克大鼠模型中,PD能通过减少大鼠动脉血管平滑肌细胞和神经元线粒体损伤发挥作用,这些作用与减少机体氧化应激水平有关。本实验拟通过复制大鼠失血性休克和盲肠结扎穿刺(cecal ligation puncture, CLP)二次打击模型,研究PD是否具有治疗MODS大鼠的作用以及它作用的可能机制。本研究主要分为两个步骤进行:1.MODS模型复制和PD最佳给药剂量探索;2.PD作用于MODS大鼠的机制探讨。
     第一部分MODS模型复制和PD最佳给药剂量探索
     方法:实验分为正常对照组(sham组)、MODS后生理盐水组(normal saline,NS)组和MODS后PD给药组,其中PD组又分为不同的给药剂量组(15mg/kg,30mg/kg,45mg/kg,60mg/kg大鼠体重)。sham组大鼠仅行基本外科操作,其余组大鼠在以上外科操作基础上进行失血性休克和CLP双重打击,随后立即进行给药(图2)。NS组给药为0.3mlNS×3次(CLP操作完成后立即开始,之后每6小时1次),PD组给药为不同剂量的PD溶解于0.3mlNS中通过股静脉10分钟内缓慢推注。建模治疗后各组大鼠(每组8只)撤管并缝合伤口,回笼,室温下自由饮食饮水。观察各组生存时间(每小时观察1次,以72小时为观察终点),计算各组72小时的生存率。为评估MODS诱导24小时后大鼠造模是否成功,抽取静脉血测定血清生化指标(BUN,CR-MB,TBIL,LDH,CK,ALT and AST)和动脉血气。随后立即颈椎脱臼法处死大鼠,常规固定肾、肺和肝组织,苏木精-伊红(hematoxylin-eosin staining,HE)染色行病理分析。采用SPSS13.0软件录入数据,Kaplan-meier法进行各组生存时间分析,One-way ANOVA方法比较各组平均数±标准差,LSD-t法检验多重样本均数。
     1.各组给药后生存时间观察和最佳PD给药剂量
     sham组8只大鼠在24h、36h和48h三个观察时间点均存活。MODS处理的各组均有大鼠死亡。其中MODS+NS组前36小时仅有2只大鼠存活,48小时内全部死亡,72h观察时间段的中位数生存时间是29h。MODS+PD各给药组中PD45mg/kg组效果最优,8只大鼠在前36小时均存活,48小时时间内仅有1只死亡,72小时的中位数生存时间为49小时。由此初步确立PD45作为以后的给药剂量。
     2.生化指标测定和血气分析
     和sham相比,MODS+NS组大鼠血生化值均显著增高且两组间比较差别具有统计学意义(P<0.05).MODS+NS组的血气参数,包括pH值、血乳酸、碱剩余和HC03-均较sham组均有增高且两组间差值具有统计学意义(P<0.05)。同时PD各给药组中45mg/Kg组对于MODS各脏器的生化指标和血气分析改善作用最佳且明显优于MODS+NS组。
     3.病理鉴定
     sham组大鼠各脏器均未出现明显病理变化。然而,在MODS+NS组中,肾、肝和肺的病理均出现了病变。部分近端肾小管上皮细胞出现浊肿、变性、细胞部分缺失、管腔狭窄,有的管腔伴有少量血栓沉积;部分肝中央静脉缩小,肝窦扩张充血,肝细胞胞浆呈混浊肿胀,许多肝细胞出现气球样变或退行性变;肺间质水肿和扩大,部分肺泡萎陷,血管和间质周围有许多炎症细胞浸润。PD45mg/Kg给药组均有病变减轻。
     结论
     1.大鼠MODS模型诱导24小时后,肝脏、肾脏、心脏、肺脏功能均出现了损伤,肝、肾和肺的病理学结果支持了功能学的变化。
     2.以血生化指标增高倍数和病理的结果作为判定标准,大鼠MODS建模24小时后NS组肝脏和肾脏的功能出现了衰竭,说明MODS模型复制成功。
     3.结合MODS发生率、中位数生存时间、生化和血气指标的测定,45mg/kg的PD单次静脉给药是最合适的剂量。
     第二部分PD对MODS大鼠的治疗作用和机制探索
     方法
     实验分为sham组,MODS+NS组和MODS+PD组。sham组和MODS+NS组的操作同前,MODS+PD组大鼠每次给药为等容积的PD(45mg/Kg)。为评估MODS诱导24小时后大鼠多脏器情况(每组8只)。血清生化指标(BUN, CR, TBIL, LDH, CK, ALT,AST)、动脉血气分析、晚期氧化蛋白产物(advance oxidative protein products,AOPPs)和炎症因子(IL-1, IL-6, TNF-α)分别被测定。之后颈椎脱臼法处死大鼠,取肾、肺和肝组织常规固定HE染色,免疫组化法测定凋亡相关蛋白(Bcl-2、Bax、Cytochrome C)和ELISA法测定肾和肝匀浆的caspase-3活性(每组6-8只)。采用SPSS13.0软件录入数据,Kaplan-meier法进行各组生存时间分析,One-way ANOVA方法比较各组平均数±标准差,LSD-t法检验多重样本均数。
     结果
     1.PD对于MODS大鼠模型整体生存时间的影响
     sham组的大鼠48小时均存活。MODS+PD组和MODS+NS组的中位数生存时间为分别为49小时和29小时,PD处理后实验大鼠的中位数生存时间明显延长。
     2.PD对MODS大鼠模型主要血液生化指标和动脉血气的影响
     和MODS+NS组相比,MODS+PD组所有的血生化值均显著降低(图3)。血气参数包括pH值、血乳酸、碱剩余和HC03-在MODS+PD组均有改善,以上参数两组比较均具有统计学意义(P<0.05)。
     3.PD对MODS大鼠的病理的影响
     在MODS+NS组中,肾、肝和肺的病理均出现了病变。部分近端肾小管上皮细胞出现浊肿、变性、细胞部分缺失、管腔狭窄,有的管腔伴有少量血栓沉积;部分肝中央静脉缩小,肝窦扩张充血,肝细胞胞浆呈混浊肿胀,许多肝细胞出现气球样变或退行性变;肺间质水肿和扩大,部分肺泡萎陷,血管和间质周围有许多炎症细胞浸润。与NS组比较,PD45mg/Kg给药组肾脏、肝脏和肺脏的病理损伤均有减轻。
     4.PD对MODS的大鼠血清AOPPs水平的影响
     MODS+NS组血清AOPPs明显增高,PD治疗组血清AOPPs浓度显著下降。较sham组比较,两组的增高率分别为77.4%和33.5%,两组间比较具有统计学意义(F=7.919,P<0.05)。
     5.PD对MODS大鼠肾脏、肝脏和肺脏组织凋亡相关蛋白表达的影响
     与MODS+NS组相比,MODS+PD组在肾脏和肝脏组织胞质细胞色素C免疫组化染色的相对灰度值均显著减少。各组肺组织蛋白表达之间无显著差异。(两组在肾脏和肝脏组织的相对值分别是110%vs30.2%,F=70.4,P<0.01;40%vs11.2%,F=22.4,P<0.05)。
     与MODS+NS组相比,MODS+PD组在肾脏和肝脏组织Bax蛋白免疫组化染色的相对灰度值均显著减少。各组肺组织蛋白表达之间无显著差异。(两组在肾脏和肝脏组织的相对值分别是67.1%vs24.2%,F=110.7,P<0.01;49.6%vs34.1%,F=67.4,P<0.05)。
     与MODS+NS组相比,MODS+PD组在肾脏和肝脏组织Bcl-2免疫组化染色的相对灰度值均显著增加。各组肺组织蛋白表达之间无显著差异。(两组在肾脏和肝脏组织的相对灰度值在肾脏和肝脏分别是9.9%vs31.4%,F=21.1,P<0.01;18.3%vs33.3%,F=4,P<0.05)。
     同sham组相比,MODS+NS组和MODS+PD组中caspase-3活性增高明显。然而,MODS+PD组的caspase-3的活性显著低于MODS+NS组且两组间比较具有统计学意义。(肾脏52.1%vs148%,F=44.5,P<0.01;肝脏39.8%vsl23.8%,F=27.9,P<0.01)。
     6.PD对MODS大鼠血清炎症细胞因子水平的影响
     同sham组相比,MODS+NS组和MODS+PD组的三种细胞因子水平均升高。然而,这些指标在MODS+PD组明显低于MODS+NS组,且两组间比较均具有统计学意义(IL-6:12倍vs8倍,F=33.6,P<0.01;TNF-α:13倍vs10倍,F=77.5,P<0.05;IL-1:8倍vs5倍,F=41,P<0.05)。
     结论
     PD改善了MODS大鼠多个器官(肝、肾和肺)的功能和整体生存时间。它的作用机制可能与抑制氧化应激、降低炎症反应和抑制激活线粒体介导的凋亡途径等有关。
Multiple organ dysfunction syndrome (MODS) is a major cause of morbidity and mortality in patients of intensive care units (ICUs). The incidence of MODS in adult patients in ICUs ranges from11%to40%, while the overall mortality rate due to MODS in China is over60%. MODS is now recognized as a continuum of physiologic derangements and the main pathogenesis of this condition is not yet fully understood. Currently, the consensus opinion holds that MODS is linked to a combination of inflammation, increased generation of free radicals, intestinal kinetic alterations and so on. Ischemia-reperfusion injury and severe sepsis are among the most common causative factors. Currently, therapy for MODS is largely supportive, such as recovery of oxygen delivery, nutritional support, and so on. More effective methods and drugs are urgently required for the prevention and treatment of MODS, and drugs which could reduce oxidative stress and regulate the inflammatory response may be a promising approach.
     Polydatin (PD;3,4',5-trihydroxystibene-3-monoglucoside) is a monocrystalline drug isolated from the traditional Chinese herb Polygonum cuspidatum (Fig1). Our previous work demonstrated that PD can protect arterial smooth muscle and neuronal cells against mitochondrial dysfunction after severe ischemia-reperfusion injury in hemorrhagic shock rats; and these effects were related to reducing levels of oxidative stress. Recently, PD was reported to reduce the inflammatory response in various disease models. Here, we investigated the effects and potential molecular mechanisms of PD action, specifically in the kidney, liver and lung, using a two-hit model of MODS induced by traumatic hemorrhagic shock and cecal ligation puncture (CLP).The study is divided into two steps:1. MODS model reproduction and optimal dose of PD exploration;2.The effect of PD on MODS rats and its possible mechanisms investigation.
     The first part MODS model reproduction and the optimal dose of PD exploration
     Methods
     The experiment was divided into two major groups, namely normal control group and model group. Model group was divided into normal saline (NS) group and polydatin administration group, the control group which received only basic surgical procedures. The animals in the model group experienced hemorrhagic shock (the mean blood pressure was reached to45-50mmHg within10min by hemorrhaging and maintained in this level in the next50min, then all the shed blood was infused) and cecal ligation puncture as "two hit" on the basis on the basic surgical procedures mentioned above(Fig2). Then NS was administered (performed after CLP operation,0.3ml a time, every6hours×3.See diagram:Figure2).In MODS+PD group, the PD with different doses was dissolved in the same volume of physiological saline and was administered by intravenous injection within10minutes. After the model was set up and drug administration, one part of the rats (n=8, a total of6sub-groups:sham group, MODS+NS group, MODS+PD15mg group, MODS+PD30mg group, MODS+PD45mg group, MODS+PD60mg group) whose tube was withdrawn and suture wounds, were returned to their individual cage for survival time observation. All the rats were given freedom of drinking water at room temperature (observe per hour until the end point at72h) and72-hour survival was calculated. To evaluate whether the MODS was successfully induced at24hours, serum biochemical parameters (BUN, CR, TBIL, LDH, CK, ALT and AST) and arterial blood gases were measured separately (6-8in each group). Also kidney, lung and liver tissue pathology were acquired immediately using conventional fixed, HE staining after the animals were sacrificed by cervical dislocation. All datas were input in SPSS13.0software, survival time analysis was study by Kaplan-meier method, One-way ANOVA was used to compare the mean+SD of dates among groups, LSD-t was selected to test multiple samples.
     Results
     1. Effects of PD on overall survival and the optimal dose of PD on MODS rats
     Eight rats in control group (normal group) at three time points (24h,36h and48h) were alive. However, a part of MODS rats died. Only two rats survived in MODS+NS group at time point of36h and all8rats died within48h. The median survival time is29h in72h observation period. MODS+PD group(PD45mg/kg BW) was established as the most optimaldose among PD various subgroups, while eight rats still survived after36hours, only one died within48hours. The median survival time was49hours. The median survival time in72hours in MODS+NS group and MODS+PD group differed statistically (log rank test, Chi-Square=19.641, P<0.01=. Single dose of45mg/kg PD was selected as the best optimaldose in the experiments followed.
     2. Biochemical parameters and blood gas analysis of MODS rats.
     Compared with control group rats, all the blood biochemical values in MODS+NS group were increased significantly (control group vs MODS+NS group:ALT48.6u/L vs200.4u/L; AST76u/L vs545.5u/L; LDH205u/L vs417.6u/L; TBIL 0.4μmol/L vs2.7μmol/L; BUN8.3μmol/L vs16.2μmol/L; Cr22.3μmol/L vs37.2μmol/L; CK-MB268.8u/L vs820.2u/L, all P<0.05=. In MODS+NS group, The blood gas analysis parameters, including pH, base excess and HCO3-were all increased markedly than the values in the control group and the difference between the two groups was statistically significant (P<0.05=.Meanwhile, comparing to other subgroups, single dose of45mg/Kg in PD group on MODS treatment showed the best improvement of biochemical markers of various organs and blood gas analysis.
     3. Multiple organs pathology of MODS rats
     No significant abnormalities were observed in the control group. However, pathological changes in the kidney, liver and lung were observed in the MODS+NS group. In the kidney, a number of proximal tubular epithelial cells displayed cloudy swelling and degeneration, and some regions of the proximal tubular epithelium were absent. Additionally, the proximal tubular lumen was narrowed, with deposition of small thrombi. In the liver of the MODS+NS group, a number of hepatic central veins were narrowed with sinusoidal dilatation and congestion, the cytoplasm of the hepatocyte was cloudy and swollen, and many hepatocytes had ballooned or degenerated. In the lung tissue of the MODS+NS group, pulmonary interstitial edema and broadening leading to alveolar collapse was observed, and numerous inflammatory cells had infiltrated around the blood vessels and interstitium.
     Conclusion
     1. After24hours of MODS induction, liver, kidney, heart, lung functions were damaged in varying degrees. And the liver, kidney and lung function changes supported the pathology results.
     2. Combine the results of biochemical and pathological analysis, liver and kidney function failure can be determined after MODS induction24hours later, MODS model was (liver, kidney) reproduced successfully.
     3. Combine the results of survival time, biochemical indicators and blood gas measurement, a single dose of45mg/kg intravenous administration of polydatin is the most appropriate dose.
     The second part:the therapeutic effect of polydatin on MODS rats and its mechanism exploration
     Methods
     The experiment rats were divided into control group, MODS+NS group and MODS+PD group. The procedures in control group and MODS+NS group were the same as in the first part. In MODS+PD group,45mg/Kg body weight of rats with equal volume of NS was adopted in this study. In order to assess the multiple organ condition of rats24hours after MODS induction (6-8in each group), serum biochemical parameters (BUN, CR, TBIL, LDH, CK-MB, ALT and AST), arterial blood gases, advanced oxidation protein products and inflammatory cytokines were measured, respectively. Meanwhile, after being killed by cervical dislocation, HE staining, apoptosis-related proteins (Bcl-2, Bax, Cytochrome C) by immunohistochemical staining in multiple organs (liver, kidney and lung) and tissue homogenates (liver and kidney) for caspase-3activity were all assayed (n>3in each group). All datas were input in SPSS13.0software, survival time analysis was study by Kaplan-meier method, One-way ANOVA was used to compare the mean+SD of dates among groups, LSD-t was selected to test multiple samples.
     Results
     1. Effects of PD on overall survival in a rat model of MODS
     All of the rats in the control group survived. The median survival times for the MODS+PD and MODS+NS groups were50.5±8.72h and32±6.41h, respectively.
     2. Effects of PD on major blood biochemical parameters and arterial blood gases in MODS
     The values for all blood biochemical parameters(Bun, CR, TBIL, LDH, CK, ALT and AST) were significantly higher in the MODS+NS group compared to the corresponding values in the control group (48.6u/L vs200.4u/L in ALT;76u/L vs545.5u/L in AST;205u/L vs417.6u/L in LDH;0.4μmol/L vs2.7μmol/L in TBIL;8.3μmol/L vs16.2μmol/L in BUN;22.3μmol/L vs37.2μmol/L in Cr;268.8u/L vs 820.2u/L in CK. all P<0.05,respectively.). Additionally, the changes of blood gas parameters in MODS+NS group, including pH, Lac, Base and HCO3-were ameliorated by treatment with PD in the MODS+PD group (all P<0.05).
     3. Effects of PD on organ pathological changes in MODS
     No significant abnormalities were observed in the control group. However, pathological changes in the kidney, liver and lung were observed in the MODS+NS group. In the kidney, a number of proximal tubular epithelial cells displayed cloudy swelling and degeneration, and some regions of the proximal tubular epithelium were absent. Additionally, the proximal tubular lumen was narrowed, with deposition of small thrombi. In the liver of the MODS+NS group, a number of hepatic central veins were narrowed with sinusoidal dilatation and congestion, the cytoplasm of the hepatocyte was cloudy and swollen, and many hepatocytes had ballooned or degenerated. In the lung tissue of the MODS+NS group, pulmonary interstitial edema and broadening leading to alveolar collapse was observed, and numerous inflammatory cells had infiltrated around the blood vessels and interstitium. Compared to the MODS+NS group, administration of PD to the MODS+PD group alleviated the severity of the pathological changes observed in the kidney, liver and lung.
     4. Effect of PD on the serum levels ofAOPPsin MODS
     Compared to the MODS+NS group, the serum levels of AOPPs were significantly reduced in the MODS+PDgroup (P<0.05). While the levels of AOPPs was44.73μM in the MODS+NS group, which was reduced by24%in MODS+PD group(F=7.919, P<0.05)
     5. Effects of PD on the expression of apoptosis-related proteins in organs during MODS
     Light positive cytochrome C staining was observed in the control group, with more intense positive cytochrome C staining observed in the kidney and liver of the MODS+NS and MODS+PD groups. No significant differences in cytochrome C staining were observed among the lung tissues in the three groups. The relative grey values for cytochrome C were significantly higher in the kidney and liver of the MODS+NS group than that in the MODS+PD group (110%vs.30.2%, F=70.4, P <0.01and40%vs.11.2%, F=22.4, P<0.05, respectively).
     Light positive staining for Bax was observed in the kidney and liver of the control group, with more intense positive staining observed in the kidney and liver of both the MODS+NS and MODS+PD groups. No significant difference of the expression of Bax in the lung tissues was observed among the three groups. The relative grey intensity values for Bax in the kidney and liver were higher in the MODS+NS group than the MODS+PD group (67.1%vs.24.2%in kidney, F=110.7, P<0.01;49.6%vs.34.1%in liver,, F=67.4, P<0.05).
     Positive Bcl-2staining was observed in the kidney and liver of the control group, with a lower staining intensity in the kidney and liver of both the MODS+NS group and MODS+PD group. No significant differences in Bcl-2lung tissues staining were found among the three groups. However, the relative grey values for Bcl-2in the kidney and liver were higher in the MODS+NS group than the MODS+PD group (31.4%vs.9.9%in kidney, F=21.1, P<0.01;33.3%vs.18.3%in liver, F=4, P<0.05; Fig.8B).
     Additionally, caspase-3activity was assayed in kidney and liver homogenates24h after the induction of MODS using an ELISA. Compared to the control group, caspase-3activity was higher in the MODS+NS group and MODS+PD group. However, the caspase-3activity of the MODS+NS group was significantly higher than the MODS+PD group (148%vs.52.1%in kidney, F=44.5, P<0.01;123.8%vs.39.8%in liver, F=27.9, P<0.01)
     6. Impact of PD on the serum levels of inflammatory cytokines in MODS
     Compared to the control group, the levels of all three cytokines were higher in the MODS+NS group. However, compared to MODS+NS group, the levels of all three cytokines were significantly reduced the MODS+PD group (IL-6: approximately12-fold vs.8-fold, F=33.6, P<0.01; TNF-α:13-fold vs.10-fold, F=77.5, P<0.05; IL-1:8-fold vs.5-fold, F=41, P<0.05.)
     Conclusion PD prolonged overall survival time and improved functions of organs (liver, kidney and lung) in MODS rats.The mechanism of PD on MODS may be related to its inhibition of oxidative stress, reducing inflammation and inhibiting the activation of apoptosis pathway mediated by mitochondria etc.
引文
[1]. Barie, P.S. and L.J. Hydo, Epidemiology of multiple organ dysfunction syndrome in critical surgical illness. Surg Infect (Larchmt),2000.1(3):p. 173-85; discussion 185-6.
    [2]. Dewar, D.C. and Z.J. Balogh, The epidemiology of multiple-organ failure:a definition controversy. Acta Anaesthesiol Scand,2011.55(2):p.248-9; author reply 249-50.
    [3]. Barie, P.S., et al., Multiple organ dysfunction syndrome in critical surgical illness. Surg Infect (Larchmt),2009.10(5):p.369-77.
    [4]. Walsh, C.R., Multiple organ dysfunction syndrome after multiple trauma. Orthop Nurs,2005.24(5):p.324-33; quiz 334-5.
    [5]. Nguyen, L.N. and T.G. Nguyen, Characteristics and outcomes of multiple organ dysfunction syndrome among severe-burn patients. Burns,2009.35(7):p. 937-41.
    [6]. Hanisch, E., et al., Review of a large clinical series:Predicting death for patients with abdominal septic shock. J Intensive Care Med,2011.26(1):p. 27-33.
    [7]. Guidet, B., et al., Incidence and impact of organ dysfunctions associated with sepsis. Chest,2005.127(3):p.942-51.
    [8]. Zhang, S.W., et al., [Clinical epidemiology of 1,087 patients with multiple organ dysfunction syndrome]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2007. 19(1):p.2-6.
    [9]. 李东柏,MODS诊治进展.河北医药,2008.30(12):第1981-1983页.
    [10].甘枚与梁建新,多器官功能障碍综合征的进展.医学综述,2006.12(14):第862-865页.
    [11]. Wang, H. and S. Ma, The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med,2008.26(6):p.711-5.
    [12]. Mera, S., et al., Multiplex cytokine profiling in patients with sepsis. APMIS, 2011.119(2):p.155-63.
    [13]. Bhatia, M., Inflammatory response on the pancreatic acinar cell injury. Scand J Surg,2005.94(2):p.97-102.
    [14]. Rubenfeld, G.D., et al., Incidence and outcomes of acute lung injury. N Engl J Med,2005.353(16):p.1685-93.
    [15]. Abraham, E., et al., Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol,2000.279(6):p. L1137-45.
    [16].宋瑞与赵克森,细胞病性缺氧在重症休克发病中的作用.中华创伤杂志,2008.24(10):第846-848页.
    [17]. Fink, M.P., Cytopathic hypoxia. A concept to explain organ dysfunction in sepsis. Minerva Anestesiol,2000.66(5):p.337-42.
    [18]. Rocha, M., et al., Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect Disord Drug Targets,2012.12(2):p.161-78.
    [19]. Samavati, L., et al., Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem,2008.283(30):p.21134-44.
    [20]. Bateman, R.M., et al., Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle. Crit Care Med,2008.36(1):p.225-31.
    [21]. Larche, J., et al., Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol,2006. 48(2):p.377-85.
    [22]. Dare, A.J., et al., A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med,2009.47(11):p.1517-25.
    [23]. Rizoli, S.B., et al., Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol,1998.161(11):p.6288-96.
    [24]. Bernard, G.R., et al., Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med,2001.344(10):p.699-709.
    [25]. Fink, M.P., Ethyl pyruvate:a novel treatment for sepsis. Curr Drug Targets, 2007.8(4):p.515-8.
    [26].刘杰,金春华与赵克森,虎杖甙对大鼠细动脉平滑肌细胞ATP敏感钾通道的影响.微循环学杂志,1999(04):第9-11+1-56页.
    [27]. Sheng, C., et al., Hypotensive resuscitation combined with polydatin improve microcirculation and survival in a rabbit model of uncontrolled hemorrhagic shock in pregnancy. J Surg Res,2011.168(1):p.103-10.
    [28]. Wang, X., et al., Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock. Am J Physiol Regul Integr Comp Physiol,2012. 302(7):p.R805-14.
    [29]. Li, X.H., et al., Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1. Mediators Inflamm,2013.2013:p.354087.
    [30]. Zhang, H., et al., Protective effects of polydatin from polygonum cuspidatum against carbon tetrachloride-induced liver injury in mice. PloS one,2012.7(9): p. e46574.
    [31]. Pastore, S., et al., Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid Redox Signal,2012.16(4):p.314-28.
    [32].黄海潇,赵清与金春华,甲酰化肽样受体介导脂多糖诱导的白细胞趋化反应及虎杖甙的调节作用研究.中国病理生理杂志,2006.22(1):第131-134页.
    [33]. Schuh-Huerta, S.M., et al., Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Hum Genet,2012.131(11):p. 1709-24.
    [34]. Cobellis, L., et al., Effectiveness of the association micronized N-Palmitoylethanolamine (PEA)-transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment:a pilot study. Eur J Obstet Gynecol Reprod Biol,2011.158(1):p.82-6.
    [35]. Ravagnan, G., et al., Polydatin, a natural precursor of resveratrol, induces beta-defensin production and reduces inflammatory response. Inflammation, 2013.36(1):p.26-34.
    [36]. Lanzilli, G., et al., Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation,2012.35(1):p.240-8.
    [37]. Zhang, J., et al., Polydatin alleviates non-alcoholic fatty liver disease in rats by inhibiting the expression of TNF-alpha and SREBP-1c. Mol Med Rep,2012. 6(4):p.815-20.
    [38]. Xie, X., et al., Polydatin ameliorates experimental diabetes-induced fibronectin through inhibiting the activation of NF-kappaB signaling pathway in rat glomerular mesangial cells. Mol Cell Endocrinol,2012.362(1-2):p.183-93.
    [39]. Deng, Y.H., et al., Inhibition of TNF-alpha-mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4'-trimethoxystilbene. Phytother Res,2011.25(3):p.451-7.
    [40]. Miao, Q., et al., Cardioprotective effect of polydatin against ischemia/reperfusion injury:roles of protein kinase C and mito K(ATP) activation. Phytomedicine,2011.19(1):p.8-12.
    [41].张利萍,白藜芦醇甙的心脏保护作用及其机制研究,2008,河北医科大学.
    [42].赵克森,PD抗休克的机理研究.微循环学杂志,2006.16(2):第1-5页.
    [43]. Wang, X., et al., Polydatin--a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs,2013.22(2):p. 169-79.
    [1]. Deitch, E.A., Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg,1992.216(2):p.117-34.
    [2].袁玉荣等,多器官功能障碍综合征大鼠肾组织细胞外基质损伤.中华急诊医学杂志,2012.21(008),:第819-824页.
    [3].滕林等,动态监测TOLL样受体4在多器官功能障碍综合征大鼠肝组织中的表达.中华急诊医学杂志,2010(7):第684-688页.
    [4].滕林等,多器官功能障碍综合征大鼠肺组织血栓调节蛋白和基质金属蛋白酶-9的表达.中华急诊医学杂志,2009(10):第1031-1036页.
    [5].牛春雨等,肠淋巴途径在二次打击致大鼠MODS的发病学作用零.2005.
    [6].赵自刚等,肠系膜淋巴管结扎对MODS大鼠的器官保护作用.中国病理生理杂志,2005.21(2):第308-313页.
    [7].陈战,肿瘤坏死因子受体:Fc融合蛋白对多器官衰竭作用的实验研究,2001,第二军医大学.
    [8].李岩,多器官功能障碍综合征时血管内皮细胞损伤的研究.乌鲁木齐:新疆医科大学,2009.
    [9]. Spain, D.A., et al., Decreased alpha-adrenergic response in the intestinal microcirculation after "two-hit" hemorrhage/resuscitation and bacteremia. J Surg Res,1999.84(2):p.180-5.
    [10]. Teng, L., et al., Matrix metalloproteinase-9 as new biomarkers of severity in multiple organ dysfunction syndrome caused by trauma and infection. Mol Cell Biochem,2012.360(1-2):p.271-7.
    [11]. Hubbard, W.J., et al., Cecal ligation and puncture. Shock,2005.24 Suppl 1:p. 52-7.
    [12]. Asaduzzaman, M., et al., P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis. Br J Pharmacol,2009.156(2):p.307-15.
    [13]. Doerschug, K.C., et al., Antibiotics delay but do not prevent bacteremia and lung injury in murine sepsis. Crit Care Med,2004.32(2):p.489-94.
    [14]. Tsujimoto, H., et al., Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. J Surg Res,2002.103(1):p.61-7.
    [15]. Yin, K., et al., Lung compartmentalization of inflammatory cells in sepsis. Inflammation,2000.24(6):p.547-57.
    [16]. Gold, J.A., et al., CD40 contributes to lethality in acute sepsis:in vivo role for CD40 in innate immunity. Infect Immun,2003.71(6):p.3521-8.
    [17]. Wu, R., et al., Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med,2007.176(8):p.805-13.
    [18]. Hirsh, M., et al., Response of lung gammadelta T cells to experimental sepsis in mice. Immunology,2004.112(1):p.153-60.
    [19]. Hirsh, M., et al., Response of lung NK 1.1-positive natural killer cells to experimental sepsis in mice. Shock,2004.22(1):p.40-5.
    [20]. Ayala, A., et al., Shock-induced neutrophil mediated priming for acute lung injury in mice:divergent effects of TLR-4 and TLR-4/FasL deficiency. Am J Pathol,2002.161(6):p.2283-94.
    [21]. Lomas-Neira, J.L., et al., CXCR2 inhibition suppresses hemorrhage-induced priming for acute lung injury in mice. J Leukoc Biol,2004.76(1):p.58-64.
    [22]. Gao, S., et al., HPLC determination of polydatin in rat biological matrices: application to pharmacokinetic studies. J Pharm Biomed Anal,2006.41(1):p. 240-5.
    [23]. He, H., et al., Quantitative determination of trans-polydatin, a natural strong anti-oxidative compound, in rat plasma and cellular environment of a human colon adenocarcinoma cell line for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci,2007.855(2):p.145-51.
    [24]. Su, D., et al., Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One,2013.8(1):p. e54505.
    [25]. Zhang, Y., et al., Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest. Oncol Lett,2014.7(1):p.295-301.
    [26]. Waffo-Teguo, P., et al., Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr Cancer,2001.40(2):p.173-9.
    [27]. Khan, M.A., et al., Regulatory effects of resveratrol on antioxidant enzymes:a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells,2013.35(3):p.219-25.
    [28]. Rahal, A., et al., Oxidative Stress, Prooxidants, and Antioxidants:The Interplay. Biomed Res Int,2014.2014:p.761264.
    [29]. Murakami, K., et al., Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci, 1998.18(1):p.205-13.
    [30]. Rocha, M., et al., Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect Disord Drug Targets,2012.12(2):p.161-78.
    [31]. Witko-Sarsat, V., et al., Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol,1998.161(5):p.2524-32.
    [32]. Witko-Sarsat, V., et al., Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int,1996.49(5):p.1304-13.
    [33]. Ozenirler, S., et al., Serum levels of advanced oxidation protein products, malonyldialdehyde, and total radical trapping antioxidant parameter in patients with chronic hepatitis C. Turk J Gastroenterol,2011.22(1):p.47-53.
    [34]. Zhong, Z.M., L. Bai and J.T. Chen, Advanced oxidation protein products inhibit proliferation and differentiation of rat osteoblast-like cells via NF-kappaB pathway. Cell Physiol Biochem,2009.24(1-2):p.105-14.
    [35]. Kalousova, M., J. Skrha and T. Zima, Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res,2002.51(6):p.597-604.
    [36], Selmeci, L., et al., Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients:a simple, fast and inexpensive automated technique. Clin Chem Lab Med,2005.43(3):p.294-7.
    [37]. Lentini, P., et al., Sepsis and AKI in ICU Patients:The Role of Plasma Biomarkers. Crit Care Res Pract,2012.2012:p.856401.
    [38]. Xiong, Y., et al., [The expression and clinical implication of advanced oxidized protein products in patients with multiple organ dysfunction syndrome]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2008.20(9):p.542-5.
    [39]. Kerem, Z., et al., Antioxidant activity and inhibition of alpha-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. J Agric Food Chem,2006.54(4):p.1243-7.
    [40]. Su, D., et al., Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One,2013.8(1):p. e54505.
    [41]. Hosoda, R., et al., Differential cell-protective function of two resveratrol (trans-3,5,4'-trihydroxystilbene) glucosides against oxidative stress. J Pharmacol Exp Ther,2013.344(1):p.124-32.
    [42]. Nopo-Olazabal, C., et al., Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem,2014.74:p.50-69.
    [43]. Pardal, D., et al., Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae. Zebrafish,2014.11(1):p.32-40.
    [44]. Robb, E.L. and J.A. Stuart, The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase. Phytochemistry,2014.98:p.164-73.
    [45]. He, Y.D., et al., Polydatin suppresses ultraviolet B-induced cyclooxygenase-2 expression in vitro and in vivo via reduced production of reactive oxygen species. Br J Dermatol,2012.167(4):p.941-4.
    [46]. Chen, L., et al., Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice. Food Chem Toxicol,2013.52:p.28-35.
    [47]. Bone, R.C., et al., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest,1992.101(6):p.1644-55.
    [48]. Bhatia, M. and S. Moochhala, Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol,2004.202(2): p.145-56.
    [49]. Held, T.K., et al., Gamma interferon augments macrophage activation by lipopolysaccharide by two distinct mechanisms, at the signal transduction level and via an autocrine mechanism involving tumor necrosis factor alpha and interleukin-1. Infect Immun,1999.67(1):p.206-12.
    [50]. Wunder, C., O. Eichelbronner and N. Roewer, Are IL-6, IL-10 and PCT plasma concentrations reliable for outcome prediction in severe sepsis? A comparison with APACHE Ⅲ and SAPS Ⅱ. Inflamm Res,2004.53(4):p.158-63.
    [51]. Nathens, A.B. and J.C. Marshall, Sepsis, SIRS, and MODS:what's in a name? World J Surg,1996.20(4):p.386-91.
    [52]. Fry, D.E., Sepsis, systemic inflammatory response, and multiple organ dysfunction:the mystery continues. Am Surg,2012.78(1):p.1-8.
    [53]. Wyllie, A.H., Apoptosis:an overview. Br Med Bull,1997.53(3):p.451-65.
    [54]. Shi, Y., A structural view of mitochondria-mediated apoptosis. Nat Struct Biol, 2001.8(5):p.394-401.
    [55]. Yang, J., et al., Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997.275(5303):p.1129-32.
    [56]. Kluck, R.M., et al., The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997.275(5303):p.1132-6.
    [57]. Zini, R., et al., Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res,1999.25(2-3):p.87-97.
    [58]. Wang, X., et al., Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock. Am J Physiol Regul Integr Comp Physiol,2012. 302(7):p. R805-14.
    [59]. Wang, X., et al., Polydatin--a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs,2013.22(2):p. 169-79.
    [60]. Miramar, M.D., et al., NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem,2001.276(19):p.16391-8.
    [1]. Wu, J.Y., et al., Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. J Pineal Res,2008, 45(1):p.106-16.
    [2].陈德晖等,两次打击大鼠所致多器官功能障碍综合征动物实验模型的建立及病理观察.热带医学杂志,2005.5(3):第271-275页.
    [3]. Rinaldi, B., et al., Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures. Intensive Care Med,2011.37(7):p. 1110-9.
    [4]. Zhu, Q., et al., A comparison of elderly and adult multiple organ dysfunction syndrome in the rat model. Exp Gerontol,2006.41(8):p.771-7.
    [5]. Volman, T.J., T. Hendriks and R.J. Goris, Zymosan-induced generalized inflammation:experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock,2005.23(4):p.291-7.
    [6]. Tang, C., et al., Amelioration of the development of multiple organ dysfunction syndrome by somatostatin via suppression of intestinal mucosal mast cells. Shock,2005.23(5):p.470-5.
    [7].刘承哲与刘牧林,大黄对多器官衰竭大鼠肠粘膜屏障的保护作用.蚌埠医学院学报,1998.23(6):第380-381页.
    [8]. Steinberg, S., et al., Development of a bacteria-independent model of the multiple organ failure syndrome. Arch Surg,1989.124(12):p.1390-5.
    [9]. Galuppo, M., et al., GITR gene deletion and GITR-FC soluble protein administration inhibit multiple organ failure induced by zymosan. Shock,2011. 36(3):p.263-71.
    [10].曹书华与王今达,血必净对感染性多器官功能障碍综合征大鼠组织及内皮损伤保护作用的研究.中国危重病急救医学,2002.14(8):第489-491页.
    [11]. Zheyu, C., et al., Effects of emodin on Ca2+ signal transduction of smooth muscle cells in multiple organ dysfunction syndrome. J Surg Res,2006. 131(1):p.80-5.
    [12].刘晓蓉,徐杰与任新生,丹参肠内营养制剂对S-MODS模型大鼠肠黏膜上皮细胞保护作用的研究.肠外与肠内营养,2011.18(1):第35-38页.
    [13]. Wichterman, K.A., A.E. Baue and I.H. Chaudry, Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res,1980.29(2):p. 189-201.
    [14]Schabbauer G., Polymicrobial sepsis models:CLP versus CASP. Drug Discovery Today:Disease Models/sepsis 2012; 9:(1) e8-21
    [15].段绍斌等,多器官功能障碍综合征时血管内皮细胞损伤的研究.新疆医科大学学报,2010.33(3):第271-274页.
    [16]. Spain, D.A., et al., Decreased alpha-adrenergic response in the intestinal microcirculation after "two-hit" hemorrhage/resuscitation and bacteremia. J Surg Res,1999.84(2):p.180-5.
    [17].陈战,肿瘤坏死因子受体:Fc融合蛋白对多器官衰竭作用的实验研究,2001,第二军医大学.
    [18].赵自刚等,肠系膜淋巴管结扎对MODS大鼠的器官保护作用.中国病理生理杂志,2005.21(2):第308-313页.
    [19].牛春雨等,肠淋巴途径在二次打击致大鼠MODS的发病学作用.中国病理生理杂志,2005.21(3):第559-564页.
    [20].滕林等,多器官功能障碍综合征大鼠肺组织血栓调节蛋白和基质金属蛋白酶-9的表达.中华急诊医学杂志,2009.18(10,):第1031-1036页.
    [21].滕林等,动态监测TOLL样受体4在多器官功能障碍综合征大鼠肝组织中的表达.中华急诊医学杂志,2010.19(7):第684-688页.
    [22].袁玉荣等,多器官功能障碍综合征大鼠肾组织细胞外基质损伤.中华急诊医学杂志,2012.21(8):第819-824页.
    [23], Teng, L., et al., Matrix metalloproteinase-9 as new biomarkers of severity in multiple organ dysfunction syndrome caused by trauma and infection. Mol Cell Biochem,2012.360(1-2):p.271-7.
    [24].谢伟霖等,N-乙酰半胱氨酸对多器官功能障碍综合征大鼠器官的保护作用及其机制.上海医学,2009.32(11):第987-991,插1页.
    [25].王春荣,程永刚与曾津,肠功能恢复汤对MODS大鼠细菌和内毒素移位及血清MDA和SOD含量的影响.西安交通大学学报(医学版),2009.30(1):第119-123页.
    [26]. Hu, S., et al., Study on delay two-phase multiple organ dysfunction syndrome. Chinese medical journal,1998.111(2):p.101-108.
    [27]. Fitzwater, J., et al., The risk factors and time course of sepsis and organ dysfunction after burn trauma. J Trauma,2003.54(5):p.959-66.
    [1].张玉松,PD抗肿瘤作用及机制研究,2013,苏州大学.
    [2].张利祥,刘毅敏与赵先英,白藜芦醇抗肿瘤作用及机理研究进展.实用肿瘤学杂志,2013.27(4):第377-380页.
    [3]. Gao, J.P., et al., Effects of polydatin on attenuating ventricular remodeling in isoproterenol-induced mouse and pressure-overload rat models. Fitoterapia, 2010.81(7):p.953-60.
    [4]. Fabris, S., et al., Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys Chem,2008. 135(1-3):p.76-83.
    [5]. Regev-Shoshani, G., et al., Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J,2003.374(Pt 1):p.157-63.
    [6]. Xing, W.W., et al., Effects of polydatin from Polygonum cuspidatum on lipid profile in hyperlipidemic rabbits. Biomed Pharmacother,2009.63(7):p.457-62.
    [7].牛培勤与郭传勇,白藜芦醇药理作用的研究进展.医药导报,2006.25(6):第524-525页.
    [8].曹烨,关新强与徐志懿,白藜芦醇对心血管保护作用的研究进展.医学综述,2013.19(23):第4235-4237页.
    [9]. Indraccolo, U. and F. Barbieri, Effect of palmitoylethanolamide-polydatin combination on chronic pelvic pain associated with endometriosis:preliminary observations. Eur J Obstet Gynecol Reprod Biol,2010.150(1):p.76-9.
    [10].黄兆胜等,PD对CCl-4损伤原代培养大鼠肝细胞的保护作用.中国药理学通报,1998(06):第67-69页.
    [11]. Zhang, H., et al., Protective effects of polydatin from Polygonum cuspidatum against carbon tetrachloride-induced liver injury in mice. PLoS One,2012.7(9): p. e46574.
    [12]. Xie, X., et al., Polydatin ameliorates experimental diabetes-induced fibronectin through inhibiting the activation of NF-kappaB signaling pathway in rat glomerular mesangial cells. Mol Cell Endocrinol,2012.362(1-2):p.183-93.
    [13]. Chen, L., et al., Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice. Food Chem Toxicol,2013.52:p.28-35.
    [14].刘翠与王红,白藜芦醇对哮喘大鼠气道炎症及诱导型一氧化氮合酶的影响.广东医学,2011.32(17):第2246-2249页.
    [15].李晓会等,PD对小鼠脓毒症模型ALT、AST、TNF-α及COX-2的影响.中国中西医结合杂志,2013.33(2):第225-228页.
    [16].徐丽等,血红素氧化酶-1介导脂联素在脓毒症肺损伤中的保护作用.国际麻醉学与复苏杂志,2013.34(5):第390-394页.
    [17]. Li, X.H., et al., Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1. Mediators Inflamm,2013.2013:p.354087.
    [18].吴燕峰等,罗西格列酮对脊髓损伤大鼠神经功能恢复的作用及机制.中国脊柱脊髓杂志,2010(11):第913-917页.
    [19].刘长江等,白藜芦醇对大鼠脊髓损伤后炎症反应的影响.西安交通大学学报(医学版),2013.34(6):第779-784,796页.
    [20].李良满等,重组sCRl对大鼠急性脊髓损伤组织免疫炎症反应的影响.中华创伤骨科杂志,2005.7(6):第548-551,555页.
    [21].楼旭丹等,白细胞介素17在糖尿病大血管中的表达及白藜芦醇的干预机制.中华内分泌代谢杂志,2013.29(8):第700-704页.
    [22]. Lanzilli, G., et al., Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation,2012.35(1):p.240-8.
    [23]. Potapovich, A.I., et al., Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFkappaB and AhR and EGFR-ERK pathway. Toxicol Appl Pharmacol, 2011.255(2):p.138-49.
    [24]. Ravagnan, G., et al., Polydatin, a natural precursor of resveratrol, induces beta-defensin production and reduces inflammatory response. Inflammation, 2013.36(1):p.26-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700