中药五谷虫对感染创面抗菌作用的临床与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性难治性感染创面临床常见,如脊髓损伤截瘫患者压疮溃烂和感染,慢性化脓性骨髓炎的感染创面,下肢静脉性溃疡和糖尿病晚期下肢溃疡创面等。这些感染创面的特点是:病程长,溃疡创面经久不愈;多为混合感染,常规治疗方法疗效差;创面的坏死组织界限不清,外科清创术治疗困难,严重影响患者健康和生活质量。特别是由于抗生素的滥用,细菌对抗生素的耐药情况日益严重,从而降低了抗生素对创面感染的抗菌功效,使这类创面治疗更加困难。因此,如何有效地治疗慢性难治性感染创面是外科领域一直没有解决的难题之一。
     传统中药材“五谷虫”,又名蛆虫,为丽蝇科丝光绿蝇、大头金蝇的幼虫。《本草求源》、《本草便读》均记载:该虫性寒无毒,可搽敷外用,能治疗臁疮等感染性外科疾病。为临床治疗慢性难治性感染创面提供了一种新的思路。但是中医学对五谷虫治疗感染创面缺乏系统的研究,其抗菌机制还不十分清楚。近年来,Sherman R.A.等国外学者发现,五谷虫治疗感染创面,能有效地促进创面愈合,抵抗细菌感染。但目前研究仍主要集中于临床治疗病例报道,缺乏与五谷虫抗菌作用相关的临床与分子生物学的系统研究。
     本课题采用中西医结合的方法,对五谷虫对感染创面抗菌作用的临床与分子机制进行系统地研究。旨在(1)探索系统的五谷虫培育和消毒技术,为临床和基础研究提供材料来源;(2)分析五谷虫的抗菌物质,观察其抗菌活性,确定其对感染创面起到生物学作用的有效成份,为进一步对其进行药效、药理学和“基因工程”制剂生产研究奠定理论基础;(3)探讨五谷虫对感染创面抗菌与促进愈合作用的机理,为五谷虫临床应用提供理论依据。
     本课题研究分三部分:(1)医用五谷虫制备及其粗提物的抗菌活性研究;(2)五谷虫抗菌物质的纯化鉴定及其分子结构的实验研究;(3)五谷虫对创面的抗菌与促进愈合作用研究。
     第一部分医用五谷虫制备及其粗提物的抗菌活性研究
     1.医用五谷虫的制备技术研究
     本研究在室内常温环境下,采用无菌饲料对五谷虫主要虫种“丝光绿蝇幼虫”进行人工饲养、繁殖传代,对虫卵、虫体进行“双重消毒”处理。研究发现:丝光绿蝇的幼虫能在室内环境下人工饲养、稳定传代,可以作为五谷虫临床与基础实验的材料来源。虫卵、虫体“双重消毒”的方法能有效地对五谷虫进行消毒处理,减少五谷虫在饲养和使用过程中受到医源性感染的机会。
     2.五谷虫粗提物对标准菌株的抗菌活性研究
     本研究采用离心分离方法获得五谷虫分泌物和虫体组织匀浆粗提物。分别以金黄色葡萄球菌、大肠埃希氏菌标准菌株作为指示菌,对五谷虫粗提物进行琼脂平板法抗菌试验,用SDS-PAGE对粗提物进行电泳分析。结果显示:五谷虫粗提物组的抑菌环直径明显大于对照组,统计学有显著性差异(P<0.01)。研究发现:五谷虫分泌物和虫体组织匀浆粗提物中均含有同样有效的抗菌物质,对金黄色葡萄球菌和大肠杆菌均有抗菌作用。该抗菌物质以分子量较小的有机成分为主。
     3.五谷虫对感染创面致病细菌的抗菌作用研究
     本研究以糖尿病足溃疡创面上分离培养的金黄色葡萄球菌为指示菌,提取五谷虫粗提物,对粗提物采用平板法做抗菌实验,头孢哌酮和生理盐水做对照。结果显示:实验组的抑菌环直径明显大于对照组,统计学分析有显著性差异(P<0.01)。研究发现:五谷虫对金黄色葡萄球菌(一般致病菌)具有抗菌作用。
     以糖尿病足溃疡创面上分离培养的铜绿假单胞菌(绿脓杆菌)为指示菌,提取五谷虫粗提物,对粗提物采用平板法做抗菌实验,头孢哌酮和生理盐水做对照。结果显示:实验组的抑菌环直径明显大于对照组,统计学分析有显著性差异(P<0.01)。研究发现:五谷虫对绿脓杆菌(特殊致病菌)具有抗菌作用。
     本实验以脊髓损伤后截瘫患者压疮感染创面上分离培养的金黄色葡萄球菌为指示菌,提取经过指示菌针刺感染诱导后的五谷虫粗提物作为实验组,采用平板法做抗菌实验,未经感染诱导的五谷虫粗提物和头孢哌酮做对照。结果显示:实验组的抑菌环直径明显大于对照组,统计学分析有显著性差异(P<0.01)。研究说明:通过针刺感染诱导的外源性刺激能增强五谷虫抗菌物质的抗菌能力。
     第二部分五谷虫抗菌物质的活性鉴定、分离纯化及其分子结构的实验研究
     1.浊度法检测五谷虫分泌物抗菌活性的实验研究
     本研究以金黄色葡萄球菌标准菌株为指示菌,将五谷虫分泌物粗提物与指示菌共同培养。用酶标仪测量培养液的光密度值,绘制光密度—时间曲线。用考马斯亮蓝法检测并调整分泌物中的蛋白质含量,采用浊度法检测不同蛋白质浓度分泌物样品的抗菌活性。结果显示:五谷虫粗提物与金黄色葡萄球菌共同培养21小时,金黄色葡萄球菌的吸收光密度OD值随着时间的增加而降低,对照液中金黄色葡萄球菌的吸光密度OD值随着时间的增加而增加,与对照液相比较,五谷虫粗提物对于金黄色葡萄球菌的生长产生了明显的抑制作用。抗菌活性随着分泌物中蛋白含量的变化而出现变化,0.8mg/ml、0.4mg/ml蛋白含量的分泌物抑菌效果明显,0.2mg/ml、0.1mg/ml蛋白含量的分泌物样品液无明显抑菌效果。实验说明:蛋白质浓度的调整会引起五谷虫抗菌物质抗菌活性的相应变化。
     2.五谷虫分泌物抗菌活性物质的鉴定分析
     本研究将五谷虫分泌物样品液经过DEAE离子交换层析,收集洗脱液和淋洗液,将洗脱液和淋洗液分别与金黄色葡萄球菌液于37℃温箱共同培养21小时,浊度法检测抗菌活性。SDS-PAGE技术对五谷虫分泌物样品液、洗脱液和淋洗液进行电泳,行考马斯亮兰染色,完成抗菌物质的鉴定分析。结果显示:淋洗液的OD值随着时间的增加而增加;洗脱液的OD值明显低于淋洗液的OD值,洗脱液对于金黄色葡萄球菌的生长产生了明显的抑制作用。五谷虫分泌物样品液、洗脱液经过SDS—PAGE电泳可见相似的蛋白质成分条带,淋洗液未见明显的蛋白质条带显示。实验发现:五谷虫分泌物中的抗菌活性物质是蛋白质类物质,其等电点小于8;DEAE离子交换层析可以作为分泌物中抗菌物质的分离提纯方法。
     3.五谷虫抗菌活性物质的纯化研究
     本研究通过离子交换和凝胶过滤两步层析对五谷虫分泌物中的抗菌物质进行分离提纯,在提纯过程中用浊度法检测洗脱液的抗菌活性,将洗脱液进行编号收集,进行SDS-PAGE与银染,寻找并获得分泌物中抗菌物质的蛋白质条带。结果显示:离子交换层析后,五谷虫分泌物中的蛋白质成分被完全洗脱下来,进入到编号的收集管洗脱液中,第33管洗脱液的蛋白质成分具有明显的抗菌活性;对第33管洗脱液进行凝胶过滤层析,层析后的洗脱液进入到编号收集管中,第13、14、15管洗脱液具有抗菌活性,其他收集管的洗脱液无抗菌活性;第13、14、15管洗脱液均显示出一条清晰的蛋白条带而且分子量相同,分子量小于14.4KDa。实验证实:离子交换层析和凝胶过滤层析能够对五谷虫分泌物中的抗菌蛋白进行有效地分离、纯化。
     4.五谷虫抗菌活性物质的分子结构及生物信息学研究
     本实验将经过层析纯化和SDS-PAGE而获得的五谷虫分泌物的抗菌蛋白条带切下,用胰蛋白酶水解。采用纳升级电喷雾质谱技术对酶解后抗菌蛋白产生的肽片段进行分子结构与生物信息学研究,寻找与该抗菌蛋白相关的同源性物质,获得该抗菌蛋白的生物学信息。结果显示:抗菌蛋白中存在ENAGEDPGLAR、LGKDAVEDLESVGK、DAVEDLESVGK共3个肽片段的氨基酸序列信息;经Bioworks软件检索NCBInr数据库,搜索同源性蛋白质信息,共得到三种蛋白质:dermcidin preproprotein [Homo sapiens](人源汗腺抗菌肽前原蛋白);dermcidin preproprotein [Macaca mulatta](猕猴源汗腺抗菌肽前原蛋白);protein phosphatase 1 inhib.(蛋白磷酸酶1抑制蛋白)。研究发现:五谷虫分泌物的抗菌蛋白是与Dermcidin preproprotein具有一定同源性的抗菌肽类物质。
     第三部分五谷虫对创面的抗菌与促进愈合作用研究
     1.五谷虫对DM大鼠溃疡创面的抗菌与愈合作用
     本研究采用付小兵DM大鼠溃疡创面动物模型,将五谷虫分泌物外敷于实验组创面,通过组织形态学和免疫组化的方法研究五谷虫分泌物对DM大鼠溃疡组织中碱性成纤维细胞生长因子(bFGF)和结缔组织生长因子(CTGF)表达的影响。结果显示:五谷虫分泌物能提高DM大鼠溃疡创面中bFGF和CTGF的表达,其表达水平明显高于对照组,统计学分析有显著性差异(P<0.01),实验说明五谷虫分泌物具有促进创面愈合的作用。
     取实验组和对照组溃疡创面分泌物作细菌培养,记录创面细菌感染情况。结果显示:对照组金葡菌感染率为60%,实验组溃疡创面一般菌培养结果为阴性,未见致病细菌生长。实验发现:五谷虫分泌物具有预防创面细菌感染的作用。
     2.五谷虫对感染创面抗菌与生物清创作用的临床研究
     本研究对6例糖尿病足部溃疡患者的感染创面、5例脊髓损伤后截瘫患者的压疮创面运用活体五谷虫进行治疗,取创面分泌物作菌培养,记录培养结果,观察创面愈合情况。结果显示:创面分泌物细菌培养逐渐由阳性转为阴性,平均时间11.2天;感染创面脓性分泌物及坏死组织逐渐减少,新鲜肉芽组织形成,平均时间2.6天;创面逐渐缩小,获得良好愈合,平均时间25.6天。实验证实:五谷虫可以有效地抵抗创面的细菌感染,吞食坏死组织而对健康组织无破坏,五谷虫“生物清创术”是治疗慢性感染创面的安全而有效的方法。
The number of patients suffering from chronic infective wounds is on the rise. Those wounds are attributable to diseases such as pressure ulcer after spinal cord injury (SCI), chronic osteomyelitis and infective wounds caused by diabetes mellitus and peripheral vascular disease. Those diseases pose a significant impact on the health care system, because of chronicity of care required, long term treatment and bad healing effects.Those infective wounds are difficult to be treated with common debridement and operation.
     How to control the infection caused by bacterium is the key point to cure infective wound. Antibacterial drugs posed a significant impact on such kinds of diseases in the past time. Recently, the problem of the rising incidence of antibiotic resistance became serious. Antibiotic resistant bacteria could damage the wound quickly. As a result of the prevalence of antibiotic resistant bacteria, antibacterial function of common antibiotics on the infective wound was declined dominantly. At present, it is a problem to control the bacterial infection and hasten the process of infective wound healing in the field of modern surgery.
     Chinese traditional medicine“WuGuChong”is the larvae of Lucilia sericata, Chrysomyia megacephala or other relative Calliphoridae insects.“Ben Cao Qiu Yuan”and“Ben Cao Bian Du”which are Chinese traditional books record that the pharmic character of the larvae is cool and innoxious, it is a medicine for external application to cure surgical infection diseases such as carbuncle and sore. The application of WuGuChong could offer a new idea to treat infective wound effectively, but antibacterial mechanism of WuGuChong could not be achieved from Chinese traditional medicine. Recently, doctors of western country such as Sherman R.A. began to do clinical studies of WuGuChong for infective wound treatment and found that WuGuChong could be used for cleaning and disinfection of chronic wounds that are sloughy, necrotic, and infected. Nowadays, the researches are mainly focused on case reports and treatment skills. The biomolecular and clinical study about antibacterial function is lacking.
     Under the guidance of the theory of integrated traditional and western medicine, we would do the clinical and biomolecular research of antibacterial function of Chinese medicine WuGuChong on infective wound. The destinations of the project are as follows: 1. Achieve the systemic rearing and disinfection skills of WuGuChong, offer the materials for clinical and basic research; 2. Achieve the purified antibacterial substance of WuGuChong, get the character of antibacterial activity, confirm the effective antibacterial component on infective wound, realize the molecular structural and biological information, the project will lay the theoretical foundation for farther pharmacological research and gene engineering preparation of WuGuChong; 3. Discuss the antibacterial and healing mechanism of WuGuChong on infective wound, get the scientific application skills for clinical treatment.
     The idiographic study contents as follows: Part 1.The preparation study of medical WuGuChong and the antibacterial activity study of primary purification; Part 2. Analysis and identification of antibacterial activity of WuGuChong, separation and purification of effective antibacterial substance and molecular structure study.Part 3.The study of antibacterial and promoting healing function about WuGuChong on infective wound.
     Part1. The preparation study of Medical WuGuChong and the antibacterial activity study of primary purification
     1. The preparation study of Medical WuGuChong
     We investigated the skills of rearing and disinfection for the larvae of Lucilia sericata which was the mostly species of WuGuChong. WuGuChong was propagated and reared with artificial asepsis diets in laboratory, eggs and larvaes were disinfected with“double steps disinfection”. The results showed that Lucilia sericata could be reared in doors and the generation was stable. The eggs and larvaes were disinfected with“double steps disinfection”, all eggs and larvae were alive, none larvae were dead because of disinfection. No bacteria and virus were found from the the homogenization of the larvae. The experiment approved that the larvae of lucilia sericata could be reared with artificial skill under the asepsis environment indoors. The larvae of lucilia sericata could be used as the materials for the clinical and experimental research.
     2. Antibacterial activity study of primary purification of WuGuChong on standard bacterium
     We studied the antibacterial activity and biological characters of secretion and hemolymph from the primary purification of WuGuChong. Primary purification of hemolymph and secretion of the larvae were achieved with centrifugation, the antibacterial activity was tested with disc method, took use of standard Escherichia coli and Staphylococcus aureus as the indicator organisms. SDS-PAGE analysis was admitted for the primary purification of hemolymph and secretion. The results showed that the diameters of antibacterial cycle in experimental groups were larger than those in the contrast groups (P<0.01). The experiment approved that not only the primary purification of hemolymph but also the primary purification of secretion had the same broad antibacterial and sterilizing activity to both E. coli and S. aureu. Main antibacterial substance of WuGuChong was some kind of organic component (smaller molecular weight).
     3. The antibacterial function of WuGuChong against harmful bacterium from infective wound
     In this study, we used S. aureus as the indicator organisms which from the infective wounds of clinical DM cases, the primary purification of WuGuChong was collected, the antibacterial activity was tested with disc method, and then recorded the antibacterial effect, cefoperazone sodium and Saline as the contrast groups. Results showed that the diameters of antibacterial cycle in experimental groups were larger than those in the contrast groups (P<0.01). It was found that WuGuChong had the antibacterial activity to common pathopoiesis bacterium of infective wound.
     Using Pseudemonas aeruginosa as the indicator organisms which from the infective wound of clinical DM cases, the primary purification of WuGuChong was collected , the antibacterial activity was tested with disc method , and then recorded the antibacterial effect , cefoperazone sodium and Saline as the contrast groups. Results showed that the diameters of antibacterial cycle in experimental groups were larger than those in the contrast groups (P<0.01). It was found that WuGuChong had the antibacterial activity to special pathopoiesis bacterium of infective wound.
     In the study, the hemolymph of the larvae which was induced by the bacterium with pricking was collected, the hemolymph of the asepsis larvae which was not induced by the bacteria and Cefoperazone Sodium as the contrast groups, Staphylococcus aureus as the indicator organisms which from the infective wound of pressure ulcer after spinal cord injury. The antibacterial activity was tested with disc method, the antibacterial effect was observed. The results showed that the diameters of antibacterial cycle in experimental groups were larger than those in the contrast groups (P<0.01).The experiment approved that the antibacterial substance of WuGuChong was some native component which was not induced by external stimulation. External stimulation could enhance the antibacterial activity.
     Part2. Analysis and identification of antibacterial activity of WuGuChong,separation and purification of effective antibacterial substance and molecular structure study.
     1. The study of Turbidometric (TB) assay for antibacterial activity of WuGuChong secretion
     In the experiment, we used standard Staphylococcus aureus as the indicator organisms. The secretion of WuGuChong and the indicator organisms were cultured together, measurement of Turbidometric (TB) assay was taken: collected the culture fluid (sample fluid and contrast fluid), measured the OD value on different time with ELIASA.OD-time curve was protracted. Checked and adjusted the protein content of the sample fluid with Commassie Blue, measured the antibacterial activity of sample fluid with different protein concentration. Total culture time was 21 hours, the OD value of sample fluid was declined with the time going on, the OD value of contrast fluid was increased with the time going on, evident antibacterial function was found in the sample fluid. Dominant antibacterial activity was found on the protein concentration of 0.8mg/ml and 0.4mg/ml, no dominant antibacterial activity was found on the protein concentration of 0.2mg/ml and 0.1mg/ml.The results approved that antibacterial activity in the secretion of WuGuChong was changed with the changing of protein concentration.
     2. Analysis and identification of antibacterial substance of WuGuChong
     In this experiment, we collected the secretion of WuGuChong, purified the secretion with DEAE-Sepharose ion exchange, and then collected the gradient elution and the rinse fluid. Not only elution but also rinse fluid was cultured with S. aureus at 37℃for 21 hours. Antibacterial assay was tested and confirmed for measurement of Turbidometric (TB) assay. The sample of secretion, elution and rinse fluid were checked by SDS-PAGE. The results showed that evident antibacterial activity was found in the elution fluid. Similar protein bandages were shown in both secretion and elution, no protein bandage was found in the sample of rinse fluid. The proteins of the secretion of larvae were eluted completely. The experiment approved that the antibacterial material of the secretion of WuGuChong was some kind of protein (PI<8), DEAE-sepharose ion exchange chromatography was elected as primary method and its gradient elution condition was optimized.
     3. Purification research of antibacterial substance of WuGuChong
     And then, we investigated the purifying effects of DEAE-Sepharose ion exchange chromatography and gel filtration chromatography for antibacterial substance of the secretion from WuGuChong. Antibacterial assay was tested with measurement of Turbidometric (TB) assay. The gradient elution was collected into serial number tubes in the course of chromatography. The gradient elution into serial number tubes was checked by SDS-PAGE and silver stain, searched the objective antibacterial protein, achieved the objective protein bandage. The results showed that protein contents of tube 33 had dominant antibacterial after ion exchange chromatography. The elution of tube 33 was purified with Superdex-75 gel filtration, antibacterial activity was found in 13, 14, 15 tube of the elution, no significant activity was found in other tubes. The results of SDS-PAGE and silver stain of the elution in tube 13-15 showed that there was a clear protein bandage (MW<14.4KDa), no other protein bandage was found in the elution of tube 13-15. The experiment approved that DEAE-Sepharose ion exchange followed by Superdex-75 gel filtration could purify the antibacterial substance effectively.
     4. Molecular structure and biological informatics study of antibacterial substance of WuGuChong
     In the study, the objective protein bandage was sliced and dealed with Trypsin, the fragments after zymohydrolysis were achieved. The nano-ESI-MS/MS instrument was used to assay the fragments. We did the study of molecular structure and biological informatics of antibacterial substance of WuGuChong with mass spectrum, searched the homologous substance and achieved effective biological information of the antibacterial substance. The results showed that three fragments were found as follows: ENAGEDPGLAR; LGKDAVEDLESVGK; DAVEDLESVGK. Antibacterial protein of the secretion of WuGuChong contained the information of those three fragments. Checked NCBInr database with Bioworks software, achieved the information of homologous proteins: dermcidin preproprotein [Homo sapiens]; dermcidin preproprotein [Macaca mulatta]; protein phosphatase 1 inhib. After identification and analysis of biological informatics, the experiment approved that the antibacterial substance of the secretion of WuGuChong was a kind of antibacterial peptide, there was a higher degree of similarity existed between WuGuChong and Dermcidin preproprotein.
     Part 3. The study of antibacterial and promoting healing function about WuGuChong on infective wound
     1. The antibacterial and healing function of WuGuChong on ulcer wound of DM rat
     The“Fu Xiaobing”model of ulcer wound of DM rats was made. The ulcer wound of DM rats in maggot secretion group spread maggot secretions, but no secretion on ulcer wound was found in control group. Morphological and immunohistological detection were used to observe the expression of basic fibroblast growth factor (bFGF) and connective tissue growth factor (CTGF) in ulcer tissue. It was found that the secretion of WuGuChong could elevate the expressions of bFGF and CTFG in ulcers of DM rats , the expression level was higher than that in contrast group (P<0.01), WuGuChong could promote the wound’s healing.
     In this study, the secretion from the wound of experimental and contrast group was checked with bacterial culture, the results showed that no Staphylococcus aureus infection was seen in experimental group, Staphylococcus aureus infection occurred in contrast group, the rate of Staphylococcus aureus infection was 60%. The experiment approved that the secretion of WuGuChong could prevent bacterial infection on wound.
     2. The clinical research about antibacterium and biological debridement of WuGuChong on infective wound
     In the clinical research, WuGuChong therapeutics was used to repair different infective wounds, the cases as follows: 6 cases suffered from foot ulcer of diabetes mellitus, 5 cases suffered from pressure ulcer after spinal cord injury. The changes of wound surface were observed, bacterial culture was tested. The research showed that negative results were found in the bacterial culture(average 11.2days), the suppurative and necrotic tissue in the wound was declined, and a great amount fresh granulation tissue was generated(average 2.6 days), ideal wound healing occurred in all cases(average 25.6days). The clinical research approved that WuGuChong could resist bacterial infection of wounds, the biological debridement therapy of WuGuChong was valuable and safe in the debridement of intractable chronic wounds. WuGuChong could reach necrotic tissue in all areas of the wound and clean minutes areas without damaging healthy tissue.
引文
1.许兵红,陈正跃,艾予川.丝光绿蝇饲养初步研究[J].新乡医学院学报,1999, 16(1):30-31.
    2.谢观主编.中华医学大辞典.沈阳:辽宁科学技术出版社,1994.1366.
    3. Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol 2001; 2:219-227.
    4. Sherman RA. Maggot versus conservative debridement therapy for the treatment of pressure ulcers. Wound Repair Regen 2002;10:208-214.
    5. Smith KE, Wall R. The use of carrion as breeding sites by the blowfly Lucilia sericata and other Calliphoridae. Med Vet Entmol,1997;11(1):38-44.
    6. Amin AR, Shoukry A, Morsy TA, et al. Studies of wound myiasis among sheep and goats in North Sonai Governorate·J Egypt Soc Parasitol,1997;27(3):719-737.
    7. Sherman RA, Mytientran JM. A simple,sterile food source for rearing the larvae of Lucilia sericata(Diptera: Calliphoridae )[J].Med Vet Entomol,1995,9(4):393-398.
    8.许兵红,陈正跃,艾予川.丝光绿蝇驯养初期生物学特性观察[J].实用寄生虫病杂志,1999,7(1):29-30.
    9. Courtenay M, Church JC, Ryan TJ. Larva therapy in wound management. J R Soc Med. 2000 Feb;93(2):72-4.
    10. Sherman RA, Wyle FA. Low-cost, low-maintenance rearing of maggots in hospitals, clinics, and schools.Am J Trop Med Hyg. 1996;54(1):38-41.
    11.江苏新医学院编著.中药大辞典(上册) [M].上海:科学技术出版社,1977.384.
    12.李永春主编.中医大辞典[M].北京:人民卫生出版社,1982,63.
    13.李时珍.本草纲目(校点本)[M].北京:人民卫生出版社, 1982, 4: 2291-2296.
    14.朱宝明.中西医结合治疗小儿疳积临床观察[J].辽宁中医杂志, 2007, 34(3): 336 -337.
    15.毛萌.儿童肠道微生态系统的特点与疾病[J].临床儿科杂志,2005,23(10): 679 -680.
    16.陆彪,马金海,吕菁.五谷虫治疗小儿厌食症30例临床总结[J].宁夏医学院学报,1999,21(6):416-417.
    17.石俊英.中药电泳鉴别法及其在植物、动物类中药应用的研究[J].山东中医学院学报,1995,19(2):74-75.
    18.石俊英,彭艳丽,韩宁等. 16种中药的电泳鉴别研究[J].山东中医药大学学报,1997,21(1):66-68.
    19.魏丽莉.细菌对抗生素耐药性的研究进展[J].生物学教学.2007,32(9):10-11.
    20. Borges MI,Adrian RW. The structure and function of drug pumps. Trends in Microbiology, 2001,9(2):69-71.
    21. Wendy W. Holding back the tide of antibiotic resistance. Chemistry and Biology, 2006,13(1):1-3.
    22.杨博华,赵树森.糖尿病足病变的中医治疗[J].世界医学杂志, 1999,3(12):39-41.
    23.刘毅斌.糖尿病足的中西医临床研究概况[J].现代中西医结合杂志, 1999, 8 (11):1733-1735.
    24.朱圆,曹伟新.外科伤口敷料的选择[J].解放军护理杂志,2005,22(4):56-58.
    25.程天民,胡友梅.创伤难愈的主要原因与发生机制[J].中华创伤杂志, 2004,20(10):577.
    26. Mumcuoglu KY,Miller J,Mumcuoglu M,et al.Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol,2001;38:161-166.
    27. Friedman E,Shaharabany M,Ravin S et al.Partially purified antibacterial agent from maggots displays a wide range of antibacterial activity. In: Mumcuoglu KY ed. Abstracts of III rd International Conference on the biotherapy,Jerusalem Israel, 1998,Jerusalem Israel: The International Biotherapy Society, 1998:14.
    28. Huberman L,Gollop N,Mumcuoglu KY, et al.Antibacterial substances of low molecular weight isolated from the blowfly,Lucilia sericata. Med Vet Entomol. 2007 ,21(2):127-131.
    29.许兵红,曾莉萍,艾予川,等.丝光绿蝇抗菌物质针刺诱导及其性质研究[J].中国人兽共患病杂志.2004,20(6):526-528.
    1.张盈帆,江华,袁相斌,等.难治性感染缺损创面的整形外科修复[J].组织工程与重建外科杂志.2007,3,(5):264-267.
    2. Wendy W. Holding back the tide of antibiotic resistance. Chemistry and Biology, 2006,13(1):1-3.
    3.江苏新医学院编著.中药大辞典(上册) [M].上海:科学技术出版社,1977.384.
    4.李永春主编.中医大辞典[M].北京:人民卫生出版社,1982,63.
    5.刘鲁明,周伟强,钱华.五谷虫抗菌物质抗菌活性的实验研究[J].中国中医药信息杂志2001, 8(3):25-26.
    6. Wollina U, Kinscher M, Fengler H. Maggot therapy in the treatment of wounds of exposed knee prostheses. Int JDermatol 2005;44:884-886.
    7. Graczyk TK, Knight R, Gilman RH,et al. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001,3(3):231-235.
    8. Namias N, Varela JE, Varas RP, et al. Biodebridement: a case report of maggot therapy for limb salvage after fourth-degree burns. J Burn Care Rehabil, 2000; 21:254-257.
    9.李秀兰,戴祝英,张双全.抗菌肽琼脂糖孔穴扩散法与比浊法测活比较及其相关性[J].南京师大学报(自然科学版),1998,21(2):81 - 83.
    10.常玉荣,石峻,殷华.透射比浊法与单向琼脂扩散法检测血清免疫球蛋白的比较和分析[J].中国煤炭工业医学杂志. 2004,7(12) :1209-1210.
    11.Evans JD, Lopez DL.Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae).J Econ Entomol. 2004 ,97(3):752-756.
    12.Andrejko M .Effect of Pseudomonas aeruginosa crude proteolytic fraction on antibacterial activity of Galleria mellonella haemolymph. Folia Biol (Krakow). 2004;52(1-2):91-96.
    13.郑丽芳,吕火祥.断肢再植手术伤口感染细菌188株种类和耐药性[J].浙江预防医学,2002, 14(11):18-19.
    14.刘小华,张美霞,于春梅.考马斯亮兰法测定壳聚糖中蛋白的含量[J].中国交通医学杂志. 2006 ,20 (2) :159-160.
    15.Harris E L V,Angal S.Protein Purification Methods a practical approach. New York,Oxford University press,1999,202-215.
    16.邹国林,朱汝幡.酶学(第一版).武汉,武汉大学出版社,1997,44-71.
    17.赵永芳.生物化学原理及应用(第三版).北京,科学出版社,2002,70-100.
    18. Artolozaga M J, Jonas R, Schneider A L, et al .One step purification ofβ-galactosidase from kluyveromyces marxianus CDB 002 using streamline DEAE[J].Bioseparation, 1998, 7: 137-143.
    19. Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem. 2003 ,270(10):2109-2119.
    20. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006, 312(5771):212-217.
    21. Artolozaga M J, Jonas R, Schneider A L, et al .One step purification ofβ-galactosidase from kluyveromyces marxianus CDB 002 using streamline DEAE. Bioseparation, 1998, 7: 137-143.
    22. Chen W D, Tong XD, Dong X Y,et al. Expanded bed adsorption of protein with DEAE Spherodex M.Biotechnol Prog, 2003, 19:880-886.
    23.Check JH, Zavos PM, Katsoff D,et al.Effects of Percoll discontinuous density gradients vs SpermPrep II vs Sephadex G-50 gel filtration on semen parameters. Tohoku J Exp Med. 1993,169(3):225-231.
    24.Navarro P, Cortazar E, BartoloméL, et al.Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons. J Chromatogr A. 2006 1128(1):10-16.
    25.Dondos A.Applicability of the modified universal calibration of gel permeation chromatography on proteins.J Chromatogr A. 2006 ,1127(1):183-186.
    26. Cociancich SO, Park SS, Fidock DA, et al. Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes. J Biol Chem. 1999,274(18):12650-12655.
    27. Hoffmann JA. Innate immunity of insects. Curr Opin Immunol. 1995 ,7(1):4-10.
    28.Brahmachary M, Krishnan SP, Koh JL, et al. ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res,2004; 32(1): D586-589.
    29. Prates MV, Sforca ML, Regis WC. The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla Punctata. J Biol Chem,2004,279(13): 13018-13026.
    30.Donald D,Ourth,Timothy,et al.Imduction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis Virescens larvae. Biochem Biophy Res Commu, 1994,200(1):35-44.
    31. Orivel J, Redeker V, Le-Caer et al. Ponericins, new antibacterial and insecticidalpeptides from the venom of the ant Pachycondyla goeldii. J-Biol-Chem, 2001, 276(21): 17823-17829.
    32.Aly R,Granot D,Mahler-Slasky Y. Saccharomyces cerevisiae cells harboring the gene encoding sarcotoxin IA secrete a peptide that is toxic to plant pathogenic bacteria. Protein Expr Purif,1999,16(1): 120-124.
    33.Yu H, Yi LS. Purification and partial peptide sequence analysis of the boar 32 kDs sperminogen. Mol Cells, 2001,12(1):107-111.
    34.Sherman RA,Hall MJ,Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol,2000,45:55-81.
    35.Mumcuoglu KY,Ingber A,Gilead L et al.Maggot therapy for the treatment of intractable wounds.Int J Dermatol,1999;38(8):623-627
    36.Stellwagen,E. Gel Filtration. Meth.Enzymol,1990,182:317-328.
    37.Francis S Collins. Shattuck lecture--medical and societal consequences of the human genome project. The New England Journal of Medicine, 1999, 341 (1):28-37.
    38.Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science, 2001, 291:1304-1351.
    39.Anderson NL, Anderson NG. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 1998,19 (11): 1853-1861.
    40.Kellner R.Proteomics.Concepts and perspectives. Fresenius Journal of Analytical Chemistry,2000,366 (6-7):517-524.
    41.Raghothama C,Harsha HC, Prasad CK, et al.Bioinformatics and proteomics approaches for aging research. Biogerontology, 2005,6(4): 227-232
    42.Vihinen M.Bioinformatics in proteomics. Biomolecular Engineering, 2001,18 (5): 241-248.
    43.Yu H, Yi LS.Purification and partial peptide sequence analysisof the boar 32 kDs sperminogen. Mol Cells, 2001;12(1):107-111.
    44.Peng JM, Gygi ST, Proteomics: the move to mixtures. J Mass Spectrom, 2001;36(10):1083-1109.
    45.Nemeth-Cawley JF, Kamik S, Rouse JC. Analysis of the sulfatedpeptides using positive eletrospray ionization tandem mass spectrometry .J Mass Spetrom, 2001,1301-1311.
    46.Schittek B, Hipfel R, Sauer B, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands.Nat Immunol. 2001,2(12):1133-1137.
    47.Barak O,Treat JR,James WD.Antimicrobial peptides: effectors of innate immunity in the skin. Adv Dermatol. 2005; 21:357-374.
    48.Minami Y, Uede K, Sagawa K, et al..Immunohistochemical staining of cutaneous tumours with G-81,a monoclonal antibody to dermcidin. Br J Dermatol. 2004, 151(1):165-169.
    49.Rieg S, Seeber S, Steffen H, et al. Generation of multiple stable dermcidin -derived antimicrobial peptides in sweat of different body sites. J Invest Dermatol. 2006,126(2):354-365.
    50.Sagawa K,Kimura A,Saito Y, et al. Production and characterization of a monoclonal antibody for sweat-specific protein and its application for sweat identification. Int J Legal Med. 2003,117(2):90-95.
    1.程相文,吴晓华.慢性溃疡的病因与创面管理[J].创伤外科杂志, 2007, 9(2): 190-191.
    2.黄河.中西医结合治疗慢性溃疡创面39例[J].人民军医,2005,48(7):397-398.
    3.苏晓林,简华刚.糖尿病足溃疡创面处理的进展[J].中国药业,2007,16(17):1-4.
    4.王涛.中药内外合治臁疮20例[J].辽宁中医杂志,2007,34 (2): 190-191.
    5.刘鲁明,周伟强,钱华.五谷虫抗菌物质抗菌活性的实验研究[J].中国中医药信息杂志2001, 8(3):25-26.
    6. Thomas S.The use of sterile maggots in wound management.Nurs Times.2002 98(36): 45-46.
    7.王瑞英,姚敏,王绵等。2型糖尿病模型大鼠肾小管上皮细胞中TGFβ1的表达及与肾功能的关系[J].中国老年学杂志,2005,25(5):549-551.
    8.付小兵,王亚平,孙同柱等.糖尿病慢性难愈合创面大鼠模型的制备[J].上海实验动物科学.1997,17(4):217-219.
    9.程天民,胡友梅.创伤难愈的主要原因与发生机制[J].中华创伤杂志,2004, 20(10):577.
    10.Sayner LR, Rosenblum BI, Giurini JM. Elective surgery of the diabetic foot. Clin Podiatr Med Surg. 2003,20(4):783-792
    11.江苏新医学院编著.中药大辞典(上册) [M].上海:科学技术出版社,1977.384.
    12.李永春主编.中医大辞典[M].北京:人民卫生出版社,1982,63.
    13.陈会苓,刘明.《本草纲目》治疗臁疮附方特点及现代研究[J].时珍国医国药,2001, 12(2):173.
    14.Graczyk TK, Knight R, Gilman RH,et al. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001,3(3):231-235.
    15.Wollina U, Kinscher M, Fengler H. Maggot therapy in the treatment of wounds of exposed knee prostheses. Int JDermatol 2005;44:884-886.
    16.Namias N,Varela JE,Varas RP,et al. Biodebridement:a case report of maggot therapy for limb salvage after fourth-degree burns J Burn Care Rehabil, 2000; 21:254-257.
    17.程飚,付小兵,盛志勇,等。外源性bFGF对深度烫伤大鼠创面血管内皮细胞增殖与迁移的影响[J].中国修复重建外科杂志,2004,18(3):200.
    18.付小兵,孙同柱,杨银辉,等.碱性成纤维细胞生长因子和转化生长因子-β在溃疡与增生性瘢痕组织中的表达及其对创面修复的影响[J].中国修复重建外科杂志,2000,14(5):271-274.
    19.刘剑毅,李世荣,纪淑兴.病理性瘢痕中结缔组织生长因子基因的表达[J].中国修复重建外科杂志,2003,17(6):436-438.
    20.聂铭博,陈振兵,洪光祥.转化生长因子β1不同作用时间对体外培养小鼠失神经骨骼肌肌源性干细胞内结缔组织生长因子的影响[J].中国修复重建外科杂志,2007,21(6 ):557-560.
    21.Kothapalli D,Grotendorst GR.CTGF modulates cell cycle progressionin cAMP-arrested NRK fibroblasts.J Cell Physiol,2000,182(1):119-126.
    22.Shimo T,Nakanishi T,Nishida T,et al. Connective tissue growth factor induces the proliferation,migration,and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo.J Biochem Tokyo,1999,126(1):137-145.
    23.王政琨,吕延伟.糖尿病足中医研究进展[J].中国康复, 2006 ,21 (6): 415-416.
    24.王振国,韩涛.《本草纲目》附方现代研究全集*外科卷,第1版[M].济南出版社, 1998:157-160.
    25.Sherman RA, Wyle F, Vulpe M.Maggot therapy for treating pressure ulcers in spinal cord injury patients. J Spinal Cord Med. 1995,18(2):71-74.
    26.Mumcuoglu KY, Ingber A, Gilead L, et al.Maggot therapy for the treatment of intractable wounds. Int J Dermatol. 1999,38(8):623-627.
    27.Courtenay M,Church Jc Larva therapy in wound management. Journal of the royal society of medicine.2000,93(2):72.
    28.Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol, 2001,2(4):219.
    29.Sherman RA, Pechter EA.Maggot therapy:a review of the therapeutic applications of fly larvae in human medicine,especially for treating osteomyelitis. Med Vet Entomol. 1988 ,2(3):225-230.
    1.江苏新医学院编著.中药大辞典(上册) [M].上海:科学技术出版社,1977.384.
    2.李永春主编.中医大辞典[M].北京:人民卫生出版社,1982:63.
    3.刘鲁明,周伟强,钱华.五谷虫抗菌物质抗菌活性的实验研究[J].中国中医药信息杂志,2001;8(3):25-26.
    4.谢观主编.中华医学大辞典.沈阳:辽宁科学技术出版社;1994:1366.
    5. Graczyk TK, Knight R, Gilman RH,et al. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001,3(3):231-235.
    6. Courtenay M, Church JC, Ryan TJ. Larva therapy in wound management. J R Soc Med. 2000;93(2):72-4.
    7. Sherman RA, Mytientran JM. A simple,sterile food source for rearing the larvae of Lucilia sericata(Diptera: Calliphoridae ).Med Vet Entomol,1995;9(4):393-398.
    8. Sukontason K, Bunchoo M, Khantawa B, et al. Musca domestica as a mechanical carrier of bacteria in Chiang Mai, north Thailand. J Vector Ecol. 2000; 25(1): 114-117.
    9. Sherman RA. Maggot versus conservative debridement therapy for the treatment of pressure ulcers. Wound Repair Regen,2002;10:208-214.
    10.Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol 2001;2: 219-227.
    11.Wollina U, Kinscher M, Fengler H. Maggot therapy in the treatment of wounds of exposed knee prostheses. Int JDermatol 2005;44:884-886.
    12.Namias N, Varela JE, Varas RP, et al. Biodebridement: a case report of maggot therapy for limb salvage after fourth-degree burns. J Burn Care, Rehabil 2000; 21:254-257.
    13.Smith KE, Wall R. The use of carrion as breeding sites by the blowfly Lucilia sericata and other Calliphoridae. Med Vet Entmol,1997;11(1):38-44.
    14.Thomas S.The use of sterile maggots in wound management. Nurs Times. 2002;98 (36) :45-46.
    15.赵东红,戴祝英,周开业.昆虫抗菌肽的功能\作用机理与分子生物学研究最新进展[J].生物工程进展. 1999,19:14-17.
    16.Hoffmann J, Charles H. Insect defensive: inducible antibacterial peptide, Immunal Today, 1992,10:411-415.
    17.Evans JD, Lopez DL.Bacterial probiotics induce an immune response in the honeybee (Hymenoptera: Apidae).J Econ Entomol. 2004;97(3):752-756.
    18.Otvos L. Antibacterial peptides isolated from insects. J Peptide Sci,2000,6:497
    19.Steiner H, Hultmark D, Engstrrom A. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981; 292(5820) :246
    20.Mcphee J, Robert EW. Function and therapeutic potential of host defence peptides.J Peptide Sci, 2005;11 (11) :677 .
    21.Hancock P. Peptide antibiotics. Lancet,1997,349:418.
    22.宫霞,乐国伟,施田辉.昆虫抗菌肽的生理活性及其转基因应用前景[J].昆虫知识,2004.41,(2):110-115.
    23.Hoffmann JA. Innate immunity of insects. Curr Opin Immunol;1995,7(1):4-10.
    24.Hoffmann JA, Janeway CA, Natori J,et al. Phylogenetic Perspectives in Immunity [M].RG Landes Company,1994.43-65
    25.Casteel P, Ampe C ,Jacobs F,et al. Apidaecins: antibacterial peptides from honeybees. J EMBO;1989,8:2387-2391.
    26.Cociancich S,Dupont A,Hegy G,et al. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris pterus. J Biochem,1994, 300:567-575.
    27.Wu D E., Zeng X S., Zhang Y D. et al. Site-directed mutagenesis of cecorp in B gene and Expression in insect cells.Chinese Jounral of torpical crops,1999, 20(3):54-58.
    28.Okada M , Natori S. Mode of action of a bacterial protein induced in the haemolymph of Sarcrophaga peregrina(flesh fly)larvae. J.Biochem. 1984, 222: 119-124.
    29.Christensen B., David M. Channael-formaing properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc.Natl.Acad.Sca. U.S.A., 1988, 85:5072-5074.
    30.Cociancich S, Hoffmann JA. Insect defensin, and inducible antibacterial peptide forms voltage-dependent channels in Micrococcus luteus. J.Biol.Chem. 1993, 268:19239-19245.
    31.Lockey T, Ourth D. Formation of pores in Escherichia coli cell memebranes by a cecropin isolated from hemolymph of Helinthis nireseens larvae.Eur.J.Biochem. 1996,236:263-271.
    32.贾红武,张双全,戴祝英.家蚕抗菌肽对癌细胞的杀伤作用及其超微结构的观察[J].动物学研究. 1997,18(3):325-331.
    33.谭石慈,郭周义.用激光扫描共焦显微镜研究柞蚕抗菌肽对病毒的杀伤作用[J].应用激光. 1997,17(4):146-148.
    34.Nakajima Y., Natori S. Interaction between liposomes and sarcotoxin IA,a potent antibacterial protein of Sarcohaga peregrine(Flesh Fly). J.Biol.chem. 1987, 262:1665-1669.
    35.Janeways CA. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol.Today, 1992,13:11-16.
    36.Fehlbaum P, Bulet P. Structure-activity analysis of thanatin.a 21-risidue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad.Sci. 1996,93:1221-1225.
    37.张双全,贾红武,戴祝英.抗菌肽CM4抗K562癌细胞的超微结构研究[J].生物化学与生物物理进展, 1997,24(2):159-163.
    38.Carlsson A, Bennich H. Attacin, an antibacterial protein form Hyalophara cecropia, inhibit synthesis of outer membrane proteins in Escheruhia coli by interfering with omp gene transcription. Infect and Immunity, 1991,59: 3040
    39.王芳,张双全,戴祝英.抗菌肽CM4组分对K562癌细胞染色体DNA断裂作用的SCGE研究[J].生物化学与生物物理进展, 1998,25(1):64-67.
    40.Xanthopoulos KG, Lee JY, Gan RB, et al. The structure of the gene for cecropia B,an antibacterial immune protein from Hyalophora cecropia. Eur J Biochem, 1988,172:371-376.
    41.Sun SC, Asling B, Faye I, et al. Organization and expression of immunoresponsive lysozyme gene in giant silk moth, Hyalohora cecropia. J Bilo Chem,1991,266: 6644-6649.
    42.Kylsten P, Samakovlis C, Hultmark D. The cecropin locus in Drosophila: a compact gene cluster involved in the response to infection. J EMBO,1990, 9: 217-224.
    43.Lee SR, Kurata S, Natori S. Molecular cloning of cDNA for sapecin B,an antibacterial protein of Sarcophaga,and its detection in larval brain.FEBS-Lett, 1995,368(3):485-487.
    44.Otvos L.The short proline-rich antibacterial peptide family.Cell Mol Life Sci, 2002,59(7):1138.
    45.Hoffmann JA , Hetru C, Reichhart JM. The humoral antibacterial response of Drosophila FEBS Lett.,1993,325:63-66.
    46.夏平安,刘维全,江禹,等.家蝇基因组文库的构建[J].中国兽医学报,2003,23(5):421- 423.
    47.杨歧生编著.分子生物学基础.浙江大学出版社,1994,7.
    48.王来元,王金星,赵小凡,等.家蝇cDNA文库的构建[J].动物学研究, 2001, 22 (2):89-92.
    49.王来城,王金星,王来元,等.家蝇防御素基因的cDNA克隆及序列分析[J].动物学报, 2003, 49(3):408-413.
    50.许小霞,徐兴耀,金丰良等.家蝇抗菌肽天蚕素基因的定点突变和高效表达质粒的构建[J].蚕业科学,2004,30(1):90-94.
    51.范琦,李文利,王林美,等.昆虫抗菌肽基因的合成及克隆[J].辽宁农业科学, 1999,5:14-15.
    52.郑青,鲍时翔,姚汝华,等.抗菌肽AD基因的合成[J].生物化学与生物物理进展, 1998, 25:178-180.
    53.郑青,黄自然,姚汝华,等.人工合成Cecropin AD基因在酵母中表达[J].蚕业科学,1999, 25:175-180.
    54.Tamamura H,Murakami T,Horiuchi S,et al.Synthesis of protegrinralated peptides and their antibacterial and anti-human immunodeficiency virus activity.Chem pharm Bull (Tokyo),1995,43:853-858.
    55.Winder D, Gunzburg WH, Erfle B, et al. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun, 1998, 242: 608-612.
    56.名取俊二.日经生物技术[M].1995,4,10:6.
    57.干信,王常高,张迎庆,等.脂酰葡甘聚糖醛酸钠——工程蝇抗菌肽复合性能研究[J].湖北工学院学报,2001,16(4):1-4.
    58.张文吉,明九雪,罗记台,等.从家蝇幼虫饲料残渣中分离提取生物活性物质的研究[J].北京农业大学学报,1993,19(2):103-104.
    59.陈美,陈小麟.家蝇幼虫饲料残渣防治植物线虫的研究[J].厦门大学学报. 2003, 42(6): 810-814.
    60.苏水莲,李娟,胡雅琼,等.人工饲养家蝇蛆和蛹提取几丁质的研究[J]..赣南医学院学报. 2002, 22(3):227-229.
    61.张静,扬洪强,魏钦平.几丁质及其衍生物的生物活性与在农业中的应用[J].植物学通报, 2003,20(2):178-183.
    62.Vander P,Varum KM,Domard AE,et al. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves Plant Physiol.,1998,118(4):1353-1359.
    63.曹小红,陈一,张燕,等.家蝇蛹凝集素的纯化及其免疫调节和抑菌作用[J].中华微生物学和免疫学杂志,2003,23(10):297-300.
    64.丁友真,张书芳,高锦亚,等.家蝇幼虫体内的粪产碱菌有抑菌能力[J].中国媒介生物学及控制杂志,1997,8(3):181-183.
    65.罗金香,杨春龙,吴伟东.家蝇抗菌肽的研究与应用[J].昆虫知识, 2005,42(3): 235-239.
    66.Bulet P, Stocklin R. Insect, antimicrobial peptides: structures, properties and gene regulation. Pro Pept Lett,2005, 12(1):3-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700