[emim][Gly]/H_2O混合体系的分子动力学模拟研究和极化电荷模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为绿色溶剂,离子液体因其特殊的物理化学性质而备受研究者的关注。以天然氨基酸为先驱设计合成的氨基酸离子液体具有更好的环境友好性、生物相容性和生物降解功能,因此利用天然氨基酸设计合成功能化离子液体是离子液体在绿色化学中发挥作用的重要途径。研究发现,不管是疏水性离子液体还是亲水性离子液体都具有“吸水性”,而水分子的存在会极大地影响离子液体的物理化学性质,如黏度、电导率、反应活性、极性、表面性质、溶解度等性质。因此离子液体与水分子之间相互作用研究在基础研究和实际应用方面都具有重要作用。离子液体与水混合体系的研究从理论到实验都已有许多系统报道,但是迄今为止以天然氨基酸为阴离子的氨基酸离子液体与水混合体系的分子动力学研究还未见报道。本文采用分子动力学模拟的方法首次对基于甘氨酸阴离子的氨基酸离子液体[emim][Gly]和水的相互作用进行了系统的研究。
     为更准确的预测大量水分子对咪唑甘氨酸离子液体宏观性质的影响,本文将调整后的Amber99力场应用于分子动力学模型程序(Tinker),在等温等压(NPT)系综和正则系综(NVT)系综下模拟温度为300K时纯[emim][Gly]体系以及[emim][Gly]与H2O以摩尔分数分别为1:3, 1:2, 1:1, 2:1, 3:1混合后的各种热力学和动力学性质。仔细探讨了液态下咪唑甘氨酸离子液体中大量阴阳离子相互作用的微观结构、[emim][Gly]分子的平衡存在方式、氢键网络结构等,模拟计算各体系的密度、汽化焓、自扩散系数、径向分布函数等物理化学信息,预测水分子的存在对咪唑甘氨酸离子液体宏观性质的影响。
     在已报道的关于离子液体的理论研究中多数采用固定电荷模型,但是随着对氨基酸离子液体研究的日益发展,逐渐发现极化效应在离子液体中的作用不容忽视,因此极化电荷模型应运而生。本文基于密度泛函理论采用电负性均衡原理建立氨基酸离子液体的极化电荷模型,调节参数并确立了一套实用参数,利用该模型进行了初步的分子动力学模拟研究,结果与采用固定电荷模型模拟的结果具有很好的一致性,并且能够精确模拟体系中每个原子电荷随外场环境变化的变化,生动体现出极化电荷模型更能体现出极化效应对离子液体的影响,这为进一步将该极化电荷模型应用到离子液体与水混合体系相互作用研究奠定了基础。
     咪唑甘氨酸离子液体与水相互作用的研究以及极化电荷模型的建立能够初步探索离子液体以及其与水相互作用的微观机制、水分子的存在状态等信息,从而预测水分子的存在对离子液体的黏度、电导率、反应活性、极性、表面性质以及离子液体的极化效应等的影响。本论文为咪唑甘氨酸离子液体更好的应用于化学合成、化学分离和电化学等方面奠定了理论基础。
In the search for alternatives to conventional solvents partly driven by the need for“green”chemistry and sustainable technology, but primarily because of the potential for novel synthetic routes and process designs, a number of environmentally benign media have been explored recently. Room-temperature ionic liquids (ILs) are one such class of solvents. To expand the utility of ionic liquids, IL-based mixed solvents have come into focus. In particular the solubility of water is an important factor for the industrial use of ILs in synthesis, electrochemistry, catalysis, industrial cleaning, solvent extraction and separations. It has been demonstrated that the addition of water can strongly affect the physical and chemical properties of ILs, such as viscosity, electrical conductivity, reactivity, polarity, surface characters, as well as solvation and solubility properties. Hence, information on the structures of ILs and their interactions with water are important not only in the fundamental research but also in practical applications. In this paper, the interaction bwtween water molecules and novel amino acid ionic liquids (AAILs) with 1-ethyl-3-methyl-imidazolium cation ([emim]+) and glycine anions ([Gly]-) has been firstly systematically investigated by molecular dynamics simulation.
     To predict the effect of water molecules on the macroscopical properties of AAILs, the adjusted Amber99 force fields have been applied to molecular dynamics simulations by Tinker program. Various thermodynamics and dynamics properties of [emim][Gly] and [emim][Gly]/(H2O) mixture system (the mole fraction of H2O and ionic liquid are 1:3, 1:2, 1:1, 2:1, 3:1 respectively) at the temperature of 300K have been simulated in the isothermal-isobaric (NPT) ensemble and canonical ensemble(NVT). The microstructure, H-bond network of AAILs in the liquid state have been fully discussed, and the physicochemical properties, such as density, vapor enthalpy, self-diffusion and radial distribution function have been explored.
     In the available models of ILs, most force fields are use fixed charges that depend only on atom type. Obviously such force fields do not produce charges that depend on geometry or respond to an exteral potential, especially, the charge distributions and polarility are very imported to ILs. Therefore, it is desirable to develop models with increased accuracy to describe different thermodynamic states and heterogeneous systems of ILs. Thus, a transferable intermolecular approach including fluctuaing charges is introduced by the combination of electronegativity equalization method (EEM) and molecular mechanics (MM). We adjust and establish a series of practical parameters, and use this model to make some preliminary molecular dynamics simulations. The results are well consistent with the fixed charge model and avaliable experimental results.
     The investigation on the polarization charge model of AAILs, and the interaction between AAILs and water can explore the micromechanism of the water state in ILs, and the effect of water on the properties of AAILs, such as viscosity, conductivity, reaction activity polarity and solubility, and so on. This dissertation builds some theoretical foundation for the application of ionic liquids on chemical synthesis, chemical separation, electrochemistry, etc.
引文
[1] Sudhir N. V. K. Aki et. al. How polar are room-temperature ionic liquids?Chem. Commun., 2001, 413~414.
    [2]张锁江,吕兴梅等.离子液体—从基础研究到工业应用.北京:科学出版社, 2006,60,80,149.
    [3]邓全友.离子液体性质—制备与应用.北京:中国石化出版社,2006.
    [4] Gathergood N., Garcia M. T., Scammells P. J. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. J. Green Chem., 2004(6): 166~175.
    [5]吴阳,张甜甜,宋溪明.氨基酸离子液体的研究进展.渤海大学学报(自然科学版),2008,29(1):1~7.
    [6] Saha S, Hamaguchi H. Effect of water on the molecular structure and arrangement of Nitrile—Functionalized ionic liquids. J.Phys.Chem.B., 2006,110, 2777~2781.
    [7] Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 965~967.
    [8]朱学英,张冬菊,刘成卜.N-烷基吡啶阳离子及其与若干阴离子形成的离子对结构的理论研究.化学学报,2007,65,2701~2706.
    [9]李汝雄.绿色溶剂—离子液体的合成与应用.化学工业出版社:第一版,2004.
    [10]金学勇,邸学进.离子液体的制备性质及应用[J].江师专学报,2002,12:77~79.
    [11]周雅文.子液体的性质及其制备.杭州化工,2009, 39(3):7~10.
    [12]杨雅立,王晓化.不断壮大的离子液体家族,化学进展, 2003,15(6):471~476.
    [13] Armstrong D W, He L F, Liu Y S. Examination of ionic liquids and their interaction with moleculars, when used as stationary phases in gas chromatography. Anal. Chem., 1999, 71: 3873~3876.
    [14] Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430(26): 1012~1016.
    [15] Lu W, Fadeev A G, Qi B H, et al. Use of ionic liquids for -conjugated polymer electrochemical devices. Science, 2002, 297(5583): 983~987.
    [16] Fei Z, Geldbach T J, Zhao D. et.al. From dysfunction to bis-function: Design and applications of functionalized ionic liquids. Chem. Eur. J., 2006, 12(8): 2122~2130.
    [17] Freemantle M. Eyes on ionic liquids. Chem. Eng. News, 2000, 78(20): 37~50.
    [18] Erbeldinger M. M., Anita J., Russell A. J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid-An alternative to enzymatic atalysis in organic solvents, Biotechno1. Progr., 2000, 16(6), 1129~1131.
    [19] Peter W., Wilhelm K. Ionic Liquids—new“solution”for transition metal catalysis,Angew. Chem., Int. Ed. 2000, 39(21):3772~3789.
    [20]赵卫星,姜红波,张来新.离子液体在萃取分离中的研究应用.应用化工,2010,39(7):1079~1086.
    [21]韩菲,裴亮,王理明.离子液体在萃取分离中的应用.过滤与分离,2009,19(2):19~22.
    [22] Rogers R D, Huddleston J G, Willauer H D.Room temperature ionic liquid as novel media for“clean”liquid-liquid extraction. Chem. Commun., 1998, 16: 1765~1766.
    [23] Huddleston J G, Visser A E, Rogers R D, et al.Room temperature ionic liquids as novel media for“clean”liquid–liquid extraction,Chem. Commun., 1998, 16: 1765~1766.
    [24] Wei G T, Yang Z S, Chen C J. Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions., Anal. Chim. Acta. , 2003, 488(2):183~192.
    [25] Hirayama N, Deguchi M, Kawasumi H, et al., Use of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids as chelate extraction solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione., Talanta,2005,65(1):255~260.
    [26] Visser A E, Jensen M P, Laszak I, et al. Uranyl coordination environment in hydrophobic ionic liquids: An in situ investigation.,Inorg.Chem.,2003,42(7):2197.
    [27] Shimojo K, Goto M. Anal. Chem.,2004,76(17):5039.
    [28] Cocalia V A, Jensen M P, Holbrey J D, Spear S K, Stepinski D C, Rogers R D. Dalton Trans. 2005,11:1966.
    [29] Jensen M P, Neuefeind J, Beitz J V, Skanthakumar S, Soderholm L. J. Am. Chem. Soc. 2003,125(50):15466.
    [30] Dietz M L, Stepinski D C. Green Chem., 2005, 7(10):747.
    [31]王风彦等.离子液体应用研究进展.化学试剂, 2009, 31(1):25~30.
    [32] Macfarlane D R, Huang J, Forsyih M. Lithium-doped plasticcrystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature,1999,402(6763):792~794.
    [33] Bockirs J O, Reddy A, Gambca- Aldeco M. Modern electrochemistry (1)-ionics [M]. New York :Kluwer Academic Publishers,2002.
    [34]郭红霞,芮玉兰,梁英华.离子液体及其在电化学中的应用.上海化工,2007,32(6):30~35.
    [35] Kang Man Gu, Ryu Kwang Sun, Chang Soon Ho, et al.. A new ionic liquid for a redox electrolyte of dye- sensitized solar cells.ETRI Journal,2004,26(6):647~652.
    [36]邵媛,邓宇.离子液体的应用研究进展.精细化工中间体,2005,35(6):14~18.
    [37]尹振,翟玉春.室温离子液体在电化学沉积中的研究进展.有色矿冶,2005,21:49~51.
    [38] Frank Endres, Mirko Bukowski, Rolf Hempelmann, et al. Angew. Chem. Int. Ed,2003,42,3428~3430.
    [39] West A.Chem.World.Ionic liquids in synthesis[J].chem wored,2005(2):32~37.
    [40] Swatloski R. P., Spear S. K., Holbery J. D. Dissolution of cellose with ionic liquids . J. Am. Chem. Soc., 2002, 124: 4974~4795.
    [41] Clavier, H., Boulanger, L., Audic, N. et.al. Design and synthesis of imidazolinium salts derived from (L)-valine. Investigation of their potential in chiral molecular recognition. J. C. S. Chem. Commun., 2004, 1224~1225.
    [42] Wasserscheid, P., Bosmann, A., Bolm, C. Synthesis and properties of ionic liquids derived from the chiral“pool”. Chem. Commun., 2002, 200~201.
    [43] Yang J. Z., Zhang Q. G., Wang B., Tong, J. Study on the properties of amino acid ionic liquid EMIGly. J. Phys. Chem.B, 2006, 110: 22521~22524.
    [44]李静蕊.咪唑甘氨酸离子液体[emim][Gly]与水分子相互作用的构性研究:[硕士学位论文].辽宁:辽宁大学, 2010.
    [45] Ohno H., Fukumoto K. Amino acid ionic liquids. J. Acc. Chem. Res., 2007, 40:1122~1129.
    [46] Fukumoto, K., Yoshizawa, M., Ohno, H. Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc., 2005, 127, 2398~2399.
    [47] Bao W. L.; Wang Z.M.; Li Y.X. Synthesis of Chiral Ionic Liquids from Natural Amino Acids.J. Org. Chem., 2003, 68, 591~593.
    [48] Chen, W., Zhang, Y. Y., Zhu L. B. et.al. A Concept of Supported Amino Acid Ionic Liquids and Their Application in Metal Scavenging and Heterogeneous Catalysis J. Am. Chem. Soc., 2007, 129, 13879~13886.
    [49] E. A. Turner, C. C. Pye and R. D. Singer, J. Phys. Chem. A,2003,107,2277.
    [50] Mou, Z. X.; Li, P.; Wang, W.; Shi, J.; Song, R. J. Phys. Chem. B,2008, 112, 5088.
    [51] Yang Wu,Tiantian Zhang. Structural and Electronic Properties of Amino Acid Based Ionic Liquids: A Theoretical Study. J. Phys. Chem. A,2009,113,12995~13003.
    [52] Lopes J. N. C.,Deschamps J.,Padua A. A. H.J. Phys. Chem. B,2004,108:2038~2047.
    [53] Lopes J N C , Padua A A H. J . Phys. Chem. B,2004,108:16893~16898.
    [54]郑燕升,莫倩,孟陆丽,程谦伟.室温离子液体的分子动力学模拟.化学进展,2009,21(7/8):1427~1433.
    [55] Liu Z. P., Huang S. P., Wang W. C. J. Phys. Chem. B,2004,108:12978~12989.
    [56] Wu X. P., Liu Z. P., Wang W.C.. Phys. Chem. Chem. Phys.,2006,8:1096~1104.
    [57]吴晓萍,刘志平.室温离子液体[bmim][BF4]和水混合物的计算机模拟研究.物理化学学报,2005,21(9):1036~1041.
    [58]吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度.[J]物理化学学报,2005,21(10):1138~1142.
    [59] T. Yan, C. J. Burnham, M. G. D. Po′polo and G. A. Voth, J. Phys.Chem. B,2004,108,11877~11881.
    [60] Yan T.Y.,Wang Y.T.,and Craig Knox.J. Phys. Chem. B.2010,114,6905~6921.
    [61] Yan T.Y.,Wang Y.T.,and Craig Knox.J. Phys. Chem. B.2010,114,6886~6904.
    [62] Wang Y. T.,Jiang W.,Yan T. Y.,Gregory A. Voth. Acc. Chem. Res.2007,40,1193~1199.
    [63] Wang Y. T. and Gregory A. Voth. Unique Spatial Heterogeneity in Ionic Liquids. J. Am. Chem. Soc.2005,127,12192~12193.
    [62] Sudhir N. V. K. Aki et. Al. Chem. Commun., 2001, 413~414.
    [63] J. Jacquemin, P. Husson, A. A. H. Padua and V. Majer Density and viscosity of several pure and water-saturated ionic liquids. Green Chem., 2006, 8, 172~180.
    [64] Elena Gomez, Begona Gonzalez, ?ngeles Dom?nguez, et. al. Dynamic Viscosities of a Series of 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids and Their Binary Mixtures with Water at Several Temperatures. J. Chem. Eng. Data, 2006, 51, 696~701.
    [65] Jason A. Widegren, Arno Laesecke, Joseph W. Magee The effect of dissolved water on the viscosities of hydrophobic roomtemperature ionic liquids.Chem. Commun., 2005,1610~1612.
    [66]胡玉才,张江,耿长江等.室温离子液体在不同溶剂中的电导率研究.吉林大学学报(自然科学版),2005,26(1):45~49.
    [67] Thorsten K ddermann, Christiane Wertz, Ralf Ludwig et.al. The Association of Water in Ionic Liquids:A Reliable Measure of Polarity Angew. Chem. Int. Ed., 2006, 45, 3697 ~3702.
    [68] Selimar Rivera Rubero, Steven Baldell. Influence of Water on the Surface of Hydrophilic and Hydrophobic Room-Temperature Ionic Liquids. J. AM. CHEM. SOC., 2004, 126, 11788~ 11789.
    [69] Mara G. Freire, Pedro J. Carvalho, Ramesh L. Gardas et.al. Mutual Solubilities of Water and the [Cnmim][Tf2N] Hydrophobic Ionic Liquids. J. Phys. Chem. B, 2008, 112, 1604~1610.
    [70] Schr?der, U. Wadhawan, J. D. Dupont, J. et.al.Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl] imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J. Chem., 2000, 24, 1009~1015.
    [71] Cinzia Chiappe.Nanostructural organization of ionic liquids:Theoretical and experimental Evidences of the presence of well defined local structures in ionic liquids.Monatshefte für Chemie Chemical Monthly,2007,138,1035~1043.
    [72] Jinag W,Wang Y,Voth G. A.,Molecular Dynamics Simulation of Nanostructural Organization in Ionic Liquid/Water Mixtures,2007,111(18):4812~4818.
    [73] Selimar Rivera-rubero and Steven Baldelli.Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc.,2004,126(38):11788~11789.
    [74] Marco Kla¨hn,Claudia Stu¨ber,Abirami Seduraman,and Ping Wu.,What Determines the Miscibility of Ionic Liquids with Water? Identification of the Underlying Factors to Enable a Straightforward Prediction.J. Phys. Chem. B.,2010,114,2856~2868.
    [75] Chapeaux, A.,Simoni, L. D.,Stadtherr, M. A.,Brennecke, J. F.,Liquid Phase Behavior of Ionic Liquids with Water and 1-Octanol and Modeling of 1-Octanol/Water Partition Coefficients, J. Chem. Eng. Data.,2007,52(6): 2462~2467.
    [76] Seddon, K. R.,Stark, A.,Torres, M.J., Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,Pure Appl. Chem.,2000,72(12):2275~2287.
    [77] Huddleston, J. G.,Visser, A. E.,Reichert, W. R.,Willauer, H. D.,Broker, G. A.,Rogers, D.,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation,Green Chem.,2001, 3, 156~164.
    [78] Chaumont, A.,Wipff, G., Solvation of“big”spherical solutes in room temperature ionic liquids and at their aqueous interface: A molecular dynamics simulation study,J. Mol. Liq. 2007,131–132,36~47.
    [79] Fred van Rantwijk and Roger A. Sheldon.,Biocatalysis in ionic liquids,Chem. Rev.,2007,107(6):2757~2785.
    [80] Huddleston, J. G.,Willauer, H. W.,Swatloski, R. P.,Visser, A. E.,Rogers, R. D.,Roomtemperature ionic liquids as novel media for“clean”liquid-liquid extraction.,Chem. Commun.,1998, 16, 1765~1766.
    [81] Amrish Menjoge,Janeile Dixon,Joan F. Brennecke,Edward J. Maginn and Sergey Vasenkov., Influence of water on diffusion Imidazolium-Based ionic liquids: A pulsed field gradient NMR study., J. Phys. Chem. B,2009,113(18):6353~6359.
    [82] Freire, M. G.;,Santos, L. M. N. B. F.;,Fernandes, A. M.,Coutinho,J. A. P.,Marrucho, I. M., An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems.,Fluid Phase Equilib.,2007,261(1-2):449~454.
    [83] Cammarata L., Kazarian S. G., Welton T. et. al. Molecular states of water in room temperature ionic liquids.,Phys. Chem. Chem. Phys., 2001, 3, 5192~5200.
    [84] Porter A. R., Liem. S. Y., Popelier P. L. A. Room temperature ionic liquids containing low water concentrations-a molecular dynamics study.,Phys. Chem. Chem. Phys., 2008, 10, 4240~4248.
    [85] Wang Y., Li H. R., Han S. J. A theoretical investigation of the interaction between water molecular and ionic liquids. J. Phys. Chem. B, 2006, 110: 24646~24651.
    [86] Freire, M. G.,Neves, C. M. S. S.,Carvalho, P. J.,Gardas, R. L.,Fernandes, A. M.,Marrucho, I. M.,Santos, L. M. N. B. F.,Coutinho, J. A. P.,Mutual solubilities of water and hydrophobic ionic liquids.,J. Phys. Chem. B, 2007,111(45),13082~13089.
    [87] Huddleston, J. G.,Visser, A. E.,Reichert, W. R.,Willauer, H. D.,Broker, G. A.,Rogers, D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation.,Green Chem. 2001,3,156~164.
    [88] Ranke, J.; Othman, A.; Fan, P.; Muller, A.,Explaining ionic liquid water solubility in term of cation and anion hydrophobicity., Int. J. Mol. Sci., 2009,10(3):1271~1289.
    [89] Dominguez Vidal A., Kaun N., Lendl B. Probing Intermolecular Interactions in Water/Ionic Liquid Mixtures by Far-infrared Spectroscopy, J. Phys. Chem. B, 2007, 111, 4446~4452.
    [90] Chang H. C., Jiang J. C., Tsai W. C.et.al. Hydrogen Bond Stabilization in 1,3-Dimethylimidazolium Methyl Sulfate and 1-Butyl-3-Methylimidazolium Hexafluorophosphate Probed by High Pressure: The Role of Charge-Enhanced C-H···O Interactions in the Room-Temperature Ionic Liquid. J.Phys. Chem. B, 2006, 110, 3302~3307.
    [91] Sando G. M., Dahl K., Owrutsky J. C. Vibrational Spectroscopy and Dynamics of Azide Ion in Ionic Liquid and Dimethyl Sulfoxide Water Mixtures.J. Phys. Chem. B, 2007,111, 4901~4909.
    [92] Gao Y., Li N., Zheng L., Bai X.et.al. Role of Solubilized Water in the Reverse Ionic Liquid Microemulsion of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene. J. Phys. Chem. B, 2007, 111, 2506~2513.
    [93] Zhang L. Q., Wang Y., Li H. R. et. al. Prediction of the Solvation and Structural Properties of Ionic Liquids in Water by Two-Dimensional Correlation Spectroscopy. J. Phys. Chem. B, 2008, 112, 6411~6419.
    [94] Hanke, C. G.,Atamas, N. A.,Lynden-Bell, R. M.,Solvation of small molecules in imidazoliumionic liquids: a simulation study.,Green Chem.,2002,4,107~111.
    [95] Hanke, C. G.,Lynden-Bell, R. M.,A simulation study of water-dialkylimidazolium ionic liquid mixtures., J. Phys. Chem. B, 2003, 107(39):10873~10878.
    [96] Annapureddy, H. V. R.,Hu, Z. H.,Xia, J. C.,Margulis, C. J.,How Does Water Affect the Dynamics of the Room-Temperature Ionic Liquid 1-Hexyl-3-methylimidazolium Hexafluorophosphate and the Fluorescence Spectroscopy of Coumarin-153 When Dissolved in It?, J. Phys.Chem. B, 2008, 112(6): 1770~1776.
    [97] Moreno, M.,Castiglione, F.,Mele, A.,Pasqui, C.,Raos, G.,Interaction of Water with the Model Ionic Liquid [bmim][BF4]: Molecular Dynamics Simulations and Comparison with NMR Data., J. Phys.Chem. B, 2008,112(26),7826~7836.
    [98] Sieffert, N.,Wipff, G.,The [BMI][Tf2N] Ionic Liquid/Water Binary System: A Molecular Dynamics Study of Phase Separation and of the Liquid?Liquid Interface., J. Phys. Chem. B, 2006,110(26),13076~13085.
    [99] Padua, A. A. H.,Gomes, M. F. C.,Lopes, J. N. C.,Molecular Solutes in Ionic Liquids: A Structural Perspective., Acc. Chem.Res.,2007,40(11):1087~1096.
    [100] Wang Y. T., Jiang W., Voth G. A. Understanding Ionic Liquids through Atomistic and Coarse-Grained Molecular Dynamics Simulations. Acc. Chem. Res., 2007, 40, 1193~1199.
    [101] Yoshikata Koga, Mixing Schemes in Ionic Liquid-H2O Systems: A Thermodynamic Study. J. Phys. Chem. B, 2004, 108, 19451~19457.
    [102] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev., 1964, 136, B864~B871.
    [103] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140: A1133~A1138.
    [104] Mortier, W. J.,Ghosh, S. K., Shankar,S.,Electronegativity-equalization method for the calculation of atomic charges in molecules.,J.Am.Chem.Soc.,1986,108(15):4315~4320.
    [105]沈尔忠,杨忠志.电负性均衡原理在计算原子电荷分布中的应用.科学通报,1994,39(8):713.
    [106]沈尔忠,杨忠志.密度泛函理论下的分子电负性.中国科学,B辑,1995,25(2):126.
    [107]沈尔忠,杨忠志.密度泛函理论下的分子电负性.中国科学,B辑,1995,25(12):1233.
    [108]沈尔忠,杨忠志.密度泛函理论下的分子电负性.化学学报,1996,54:152~159.
    [109] Parr,R. G.,Donnelly,R. A.,Levy,M. et al., J.Chem.Phys.,1978,68:3801.
    [110] Laudau D. P., Binder K. In Monte Carlo Simulations in Statistical Physics. Cambridge University Press: Cambridge.2000.
    [111] Zhou G. H.,Liu X. M., Zhang S. J. et. al. A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids, J. Phys. Chem. B, 2007, 111, 7078~7084.
    [112] Liu Z. P., Haung S. P., Wang W. C. A refined force field for molecular simulation of imidazolium-based ionic liquids, J. Phys. Chem. B, 2004, 108, 12978~12989.
    [113] Greaves T. L., Drummond C. J. Protic ionic liquids: properties and applications, Chem. Rev., 2008, 108, 206~237.
    [114] Margherita Moreno, Franca Castiglione, Andrea Mele,Carlo Pasqui, and Guido Raos.,Interaction of Water with the Model Ionic Liquid [bmim][BF4]: Molecular Dynamics Simulations and Comparison with NMR Data.,J. Phys. Chem. B, 2008,112,7826~7836.
    [115]张庆国,杨家振.过渡金属离子液体及氨基酸离子液体性质研究:[博士学位论文].辽宁省锦州:渤海大学,2007.
    [116] Li, W., Zhang, Z., Han, B., Hu, S., Xie, Y., Yang, G.,Effect of Water and Organic Solvents on the Ionic Dissociation of Ionic Liquids.,J. Phys. Chem. B,2007,111(23):6452~6456.
    [117] Pauling,L..Nature of the Chemical bond.Cornell University Press,1960;卢嘉锡等译,上海科学技术出版社,1966.
    [118] Parr, R. G., Donnelly, R. A., Levy, M. et al., Electronegativity: The density functional viewpoint., J.Chem.Phys.,1978,68:3801~3807.
    [119]宋辉,张强,何鸿斌,杨忠志.应用ABEEMσπ模型研究氨基酸和多肽分子的电荷分布.辽宁师范大学学报(自然科学版),2002,25(1):63~67.
    [120]王长生,孙仁安,杨忠志.高等学校化学学报. 1997,18(8): 1353~1355.
    [121] Yang Z. Z., Wang C. S..Atom-Bond electronegativity equalization method. I. calculation of the charge distribution in large molecules., J. Phys. Chem. A, 1997,101(35):6315~6321.
    [122] Wang C. S., Yang Z. Z.,Atom-Bond electronegativity equalization method. II. Lone-pair electron model.,J. Chem. Phys., 1999,110:6189~6197.
    [123] Cong Y., Yang Z. Z.. Chem. Phys. Lett. [J], 2000,316: 324~329.
    [124]杨忠志,丛尧,王长生.原子-键电负性均衡方法中的模型及其应用.高等学校化学学报, 1999,20(11): 1781~1783.
    [125] Yang Z. Z., Wu Y., Zhao D. X.,Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters., J. Chem. Phys.,2004,120:2541~2557.
    [126] Wu Y.,Yang Z. Z.,Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics. II. A Seven-Site Fluctuating Charge and Flexible Body Water Potential Function for Liquid Water.,J. Phys. Chem. A., 2004,108(37): 7563~7576.
    [127]崔宝秋,管清梅,宫利东,赵东霞,杨忠志. ABEEM /MM浮动电荷力场应用于血红素结构的研究.高等学校化学学报,2008,29(3):585~590.
    [128]叶菲,欧阳永中,梁逸曾.基于电负性均衡方法准确计算杂环分子中的原子电荷.计算机与应用化学,2008,25(12):1571~1576.
    [129]吴阳,张甜甜,李静蕊.半胱氨酸阴离子与咪唑阳离子间相互作用的理论研究.化学学报,2009,67(16),1851~1858.
    [130]吴阳,张甜甜,于宁.1-乙基-3甲基咪唑阳离子与天冬酰胺阴离子的相互作用.2009,25(8),1689~1696.
    [131] Gregory A. Voth,Wei Jiang,Yanting Wang. Molecular Dynamics Simulation of Nanostructural Organization in Ionic Liquid/Water Mixtures.J. Phys. Chem. B 2007, 111, 4812~4818.
    [132] Gergory A. Voth, et. al. Understanding Ionic Liquids through Atomistic and Coarse-Grained Molecular Dynamics Simulations. Acc. Chem. Res. 2007, 40, 1193~1199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700