改性膨润土催化剂的制备及催化有机反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改性膨润土负载型催化剂是一类良好的环境友好型催化剂,在现代有机催化合成中有广泛应用。它具有制备简单且无污染、价格低、催化活性高、选择性好、容易与反应体系分离及可循环利用等优点。本文系统地考察了改性膨润土催化剂的制备条件与其结构和性能的关系,研究了催化剂在烷基化和氢胺化等有机合成反应中的应用。
     1.改性膨润土催化剂的制备和表征
     将钙基膨润土经提纯、钠化等处理后,负载质子酸、Lewis酸(Cl_2ZnCl_2)及KF制备负载型催化剂,考察催化剂制备条件对其结构和性能的影响。利用FT-IR、XRD、BET、NH3-TPD等测试技术对催化剂的晶相结构、酸位中心性质以及比表面积等进行了表征。结果显示,膨润土经适当浓度质子酸改性,可显著增大比表面积,增加表面酸量;经CuCl_2、ZnCl_2等Lewis酸改性能够与表面羟基形成新的催化活性物种。膨润土负载KF后,比表面积有所降低,层间距随焙烧温度的升高而逐渐减小。
     2.改性膨润土催化剂催化有机反应研究
     考察了酸改性膨润土催化剂对烯烃氢胺化反应的催化效果。以经盐酸酸化改性的膨润土为催化剂,常压下催化环己烯与对甲苯磺酰胺的氢胺化反应。系统考察了酸化条件、溶剂及其用量、催化剂用量及反应时间等因素对N-环己基对甲苯磺酰胺收率的影响。结果表明,经2mol/L盐酸酸化的膨润土催化活性最高,以甲苯为溶剂常压回流反应2h,N-环己基对甲苯磺酰胺的收率达到83.7%。
     研究了膨润土负载CuCl_2、ZnCl_2等Lewis酸催化剂对活泼亚甲基化合物烷基化反应的催化效果。结果表明,CuCl_2/膨润土催化剂对丙二酸二乙酯与二苯甲醇的反应具有最好的催化性能,2-(二苯甲基)丙二酸二乙酯的收率达到85%以上。
     以溴代正丁烷与乙酰乙酸乙酯的烷基化反应为探针反应,考察优化了KF/膨润土催化剂的制备条件,在KF:膨润土=1:5(质量比)和焙烧温度400C下制备的催化剂活性最好。在乙酰乙酸乙酯:溴代正丁烷=1:2、反应温度为85C的条件下催化反应4小时,2-正丁基乙酰乙酸乙酯的收率达到38.6%,体现出此催化剂对活泼亚甲基的烷基化反应具有良好的活性。
Modified bentonite is a kind of good environmental friendly catalyst, which plays animportant role in organic catalysis, and are widely applied in modern organic synthesis. Thereare many advantages, such as simple preparation process, low pollution level, low price, highcatalytic activity and good selectivity, easy separation from reaction system, and repeated use,for the use of modified bentonite catalysts. This paper describes the preparation andcharacterization of new modified bentonite catalysts, e.g. inorganic acid modified bentonitecatalysts, Lewis acid loaded bentonite catalysts and KF loaded bentonite catalysts. The catalyticactivities of these catalysts are evaluated through the different organic reactions.
     1. The preparation and characterization of modified bentonite catalysts
     First the raw bentonite were purified, acidized and sodium treated, and acidic treatmentconditions were optimized. Then, the well-purified active bentonite were chosen for furtherloading of active components, and inorganic acid (HNO_3, HCl, H_2SO_4) modified bentonitecatalysts, Lewis acid (ZnCl_2, CuCl_2) loaded bentonite catalysts and KF-loaded bentonitecatalysts were prepared. The internal structure, specific surface area and acid center etc. of thesecatalysts were characterized by FT-IR, XRD, BET, NH3-TPD. The results show that there is nodamage of bentonite layer-shape structure in the inorganic acid-modified bentonite catalystsobtained in a range of appropriate concentration of acid change, the bentonite pore structuresbecome loose, the specific surface areas increase, the surface acidity is enhanced. In the Lewisacid-loaded bentonite catalysts, the Lewis acids are bonded to bentonite with surface hydroxylgroups, forming new active catalytic centers. In the KF-loaded bentonite catalyst, the specificsurface areas decrease, the layer distances reduce with the increasing of roasting temperature.
     2. The evaluation of catalytic activities of the modified bentonite catalysts
     The HCl-modified bentonite catalysts (HCl/bentonite) were used for catalyzing thepreparation reaction of N-cyclohexyl-p-toluenesulfonamide from cyclohexene andtoluenesulfonamide, and the reaction conditions including the amount of catalyst, reaction timeand other effect factors were explored. The results show that the HCl-modified bentonite catalyst,obtained by the treatment of2mol/L hydrochloric acid, has the best catalytic activity. The yieldof N-cyclohexyl p-toluenesulfonamide is as high as83.7%in toluene solvent at atmosphericpressure.
     Lewis acid-loaded bentonite catalysts show good catalytic performance in alkylationreaction of active methylene. In the Lewis acid-loaded bentonite catalyzed reaction of diethylmalonate and diphenyl methanol, the yield of diethyl2-(diphenyl)methylmalonate reached more than85%.
     Using the alkylation reaction of bromobutane and ethyl acetoacetate as a probe, thepreparation conditions of KF/bentonite catalysts were optimized. The preparation condition forKF/bentonite catalysts is KF/bentonite=1:5, and the roasting temperature400C. The catalyticreaction of bromobutane and ethyl acetoacetate was also studied, and the results indicate that, inthe condition of ethyl allylacetoacetate: bromobutane=1:2, the reaction temperature85C, andthe reaction time4h, KF/bentonite catalyst0.4g, the yield of ethyl2-n-butylacetoacetate reached38.6%.
引文
[1]王小军,宋卫锋.绿色化学在有机化学化工中的应用进展[J].甘肃化工.2006(1):1~3.
    [2]孙长顺.无机柱撑膨润土的制备、表征、吸附特性及其在废水处理中的应用研究[D].西安:西安建筑科技大学.2008.
    [3]G.W.Brindley,R.E.Sempels.PreParation and properties of some hydroxy-aluminum beidellite[J]. Clay Minerals.1977,12:229~237.
    [4]赵东源,杨亚书,郭贤.铁铝复合柱撑粘土的制备、柱结构和稳定性(I)[J].物理化学学报.1993,9(2):100~106.
    [5]李树国,贾丽华,郭祥峰.酸化铝锌复合交联蒙脱土催化合成缩酮和缩醛[J].化学研究与应用.2009,21(11):1563~1565.
    [6]魏光涛,叶瑞翠,张琳叶等.铁交联膨润土-H2O2催化氧化降解刚果红的研究[J].非金属矿.2011,34(5):55~57.
    [7]李栋藩,姜贤,郑禄彬.铝交联蒙脱土合成条件的研究[J].催化学报.1997,18(l):75~78.
    [8]曹明礼,余永富.聚合羟基铝柱撑蒙脱土的制备与机理研究[J].硅酸盐学报.2002,4:23~27.
    [9]李永绣,冯天泽,胡平贵,何小彬,辜子英,廖荣辉.负载稀土型酸活化膨润土的醋化催化活性[J].应用化学.1996,13(l):114~115.
    [10]张荣斌,李凤仪.钕对非晶态Ni-B/膨润土催化剂性能的影响[J].稀土2004,25(3):42~45.
    [11]石秋杰,李万刚,堪伟庆.稀土对非晶态Ru-B/膨润土合金催化剂性能的影响[J].稀土.2005,26(4):20~24.
    [12]普红平,梅向阳,黄小凤.微波稀土改性膨润土制备吸附剂除磷的研究[J].应用化工.2006,35(12):935~938.
    [13]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(I)表面酸性和吸附机理的研究[J].离子交换与吸附.1995,11(l):58~67.
    [14]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(II)液固相中催化合成乙酸丁醋的研究[J].河北轻化工学院学报.1996,17(3):55~61.
    [15]林深,郑瑛,许利闺,陈守正.用钨杂多酸/膨润土催化剂催化合成丙酸乙醋[J].福建师范大学学报.1995,11(4):46~51.
    [16]王少君,李德才,安庆大,王梦林,翟滨.插层固载磷钨酸催化剂的制备与催化[J].化工学报.2003,54(10):1378~1380.
    [17]张翠仙,涂华民,染文楼.表面活性剂修饰蒙脱石负载杂多酸催化剂的制备及表征[J]化学世界.2004,7:376~379.
    [18]J.H.Clark,K.Martin,A.J.Teasdale,J.Barlow.Environmentally friendly catalysis using support-ed reagents:evolution of a highly active form of immobilised aluminium chloride[J].J.Chem.Soc.Chem.Cornnnun.1995,19:2037~2040.
    [19]Pierre Laszlo,Jean Lucchetti.Catalysis of the diels-alder reaction in the presence of elays[J].Tetrahedron Lett.1984,25:1567~1570.
    [20]Pierre Laszlo,Helene Moison.Cataiysis of Diels-Alder Reactions with Aerolein as Dieno-phile by Iron(III)-Doped Montmorillonite[J]. Chem. Lett.,1989,18:1031~1033..
    [21]Jun-ichi Tateiwa,Takahiro Nishimura,Hiroki Horiuchi,Sakae Uemura.Rearr angement ofalhyl Phenyl ethers to alkylphenols in the presence of cation-exchanged Montmorillonite(Mnn+-mont)[J]. J. Chem. soc.,1994,1:3367~3371.
    [22]Stephane Chalais,Pierre Laszlo,Arthur Mathy.Catalysis of the cyclohexdienone-phenolrearrangement by a lewis-acidic clay system[J]. Tetrahedron Lett.,1986,27:2627~2630.
    [23]童张法,罗成刚,李仲民,廖丹葵.羟基锆交联膨润土的制备与酯化催化性能研究[J].广西大学学报(自然科学版).2002,27(1):23~26.
    [24]林裕,曲济方.钛柱撑膨润土催化合成柠檬酸三丁醋[J].山西大学学报(自然科学版).2009,32(1):96~99.
    [25]张雷,柳忠阳,胡友良.蒙脱土为载体的茂金属催化剂催化乙烯聚合[J].石油化工.1998,27(12):890~894.
    [26]王丽梅,贺爱华,董金勇,韩志超,黄雅钦.剥离型聚丙烯-蒙脱土纳米复合材料I.Ziegler-Natta/有机改性蒙脱土复合催化剂催化丙烯聚合[J].石油化工.2006,35(9):881~885.
    [27] Roesky P W, Müller T E.Enantioselective catalytic hydroamination of alkenes[J]. Angew.Chem. Int. Ed.2003,42:2708-2710.
    [28]Pohlki F,Doye F,The catalytic hydroamination of alkynes[J]. Chem.Soc.Rev.,2003,32:104-114.
    [29] Fadini L, Togni A.Ni(II) Complexes containing chiral tridentate phosphines as new catalystsfor the hydroamination of activated olefins[J]. Chem. Commun.,2003,30-31.
    [30] L ber O, Kawatsura M, Hartwig J F. Palladium-catalyzed hydroamination of1,3-Dienes: acolorimetric assay and enantioselective additions[J]. J. Am. Chem. Soc.,2001,123(18):4366-4367.
    [31] Utsunomiya M, Hartwig J F. Intermolecular, Markovnikov hydroamination of vinylareneswith alkylamines[J]. J. Am. Chem. Soc.2003,125(47):14286-14287.
    [32]Utsunomiya M, Kuwano R,Kawatsura M, Hartwig J F.Rhodium-catalyzed anti-markovnikovhydroamination of vinylarenes[J]. J. Am. Chem. Soc.2003,125(19):5608-5609.
    [33] Brunet J, Cadena M, Chu N C, Diallo O, Jacob K, Mothes E. The first platinum-catalyzedhydroamination of ethylene[J]. Organometallics,2004,23(6):1264-1268.
    [34] Anderson L L, Arnold J,Bergman R G. Proton-catalyzed hydroamination and hydroarylationreactions of anilines and alkenes: a dramatic effect of counteranions on reaction efficiency[J]. J.Am. Chem. Soc.2005,127(42):14542-14543.
    [35] Motokura K, Nakagiri N, Mori K, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K. EfficientC-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneousbr nsted acid[J]. Org. Lett.2006,8(20):4617-4620.
    [36]吴俊,叶家海,胡劲松等. ZnCl2温和有效地催化活泼亚甲基化合物与苄醇或丙烯醇的直接烷基化反应[J].有机化学,2009,29(3):462-465.
    [37]Ozawa F,Okamoto H,Kawagishi S,etal.(π-Allyl)palladium complexes bearing diphosph-inidenecyclobutene Ligands(DPCB): highly active catalysts for direct conversion of allylicalcohols[J]. Journal of the American Chemical Society.2002,124:10968-10969.
    [38]王莉,罗国华,徐新,等. Lewis酸离子液体催化的苯和氯乙烷烷基化反应[J].过程工程学报,2011,11(2):289-293.
    [39] Jana U, Biswas S, Maiti S. A simple and efficient FeCl3-catalyzed direct alkylation of activemethylene compounds with benzylic and allylic alcohols under mild conditions[J]. TetrahedronLetters,2007,48:4065-4069.
    [40]崔爱军,郑彬,何明阳等.离子液体催化壬烯与二苯胺的烷基化反应[J].精细石油化工,2010,27(2):62-64.
    [41]郜蕾,刘民,聂小娃等.离子液体催化邻甲酚与叔丁醇烷基化反应[J].石油学报,2011,27(2):256-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700