基于多光谱和高光谱数据的遥感矿化蚀变信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿化异常作为成矿、控矿和找矿标志等综合的近矿标志,在地质矿产的前期勘查中常被作为重要信息参与靶区优选。电磁波与地表岩石、地质体发生作用,产生其特征光谱为遥感提取矿化蚀变信息提供了物理基础。随着遥感成像技术和数字图像处理技术的发展,利用遥感技术结合多源地学信息提取矿化蚀变信息正越来越多的应用到实际地质工作中。
     本次以植被覆盖度较低的内蒙古额济纳旗红旗山区为研究区,该区矿产资源丰富,但地质勘查工作程度低,找矿难度大,传统找矿方法难以展开。研究中分别使用ASTER多光谱数据和中国环境与灾害监测预报小卫星(以下简称环境减灾星)高光谱数据进行矿化蚀变信息提取工作,取得如下成果:
     1.使用FLAASH模块对区内的ASTER多光谱数据和环境减灾星高光谱数据进行大气校正,较好地消除大气影响,更为准确的从图像中获取地表反射率信息。
     2.分别使用HIS和小波变换法对ASTER多光谱数据和环境减灾星高光谱数据进行影像融合,得到高空间、光谱分辨率影像,HIS变换法的实际效果较好。
     3.使用ASTER多光谱数据对该区进行矿化蚀变信息提取。在经典crosta方法基础上,针对该区出现较多的铁染、高岭石+绢云母化和绿泥石化3组不同的蚀变矿物使用相应特征向量组合模型的主成分分析法进行蚀变信息提取,圈定了蚀变异常靶区,与实际矿体和蚀变带有较好相关性,体现了ASTER数据在提取粘土矿化信息蚀变方面的优势,证明该方法在类似地区的遥感矿化蚀变信息提取工作中的可行性。
     4.基于ASTER多光谱数据提取的3组矿化蚀变信息与区内围岩角岩化在空间分布上基本吻合,客观反映了实际地质情况。
     5.通过“沙漏”数据处理流程对环境减灾星的高光谱数据进行处理,提取铁染矿化蚀变信息,与基于ASTER多光谱数据的提取结果对比,匹配度较好,验证了该方法在处理环境减灾星的高光谱数据中的可行性。
Mineralization anomalies, which include ore-forming or ore-controlling factors and mineralization indications, are widely used as significant information in target optimization and exploration deployment. The characteristic spectrum produced by the interaction between the electromagnetic wave and surface rock is the theory basis of the mineralizing alteration information extraction by remote sensing. With the development of the remote sensing imaging and the digital image processing technology, the remote sensing combined with the multisource geology is widely used in the geological survey.
     The area of Hongqi Mountain in the Ejinaqi ,Inner Mongolia, low vegetation cover, is abundant in mineral resources, but the work of mineral survey is still at a lower level which make the traditional methods of prospecting are useless. In the study., the multispectral data of ASTER (Advanced Space - borne Thermal Emission and Reflection) and the hyper spectral data of China's Constellation of Small Satellites for Environment and Disaster Monitoring and Forecasting are used to extract the information of the alteration of rocks and minerals. The main achievements are summarized as follows:
     1.The Realization of Atmospheric Correction is based on the FLAASH(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes). The research showed that the atmospheric influences of the satellite images could be eliminated well and accurate surface albedo can be got after FLAASH atmospheric correction.
     2.The HIS transform and wavlet transform are used for the information fusion to get hyperspectral and high-resolution image. The results shows that HIS transform is more suitable for the study.
     3.The extraction with ASTER data is Based on the method of the crosta, the combination model with selected eigenvectors of PCA is effectively done to extract the alteration information of the iron mineralization, kaolinization+ sericitization and chloritization. The result is validated by the known mineralization spots. This study shows that ASTER data has better capability for recognition of clay mineral.It also proves the feasibility of this method used for mineral resources searching by remote sensing at such region.
     4.The alteration information extracted with ASTER data is matching with the spatial distribution of wall-rock hornfelization.
     5.The extraction of iron mineralization with hyper spectral data of the Satellites for Environment and Disaster Monitoring and Forecasting, processed by“Hourglass”procedure, is matching the result of the extraction with ASTER data shows the feasibility of the method.
引文
[1] Rowan L C,Goetz A F H,Ashley R P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images.Geophysics,1977,42:522~535.
    [2] Loughlin W P. Principal Component Analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing ,1991,57:1163 ~ 1169.
    [3] Rutz -Armenta J R,Prol-Ledesma R M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico.International Journal of Remote Sensing,1998,19:1981 ~ 2000.
    [4] Crowley James K,Hubbard Bernard E,Mars John C. Hydrothermal Alteration on the cascade stratovolcanoes: A remote sensing survey. Geological Society of America Abstracts with Programs,2003,35(6):552.
    [5] Crowley J. K.,Brickey D. W.,Rowan L C. Airborne Imaging Spectrometer Data of the Ruby Mountains,Montana: Mineral Discrimination Using Relative Absorption Band-depth Images. Remote Sensing Environment,1989,29: 121 ~ 134.
    [6] De Jong S.M. Imaging Spectrometry for Monitoring Tree Damage Caused by Volcanic Activity in the Long Valle Caldera,California. ITC Journal,1998,1: 1 ~ 10
    [7] Baugh W. M.,Kruse F. A.,Atkinson W. W. Jr. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Ceder Mountains , Nevada , Using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).Remote Sensing Environment,1998,65:292 ~ 308.
    [8] Yang H.,et al A Back-propagation Neural Network for Mineralogical Mapping from AVIRIS Data: VolumeⅠ. Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition,Copenhagen,Denmark,1997: 265 ~ 272.
    [9] Johnson P E,Smith M O,Taylor George S,Adams J B. A Semiemprical Method for Analysis of the Reflectance Spectra of Binary Mineral Mixtures. Geophysical Research,1983,88(B4): 3557 ~ 3561.
    [10] Smith M O,Johnson P E,Adams J B. Quantitative Determination of Mineral Types and Abundances from Reflectance Spectra Using Principal Components Analysis. Proc. Lunar Planet,SCI Conf. 15th,Part2,Geophysical Research,1985(suppl ): 797 ~ 804.
    [11] Mustard J. F.,Pieters C. M. Quantitative Abundances Estimates from Bidirectional Reflectance Measurements. Geophysical Research,1987,92(B4): 617 ~ 626
    [12] Harasnyi Joseph C.,Chang Chein- I. Hyperspectral Image Classification and Dimension Reduction:Anorthogonal Subspace Projection Approach. IEEE Transactions on Geosciences and Remote Sensing,1994,32(4): 779 ~ 785.
    [13] Tu Te-Ming,Chen Chin-Hsing,Chang Chein-I. A Posteriori Least Squares Orthogonal Subspace Projection Approach to Desired Signature Extraction and Detection. IEEE Transactions on Geosciences and Remote Sensing,1997,35(1): 127 ~ 139.
    [14] Chang Chein-I,Zhao Xiao-Li Althouse Mark L G,eta. Least Squares Subspace Projection Approach to Mixed Pixel Classification for Hyperspectral Images. IEEE Transactions on Geosciences and Remote Sensing,1998,36(3): 898 ~ 912
    [15] Foody G. M. Relating the Land ~ cover Composition of Mixed Pixels to Artificial Neural Network Classification. Photogrammetric Engineering & Remote sensing,1996,62: 491~ 499.
    [16] Wang Xi -peng,Zhang Yang- zhen. The Study on Decomposing AVHHR Mixed Pixels by Means of Neural Network Model . Journal of Remote Sensing(in Chinese),1998,2(1):51 ~ 56
    [17] Johnson P E,Smith M O,Taylor George S,Adams J B. A Semiemprical Method for Analysis of the Reflectance Spectra of Binary Mineral Mixtures.Geophysical Research,1983,88(B4): 3557 ~ 3561
    [18] Mustard,J. F. Chemical Analysis of Actinolite from Reflectance Spectra. American Mineralogist. 1992,77:345 ~ 358
    [19] Sunshine,J. and C. M. Pieters. Estimating Model Abundances from the Spectra of Natural and Laboratory Pyroxene Mixtures Using Modified Gaussian Model. Journal of Geophysical Research 1993,98:9075 ~ 9087
    [20] Sunshine,J. M. and C. M. Pieters. Determining the Composition of Olivine from Reflectance Spectroscopy. Journal of Geophysical Research,1998,103:13675 ~ 13688
    [21] Mustard,J. F.,Sunshine,J. M. Seeing Through the Dust:Martian Crustal Heterogeneity and Links to the SNC Meteorites. Science,1995,267:1623 ~ 1626.
    [22] Hiroi T.,Pieters,C.M. and Noble,S. K. Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils. Lunar and Planetary Science XXXI,2000,Houston,Lunar Planet. Inst.,Abstract #1548(CD-ROM).
    [23] Binzel R. P.,Rivkin,A. S.,Bus,S. J.,Sunshine,J. M. and Burbine,T. H. MUSES-C target asteroid(25143)1998 SF36:A reddened ordinary chondrite. Meteorit,Planet. Sci.,2001,36:1167 ~ 1172.
    [24] Hiroi T. ,Sasaki,S. Importance of Space Weathering Simulation Products in Compositional Modeling of Asteroids: 349 Dembowska and 446 Aeternitas as Examples. Meteorit. Planet. Sci. 2001,36:1587 ~ 1596.
    [25] Ueda Y.,Hiroi,T.,Pieters,C. M. Expanding the Modified Gaussian Model to Include the Space Weathering Effects: Estimation of the Weathering Degrees of Pulse ~ laser Treated Olivine Samples. Lunar and Planetary Science XXXIII,2002,Houston,Lunar Planet. Inst.,Abstract #1950(CD ~ ROM).
    [26] Tanre’D,Herman M,Kaufman Y J. Information on aerosol singe distribution contained in solar reflected spectral radiances. Journal of Geophysical Research., 1996,101(D14): 19043 ~19060.
    [27] Hunt G R,Sal Isbury J W,Lenhoff C R. Visible and near infrared spectra of minerals and rocks: Halides,phosphates,arsenates,vanadates and borates . Modern Geology,1972(3):121 ~ 132.
    [28] Roman L C,Kingstonem J ,Crowley J K,et al. Spectral reflectance of carbonatite and relted alkalic igneous rocks for four North American localities . Economic Geology,1986,81:857 ~ 871.
    [29] Hunt G R,Sal Isbury J W,Lenhoff C J. Visible and near - infrared spectra of minerals and rocks:Ⅲ. oxides and hydroxides . Modern Geology,1971(2):195 ~ 205.
    [30] Hunt G R,Sal Isbury J W. Visible and near -infrared spectra of minerals and rocks: II. Carbonates . Modern Geology,1971(2):23 ~ 30.
    [31] Hunt G R,Sal Isbury J W. Visible and near - infrared spectra of minerals and rocks:Ⅰ. Silicate minerals .Modern Geology,1970(1):283 ~ 300.
    [32]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998:159–161
    [33]郭华东等.感知天地—信息获取与处理技术.北京:科学出版社,2000
    [34]朱亮璞.遥感地质学.北京:地质出版社,1994:147
    [35]赵元洪,张福祥.波段比值的主成份复合在热液蚀变信息提取中的应用.国土资源遥感,1991(3):12 ~ 17.
    [36]马建文.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1997,1(3):208 ~ 213.
    [37]张远飞,吴健生.基于遥感图像提取矿化蚀变信息.有色金属矿产与勘查,1999,8(6):604 ~ 606.
    [38]杨建民,张玉君,陈薇.ETM+(TM)蚀变遥感异常技术方法在东天山戈壁区的应用.矿床地质,2003,22(3): 278 ~ 286.
    [39]毛晓长,刘文灿,杜建国,等. ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例.现代地质,2005,19(2):309 ~ 314.
    [40]丛丽娟,岑况,朱所等.利用ASTER数据提取蚀变异常方法研究——以内蒙古朱拉扎嘎金矿为例.河南理工大学学报,2007,26(6):652 ~ 658.
    [41]耿新霞,杨建民,张玉君等. ASTER数据在浅覆盖区蚀变异常信息提取中的应用——以新疆西准噶尔包古图斑岩铜矿岩体为例.地质评论,2008,54(2):184 ~ 192
    [42]王晋年,郑兰芬,童庆禧.成像光谱图像光谱吸收鉴别模型与矿物填图研究.环境遥感,1996,11(1): 20 ~ 31
    [43]甘甫平,王润生,郭小方等.利用成像光谱遥感技术识别和提取矿物蚀变信息——以河北赤城—崇礼地区为例.现代地质,2000,14(4): 465 ~ 469.
    [44]甘甫平,王润生,江思宏等.基于完全谱形特征的成像光谱遥感岩矿识别技术及其应用.地质科学,2000,35(3): 376 ~ 384
    [45]刘成,金成洙,李笑梅等.利用混合像元线性分解模型提取卧龙泉地区粘土蚀变信息.地质找矿论丛,2003,18(2): 131 ~ 133
    [46]吴波,张良培,李平湘.非监督正交子空间投影的高光谱混合像元自动分解.中国图象图形学报,2004,9(11): 1 392 ~ 1 396
    [47]李郁竹,曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积.遥感学报,1998,2 (2): 125 ~ 130.
    [48]毛克彪,覃志豪,张万昌.针对ETM基于BP网络像元分解模型分类研究.遥感信息,2004,2: 27 ~ 30
    [49]何勇强,姚国清.用于成像光谱数据特征矿物识别的人工神经网络结构研究.国土资源遥感,2004.9.15总第61期
    [50]冯聪.内蒙古白乃庙地区矿化蚀变信息提取及成矿预测:[硕士学位论文] .北京:中国地质大学(北京),2006
    [51]贾永红.数字图像处理.武汉:武汉大学出版社,2003:94
    [51] F.F.萨宾.遥感原理及解译(杨廷槐,邹光华,王宗良等).北京:地质出版社,1984.pg231
    [53]刘艳丽.ETM、ASTER在不同植被覆盖区遥感矿化蚀变信息提取研究——以内蒙古六驼山和罕达盖牧场地区为例:[硕士学位论文] .北京:中国地质大学(北京),2009
    [54]李小娟,宫兆宁,刘晓萌等.ENVI遥感影像处理教程.北京:中国环境科学出版社,2007:388
    [55]祝善友.高光谱遥感信息提取及其分类研究:[硕士学位论文] .山东:山东科技大学,2003
    [56]张瑞丝.遥感找矿异常信息提取方法改进与应用:[硕士学位论文] .北京:中国地质大学(北京),2009
    [57]李海涛,田庆久.ASTER数据产品的特性及其计划介绍.遥感信息,2004.3:53 ~ 55
    [58]朱黎江,秦其明,陈思锦.ASTER遥感数据解读与应用.国土资源遥感,2003,2(56):59 ~ 63
    [59]王永韬,刘良明.HDF5格式特点及其对遥感数据格式标准化的几点启示.国土资源遥感,2005,3(65):39 ~ 43
    [60]童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用.北京:高等教育出版社,2006:85
    [61]郑伟,曾志远.遥感图像大气校正方法综述.遥感信息,2004.4:66 ~ 70
    [62]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:28
    [63]何立明,王桥,李小文等.光学遥感大气订正方法与软件应用分析.地球信息科学,2006,8(2):111 ~ 115
    [64]郝建亭,杨武年,李玉霞等.基于FLAASH的多光谱影像大气校正应用研究.遥感信息,2008.1:78 ~ 81
    [65]王建卫.基子小波变换的数字图像融合.情报指挥控制系统与仿真技术.情报指挥控制系统与仿真技术,2000(6):51 ~ 56
    [66]张玉君,曾朝铭,陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程.国土资源遥感,2003 (2):44 ~ 49.
    [67]沈利霞,刘丽萍,苏新旭,等.不同植被覆盖率地区遥感矿化蚀变提取研究.现代地质,2008,22(2):293 ~ 298.
    [68]张玉君,杨建民,姚佛军.用ASTER数据进行不同类型矿床蚀变异常提取研究.矿床地质,2006,25(增刊):507 ~ 510.
    [69]丛丽娟,胡凤翔,杨俊才,等.内蒙古朱拉扎嘎金矿ETM+数据提取蚀变异常方法研究.现代地质,2007,21(4):725 ~ 732.
    [70]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998:159–161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700