电磁轨道发射系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁轨道发射系统是一种先进的动能发射装置。与传统的火炮不同,电磁轨道发射是利用电磁系统中电磁力,它能在短时间内把物体推进到更高的速度,可大大提高发射体的速度和射程,在武器装备、交通运输以及航空、航天等领域具有广阔的应用前景。
     本文对考虑和不考虑趋肤效应两种情况下电枢所受电磁力进行了研究。分析了主要参数对电枢所受电磁力的影响规律,给出了发射过程中不同阶段电枢的运动方程。依据电磁轨道发射系统的机电模型和电流变化的三个阶段,推导了各阶段能量的计算公式,得出总能量和能量转换效率解析式,分析了系统主要参数对能量和效率的影响规律。结果表明:脉冲电流各阶段时间取特定值时,能量转换效率存在最大值。
     根据电流在导轨中不同的分布情况,研究了考虑和不考虑趋肤效应时导轨所受的电磁载荷,分析了主要参数对导轨所受电磁力的影响规律。研究了电磁载荷作用下导轨的弯曲应力,并对整个发射过程中导轨应力的变化及其随主要参数的变化规律进行了深入研究。研究发现:考虑和不考虑趋肤效应时导轨所受电磁载荷的差别主要在电枢附近,其它位置差别很小。
     建立了移动载荷作用下导轨的动力学模型,对弹性基础上两端自由、两端简支和悬臂导轨的自由振动进行了求解。在此基础上,把复杂电磁力载荷划为均布载荷和集中力的组合,分别推导了在匀速和加速载荷作用下导轨的受迫振动公式,研究了电磁轨道发射系统在整个发射过程中载荷到达不同位置和不同速度时导轨的动态响应,讨论了临界速度对导轨动态响应的影响规律,并把均布载荷和集中力作用下的动态响应相加,得到了导轨总的动态响应。研究发现:在导轨间距较大时,必须采用均布载荷和集中力组合的方法求解。
     考虑导轨的位移对电磁载荷的影响,建立了导轨的机电耦合动力学模型,求解了导轨机电耦合自由振动的固有频率和振动模态,研究了系统参数对固有频率的影响规律,分析了移动电磁力作用下导轨的机电耦合强迫振动,并把计算结果与不考虑耦合的计算结果进行了比较,讨论了系统参数对两种计算结果误差的影响规律。结果表明:在电流较大和弹性基础刚度较小时,必须采用耦合方法求解。
     利用ANSYS软件对电磁轨道发射系统导轨受力进行了数值模拟,利用APDL方法对两种电磁载荷作用下导轨进行了有限元动力学仿真,并使用ANSYS耦合场分析功能中的顺序耦合方法对通入电流的导轨进行了电磁-结构耦合有限元分析。仿真结果与理论计算结果最大相对误差为9.8%,证明了理论分析的正确性。
Electromagnetic rail launch system is an advanced accelerating device. Electro-magnetic rail launch use electromagnetic force of the conductor to accelerate object thatis different from the traditional gun. It can accelerate object to hypersonic velocities in ashort time which can greatly improve the velocity and range of projectile.Electromagnetic rail launch is widely applied in researches of national defence,transportation, aerospace, and so on.
     In this dissertation, electromagnetic force with and without skin effect is studiedrespectively base on distribution of current in the rails. The change of electromagneticforce along with major parameters is discussed. The motion equation of armature forwhole transformation process is presented. Based on electromechanical model ofelectromagnetic rail launch system, the total process of launching is divided into threestages according to change of current in the rails. The expression of energy in each stageis deduced. The expression of total energy and efficiency is achieved. The change ofenergy and efficiency along with main parameters is analyzed. The result shows that themaximal efficiency occurs when the time of each stage is optimized.
     According to different distribution of current in the rails, electromagnetic forceacting on rails is investigated when considering and not considering skin effect. Bothelectromagnetic forces are calculated respectively. The change of both electromagneticforces along with main parameters is analyzed. Based on the calculated result ofelectromagnetic force, the equation for calculating bending stress of rail on the elasticfoundation is deduced. The stress distribution in rail in different positions of armature isanalyzed. The change of stress along with main parameters is researched. The resultshows that the maximal difference of the stress for tow methods is near the armature.
     The dynamics model of rail under the running electromagnetic force is established.The free vibration of rail free at two ends, rail simply supported at two ends andcantilever rail on elastic foundation is solved. The complex electromagnetic load isdivided into uniformed load and concentrated force. The equations for the forced responses of rail on elastic foundation to constant velocity load and accelerate load aredeveloped. The dynamic response of rail to the constant velocity load for differentpositions and the different velocity is studied. The influence of critical velocity isdiscussed. The total dynamic response of rail is achieved by adding the dynamicresponses of rail to uniform load and concentrated force. The result shows that thedynamic responses of rail to concentrated force must be considered when the distance ofrails is greater.
     Considering the change of electromagnetic load along with displacement of rails, theelectromechanical coupled dynamic equations for the rail are given. Using theseequations, the natural frequencies of the electromagnetic rail launch system and theirchanges along with the system parameters are investigated, the vibration modes of theelectromagnetic rail launch system are discussed, and the forced responses of the rail tothe running electromagnetic force are analyzed. The results of coupled and uncoupledequations are compared and analyzed. The change of difference between the forcedresponses with and without considering electromechanical coupled effects along with thesystem parameters is investigated. The result shows that the coupled method is necessaryfor calculating dynamic response of rail when current is larger and elastic coefficient offoundation is smaller.
     The electromagnetic force acting on rails is simulated by ANSYS software. Thedynamics response of rail to both running electromagnetic forces is simulated by APDL.The electromagnetism-structure FEM simulation for rails carrying current is implementedin load transfer coupled method of the ANSYS software. The maximal differencebetween simulation and theory is9.8%with emphasis on verification of the theoreticalderivation.
引文
[1]翟利鹏,冯俊文,王华亭,等.电磁轨道发射系统总体情景规划研究[J].中国工程科学,2001,10(8):45-50.
    [2] Egeland A. Brikeland's Electromagnetic Gun: A Historical Review[J]. IEEE Trans on PlasmaScience,1989,17(2):73-82.
    [3] Mcnab R. Early Electric Gun Research[J]. IEEE Transactions on Magnetic,1999,35(1):250-261
    [4]李薇,林干.电磁发射武器的关键技术与发展[J].飞航导弹,2010,2:60-63.
    [5] Fair H D. Progress in Electromagnetic Launch Science and Technology[J]. IEEE Transactions onMagnetics,2007,43(1):93-98.
    [6]李立毅,李小鹏.电磁发射的历史及发展趋势[J].微电机,2004,37(1):41-44.
    [7] Hilmar P, Francis J, Volker W. Technical Aspects of Railguns[J]. IEEE Transactions on Magnetics,1995,31(1):348-353.
    [8] Rashleigh S C, Marshall R A. Electromagnetic Acceleration of Macroparticles to HighVelocities[J]. Journal of Applied Physics,1978,49:2540-2542.
    [9] Fair H D. Advances in Electromagnetic Launch Science and Technology and Its Applications[C].200814th Symposium on Electromagnetic Launch Technology, Victoria, Canada,2008:1-6.
    [10] John R H, Lynnette M C. Application of Superconducting Technology to Earth-to-OrbitElectromagnetic Launch Systems[J]. IEEE Transactions on Magnetics,1989,25(1):243-248.
    [11] Usuba S, Kakudate Y, Yoshida M, et al. Performance of the Discrete Electrode Railgun[J]. IEEETransactions on Magnetics,1991,27(1):611-616.
    [12] Tatake S G, Daniel K J, Rao K R. Railgun[J]. Defence Science Journal,1994,44(3):257-262.
    [13] Fair H D. Electric Launch Science and Technology in the United States[J]. IEEE Transactions onMagnetics,2003,39(1):11-17.
    [14] Fair H D. Electric Launch Science and Technology in the United States enters a New Era[J]. IEEETransactions on Magnetics,2005,41(1):158-164.
    [15] Bauer D P, Barber J P, Swift H F. Application of Electromagnetic Accelerators to SpacePropulsion[J]. IEEE Transactions on Magnetics,1980,18(1):170-175.
    [16] Wetz D, Stefani F, Motes D. Development of a Plasma Railgun for Affordable and Rapid Accessto Space[J]. Pulsed Power Plasma Science,2007(2):1799-1804.
    [17] Sawle D R. Hypervelocity Impact in Thin Sheets and Semi-Infinite Targets at15km/s[J]. AIAAJournal,1970,8(7):1223-1229.
    [18] Mongeau P, Milliams F. Helical Rail Glider Launcher[J]. IEEE Transactions on Magnetic,1982,18(1):190-193.
    [19] Fair M, Weldon W. Induction Launcher Design Consideration[J]. IEEE Transactions on Magnetic,1989,25(1):153-158.
    [20] Kolm H, Mongeau P. An Alternation Launching Medium[J]. IEEE Spectrum,1982,18(4):30-36
    [21] Kolm H. Electromagnetic Launchers[J]. IEEE Transactions on Magnetic,1980,15(5):719-721.
    [22] Yamada H, Yamaguchi H, Gohdo Y. Continuous Electromagnetic Launcher Using solenoid coil[J].IEEE Transactions on Magnetic,1987,25(5):3263-3265.
    [23] Deis D W, McNab I R. A Laboratory Demonstration Electromagnetic Launchers[J]. IEEETransactions on Magnetic,1981,18(1):16-21.
    [24]贾浩,沈金华.轨道炮:超高压研究的一种新工具[C].第一阶全国高压会议论文集,四川,绵阳,1984:1-16.
    [25]王静端.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1):5-7.
    [26]王莹.炮中之王[J].科技日报,1987,07,28(3).
    [27]王莹.电磁炮及其军事应用[J].军械,1988(3):60-61.
    [28]杨葆新.火炮发射技术[M].北京:兵器工业出版社,1993:34-67.
    [29]周彦煌,陆欣,刘东尧.几种超高速射弹发射技术可行性的探索研究[J].弹道学报,1996,8(4):8-12.
    [30]吕庆敖,雷彬,李治源.电磁轨道炮军事应用综述[J].火炮发射与控制学报,2008(1):92-96.
    [31]杨世荣,王莹,徐海荣,等.电磁发射器的原理与应用[J].物理学与高新技术,2003(32):25-28.
    [32]孙百瑜.三级电磁发射器的建模及仿真优化[D].哈尔滨:哈尔滨理工大学,2006:2-3.
    [33] Ang J A, Konrad C H. Hypervelocity Projectile Design and Fabrication[J]. IEEE Transactions onMagnetic,1993,29(1):722-728.
    [34] Tatake S G, Daniel K J, Rao K R, et al. Railgun[J]. Defence Science Journal,1994,44(3):257-262.
    [35]王群,耿云玲.电磁炮及其特点和军事应用前景[J].国防科技,2011(2):1-7.
    [36] Wang Y, Marshall A. Physics of Electric Launch[J]. Science Press,2004,26(2):11-19.
    [37]于瀛,池建文,陈昕.电磁飞机弹射系统[J].舰船科学技术,2003,25(4):51-56.
    [38] Haugh D C. Firth M A. UK Electric Gun National Overview[J]. IEEE Transactions on Magnetic,2001,37(1):33-35.
    [39]王莹.空间推进技术[J].推进技术,1987,(4):49-54.
    [40] Hundertmark S. Applying Railgun Technology to Small Satellite Launch[C]. Proceedings of5thInternational Conference on Recent Advances in Space Technologies, Istanbul, Turkey,2011:747-751.
    [41] Engel T G. Veracka M J, Neri J M. Design of Low-Current High-Efficiency AugmentedRailguns[J]. IEEE Transactions on Plasma Science,2009,37(12):2385-2389.
    [42] McNab I R. Progress on Hypervelocity Railgun Research for Launch to Space[J]. IEEETransactions on Magnetic,2009,45(1):381-388.
    [43] Schroeder J M. Electromagnetic Launcher for Space Applications[J]. IEEE Transactions onMagnetic, l989,25(1):504-509.
    [44] Fair H D. The Science and Technology of Electric Launch: a U. S. Perspective[J]. IEEETransactions on Magnetic,1999,35(1):11-18.
    [45]王莹,马富学.新概念武器原理[M].北京:兵器工业出版社,1997:119-120.
    [46] Fair H D. The Science and Technology of Electric Launch[J]. IEEE Transactions on Magnetic,2001,37(11):25-32.
    [47] Weldon W F. Taxonomy of Electromagnetic Lauchers[J]. IEEE Transactions on Magneitc,1989,25(1):591-592.
    [48] Marshall R A, Wang Y. Railguns: their Science and Technology[J]. China Machine Press,2004:3-4.
    [49] McNab I R, Beach F C. Naval railguns[J]. IEEE Transactions on Magnetics,2007,43(1):463-468.
    [50] Chakravarthy K M, Watt T J, Bourell D L. The Use of High-Speed Video as an In-Bore Diagnosticfor Electromagnetic launchers[J]. IEEE Transactions on Magnetic,2011,39(2):809-814.
    [51]刘芳敏.感应型发射器系统仿真及实验研究[D].哈尔滨:哈尔滨理工大学,2008:3-5.
    [52] Shokair I R, Cowan M, Kaye R J. Performance of an Induction Coil Launcher[J]. IEEETransactions on Magnetic,1995,31(1):510-516.
    [53]潘彩娟,草焕昌.电磁炮基本原理的教学与实验模拟[J].广西民族学院学报(自然科学版),2002(4):74-76.
    [54] Shokair I R, Cowan M. Performance of an Induction Coil Launcher[J]. IEEE Transactions onMagnetic,1995,31(l):510-516.
    [55] Brooks A L. Design and Fabricaiton of Large and Smal Bore Railguns[J]. IEEE Transactions onMagnetic.,1981,18(1):68-72.
    [56]赵纯,邹积岩,何俊佳.三级重接式电磁发射系统的仿真与实验[J].电工技术学报,2008,23(5):1-6.
    [57]周正阳,廖敏夫.多级磁力线重接炮的控制与速度测量[J].电工电能新技术,2007(2):76-80.
    [58]赵纯,邹积岩.多级重接炮的数值仿真与优化物理设计[J].兵工学报,2008(6):645-650.
    [59] Cowan M, Widner M. Exploratory Development of the Reconnection Launcher1986-1990[J].IEEE Transaciton on Magneitc,1991,27(1):563-567.
    [60] Beming P R, Hummer C R. Magnetic Induction Launcher Models[J]. Army Research Laboratoryreport, ARL-TR-1384,1997:1-8.
    [61] Cown M. The Reconnection Gun[J]. IEEE Transactions on Magneticnetics,1986,22(6):1429-1434.
    [62]李小鹏,李立毅.重接式电磁发射技术的现状及应用前景[J].微电机,2002,35(4):39-41.
    [63] Berning P R. A Theoretical and Experimental Study of the Electromagnetic EnvironmentSurrounding A Magnetic Induction Launcher[J]. IEEE Transaction on Magnetic,1997,33(1):368-372.
    [64] Liu R, Zheng P, Xie D. Research on the High Power Density Electromagnetic Propeller[J]. IEEETransaction on Magnetic,200743(2):.355–358.
    [65] Sikhanda S, Trevor W, Chadee P. Effect of Geometry Change on Armature Behavior[J]. IEEETransaction on Magnetic,200743(1):408–412.
    [66] Han Y X, Lin F C, Dai L. Analysis of Electric Parameters of a PPS System and Their Influence onMuzzle Velocity in Electromagnetic Railguns[J]. IEEE Transaction on Magnetic,2009,45(1):559-563.
    [67] Kathe E, Johnson M, Cote P. Experimental Visualization of Distributed Magnetic Fields ofRailguns[J]. IEEE Transaction on Magnetic,2009,45(1):591-539.
    [68] Tzeng T J. Structural Mechanics for Electromagnetic Railguns[J]. IEEE Transaction on Magnetic,2005,41(1):246-250.
    [69]卫锦萍.美军电磁炮研究进展与技术重点[J].国外坦克,2010(1):42-43.
    [70]张建革,刘跃新,路宏伟.美国的舰载电磁炮研究[J].舰船科学技术,2009,31(3):154-159.
    [71] Mehin, Widner M. A Numerical Simulation Model for the Cylidrical Reconnection Launcher[J].IEEE Transactions on Magnetic,1991,27(1):634-638.
    [72]王德,苏鑫鑫.电磁轨道炮及其关键技术的现状与发展[J].武器系统,2010(7):75-80.
    [73]王莹.电发射技术概论[J].电工技术杂志,2003,10:94-97.
    [74] Tzeng J T, Pipes R B. Thermal Residual Stress Analysis for in Situ and Post-ConsolidatedComposite Rings[J]. Composites manufacturing,1992,3(4):273-279.
    [75] Chien L S, Tzeng J T. Analysis of Viscoelastic Stress of Thick Laminated Composite Cylinders atan Elevated Temperature[C]. Structural Dynamics and Materials Conference, La Jolla, CA, USA,1993:2291-2301.
    [76] Tzeng J T. Dynamic Response of Composite Cylinders Subjected to a Moving Internal Pressure[J].Journal of Reinforced Plastics and Composites,1996,15(11):1088-1105.
    [77] Tzeng J T. Dynamic Response and Fracture of Composite Gun Tubes[J]. Shock and Vibration,2001,8(3-4):229-238.
    [78] Cherenshchikov S A. Secondary Emission Magnetron Injection Gun in Long Pulse Mode[C].Proceeding of the1999Particle Accelerator Conference, New York, USA,1999:1973-1975.
    [79] Dersad C. A Review of U.S. Patents in Electromagnetic Launch Technology[J]. IEEE Transactionson Magnetic,2001,37(1):493-498.
    [80]杨艺.美军电磁炮研究取得重大进展[J].现代兵器,2005,10:26-28.
    [81] Shvetsov G, Rutberg P, Budin A. Overview of Some Recent EML Research in Russia[J]. IEEETransactions on Magnetics,2007,43(1):99-106.
    [82]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(增刊1):156-158.
    [83] Asghar K, Toraj M, Kalantarnia A. Determination of Optimum Rails Dimensions in Railgun byLagrange’s Equations[J]. IEEE Transactions on Magnetic,2009,45(1):594-597.
    [84] Shvetsov G A, BashkatovY L, Stadnichenko I A. Structure of Plasma Armature of a Railgun [J].IEEE,1987:109.
    [85] Shvetsov G A, Bashkatov Y L, Stadnichenko I A. Structure of Plasma Armature of a Railgun[J].IEEE,1987:109.
    [86] Philipp G R, Gennady A S, Irina I K. New Steps in EML Research in Russia[J]. IEEE Transactionson Magnetic,2009,45(1):231-236.
    [87]黄莹,赵佳.电磁炮的基本原理及在军事上的应用[J].现代物理知识,2004,(6):38-40.
    [88] Gennady, Shvetsov A. Electric Launch in Russia A Review of Recent Results[J]. IEEE Trans on MAG,1999,35(1):37-43.
    [89] Gallant J, Lehmann P. Experiments with Brush Projectiles in a Parallel Augmented Railgun[J].IEEE Transactions on Magnetics,2005,41(1):188-193.
    [90] Lehmann P, Peter H, Wey J. Experimental Study of Solid Armatures for EML Applications[J].IEEE Transactions on Magnetics,1993,29(1):848-852.
    [91] Tumonis L, Schneider M, Ka ianauskas R. Structural Mechanics of Railguns in the Case ofdDiscrete Supports[J]. IEEE Transactions On Magnetics,2009,45(1):.474-479.
    [92] Marshall R A. Structure of Plasma Armature of a Railgun[J]. IEEE Transactions on Magnetic,1986,22(6):1609-1612.
    [93] Marshall R A. Distributed Energy Store Railgun: the Limiting Case[J]. IEEE Transactions onMagnetic,1991,27(1):136-138.
    [94] Marshall R A, Persad C, Jamison K A. Observation of Solid Armature Behavior[J]. IEEETransactions on Magnetic,1995,31(1):214-218.
    [95] Lehmann P. Overview of the Electric Launch Activities at the French-German Research Instituteof Saint-Louis (ISL)[J]. IEEE Transactions on Magnetic,2003,39(1):24-28.
    [96] Schneider M, Liebfried O, Stankevic V. Magnetic Diffusion in Railguns: Measurements UsingCMR-Based Sensors[C].14th Symposium on Electromagnetic Launch Technology, Victoria,Canada,2008:239-244.
    [97] Siaenen T, L ffler M J. Comparison Between Linear Electromagnetic Accelerators[J]. ActaPhysica Polonica A,2009,115(6):1089-1091.
    [98] Walls W A, EWeldon W, Pratap S B. Application of ElectromagneticGuns to Future NavalPlatforms[J]. IEEE Transactions on Magnetic,2000,32(1):634-642.
    [99] Karthaus W, Huijser T, Kolkert W J. Influence of the Armature-Rail Geometry on Results ofLaunch Experiments of Fibre Armatures with Railguns[J]. IEEE Transactions on Magnetic,1999,35(1):68-73.
    [100]Behrens J, Bozic O. Development of Electromagnetic Railgun Technology for the Launch ofPayloads into Suborbital and Orbital Altitudes[C]. International Astronautical Federation-55thInternational Astronautical Congress, Vancouver, Canada,2004(13):8466-8476.
    [101]Bozic O, Giese P. Aerothermodynamic Aspects of Railgun-Assisted Launches of Projectiles withSub-and Low-Earth-Orbit Payloads[J]. IEEE Transactions on Magnetic,2007,43(1):474-479.
    [102]Riccardo C, Markus S, Bernardo T. The Use of Electronic Components in Railgun Projectiles[J].IEEE Transactions on Magnetic,2009,45(1):578-583.
    [103]Gallant J, Lehmann P. Experiments with Brush Projectiles in a Parallel Augmented Railgun [J].IEEE Transactions on Magnetic,2005,41(1):188-193.
    [104]Kowalenko V, Clark G A. Temperature Estimates for a Railgun Plasma Armature[J]. Journal ofPhysics D: Applied Physics,2000,33(3):230-241.
    [105]Yamori A, Kohno M, Kawashima N. Experimental Results of a Two-Stage Plasma ArmatureRailgun[J]. IEEE Transactions on Magnetic,2003,39(1):476-479.
    [106]Shvetsov A G, Stankevich S V. Comparison Between2-D and3-D Electromagnetic Modeling ofRailgun[J]. IEEE Transactions on Magnetic,2009,45(1):553-557.
    [107]Engel T G, Neri J M, Veracka M J. The Maximum Theoretical Efficiency of Constant InductanceGradient Electromagnetic Launchers[J]. IEEE Transactions on Plasma Science,2009,37(4):608-614.
    [108]Engel T G, Veracka M J, Neri J M. The Specific-Force Performance Parameter forElectromagnetic Launchers[J]. IEEE Transactions on Plasma Science,2010,38(2):194-198.
    [109]Singer I L, Veracka M J, Boyer C N. Wear Behavior of Lubricant-Conditioned Copper Rails andArmatures in a Railgun[J]. IEEE Transactions on Plasma Science,2011,39(1):138-143.
    [110]Irwin S L, James A S. Analytical Study of Lubricant-Conditioned Cu Rails and Armatures in aLow-Speed Rail Gun[J]. IEEE Transactions on Plasma Science,2011,39(1):461-465.
    [111]Coffo M, Gallant J. Modeling and Analysis of the Current Distribution Between the Brushes of aMultiple Brush Projectile in a Parallel Augmented Railgun[C]. Proceedings of the2008IEEEInternational Power Modulators and High Voltage Conference, Las Vegas, United states,2008:419-422.
    [112]Coffo M, Gallant J. Simulation of the Current Distribution and the Heat Load of a BrushProjectile in a Railgun with the Finite Element Code Ansys[J]. Acta Physica Polonica A,2009,119(6):1112-1114.
    [113]Motes D, Stefani F, Parker J. Development of a Plasma-Driven Railgun to Reach7km/s[C].Proceedings of the2008IEEE International Power Modulators and High Voltage Conference,Las Vegas, United states,2008:85-88.
    [114]Motes D, McNab I, Stefani F. Developments in Making Space Access Rapid and AffordableUsing a Plasma Railgun[J]. Acta Physica Polonica A,2009,115(6):1066-1068.
    [115]Motes D, Crawford M, Ellzey J. An Investigation of Internal Gas Dynamics for an ElectrothermalLauncher[J]. IEEE Transactions on Plasma Science,2011,39(2):802-808.
    [116]Siaenen T. Comparison Between Linear Electromagnetic Accelerators[J]. Acta Physica PolonicaA,2009,115(6):1089-1091.
    [117]Bolonkin A, Krinker M. Magnetic Space Launcher[J]. Journal of Aerospace Engineering,2010,23(4):293-299.
    [118]郭勇,刘小平,周卫平.美海军电磁轨道炮的革命[J].现代船舶,2004:30-3.
    [119]周媛,李敏堂,王菁华.美国电磁轨道发射技术现状及特点分析[J].火力与指挥控制,2011(9):1-4.
    [120]侯亚铭.电磁轨道炮:改写未来战争的利器[J].舰载武器,2011(2):10-12.
    [121]Wang Y. EML Technology Research in China[J]. IEEE Transactions on Magnetic,1999,35(1):44-46.
    [122]Li J, Zou J Y, Wang Y. Overview of the Electric Launch Technology Program in China[J]. IEEETransactions on Magnetic,2001,37(1):37-38.
    [123]李勇,李立毅.电磁弹射技术的原理与现状[J].微特电机,2001(5):3-5.
    [124]周彦煌,陆欣,刘东尧.几种超高速射弹发射技术可行性的探索研究[J].弹道学报,1996,8(4):8-12.
    [125]谌建民.电磁轨道发射系统动态性能研究[D].成都:西南交通大学,2010:6-7.
    [126]董健年,桂应春,李军,等.电磁弹射系统的脉冲功率源设计[J].高电压技术,2007,(12):105-107.
    [127]王静端.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1):5-7.
    [128]程健,任兆杏.单级线圈加速电枢的机理分析[J].电工技术杂志,1997,(5):29-31.
    [129]高顺受,孙承纬.60mm口径电磁感应线圈炮的实验研究[J].高压物理学报,1996,10(3):190-198.
    [130]刘平.电磁同轴发射器的磁场分析和结构分析[D].[西安电子科技大学硕士论文].1997:4-8.
    [131]林源和,张海东,朱剑.基于光纤传输的电磁线圈炮炮口测速装置[J].现代电子技术,2007(19):124-130.
    [132]Wang Y, Cheng S, Zheng P. Widely Developing Electric Launch Technology in China[J]. IEEETransactions on Magnetic,2003,39(1):39-41.
    [133]Wang Y, DuanX J, Yan P. A Pulsed Magnetohydrodynamic Generator for Electric Launcher[J].IEEE Transactions on Magnetic,2005,41(1):360-364.
    [134]董健年,桂应春,李军,等.电磁弹射系统的脉冲功率源设计[J].高电压技术.2007,33(12):105-107.
    [135]董健年,张军,桂应春.轨道炮脉冲电源续流硅堆设计及实验现象分析[J].弹道学报.2007:19(4):71-74.
    [136]林庆华,栗保明.电磁轨道炮三维瞬态涡流场的有限元建模与仿真[J].兵工学报,2009,30(9):1159-1163.
    [137]李昕,翁春生. CE/SE方法模拟等离子体电枢二维MHD效应[J].工程力学,2009,26(10):240-251.
    [138]李昕,翁春生.固体电枢电磁导轨炮非稳态电磁效应[J].南京理工大学学报(自然科学版),2009,33(1):108-111.
    [139]李昕,翁春生.块状固体电枢非稳态电磁效应的三维数值模拟[J].弹道学报,2009,21(1):103-106.
    [140]秦实宏,邹积岩,何俊隹,等.等离子体电枢电磁轨道炮电枢电弧长度的测量[J].华中理工大学学报,1998,26(11):38-40.
    [141]秦实宏,颜湘莲,程礼椿.减少轨道炮电极烧蚀的探讨[J].华中理工大学学报,2000,28(6):12-14.
    [142]刘彦鹏,杨丽佳,刘振祥.轨道-线圈复合型电磁炮交叉作用研究[J].国防科技大学学报,2009,31(5):70-74.
    [143]朱英伟,李海涛,王豫,等.线圈型电磁发射器磁场构型的设计与分析[J].兵工学报,2011,32(4):464-468.
    [144]陈庆国,张海燕,王永红,等.电容器储能型轨道电磁炮的理论分析与动态仿真[J].电机与控制学报,2006,10(1):24-26.
    [145]谢杨柳,马萍,杨明.电磁轨道炮外弹道建模与仿真研究[J].计算机仿真,2009,26(2):45-49.
    [146]范昭楠,于歆杰.基于过程集成的电磁轨道炮脉冲电源多目标优化[J].电工技术学报,2010,25(5):20-24.
    [147]秦实宏,刘克富,潘垣.基于B点磁探针膛内电枢电弧长度与速度分布测量的计算机控制系统的研究[J].兵工学报,2003,24(2):149-152.
    [148]李强,战再吉,王文魁,等.电磁轨道炮导轨和电枢中的焦耳热分析[J].弹道学报,2006,18(4):38-44.
    [149]范长增,王文魁.发展中的电磁轨道炮[J].燕山大学学报,2007,31(5):377-386.
    [150]Wang Z C, Li H G, Wen Y T, et al. Analysis of a Series Augmented Railgun Launching Process[C].19th International Conference on Electrical Machines, Rome, Italy,2010:335-339.
    [151]刘福才,王世国,王振春.电磁发射测量系统的设计与实现[J].兵工学报,2008,29(10):1256-1261.
    [152]Tzeng J T, Sun W. Dynamic Response of Cantilevered Rail Guns Attributed to Projectile/GunInteraction—Theory[J]. IEEE Transactions on Magnetic,2007,43(1):207-213.
    [153]Tzeng J T. Dynamic Response of Electromagnetic Railgun Due to Projectile Movement[J]. IEEETransactions on Magnetic,2003,39(1):472-475.
    [154]Nechitailo N V, Lewis K B. Critical Velocity for Rails in Hypervelocity Launchers[J].International Journal of Impact Engineering,2006(33)485–495.
    [155]Lewis K B, Nechitailo N V. Transient Resonance in HypervelocityLaunchers at CriticalVelocities[J]. IEEE Transactions on Magnetic,2007,43(1):157-162.
    [156]Kamran D, Mohammad R, Reza A. Dynamic Response and Armature Critical Velocity Studiesin an Electromagnetic Railgun[J]. IEEE Transactions on Magnetic,2007,43(1):126-131.
    [157]张益男,陈铁宁,白象忠,等.电磁轨道发射状态下轨道的横向变形与内力分析.四川兵工学报,2010,31(11):9-13
    [158]陈铁宁,白春艳,白象忠,等.电枢运动引起电磁发射轨道的动态响应[J].动力学与控制学报,2010,8(4):360-364.
    [159]刘郑国,田福庆.电磁轨道发射装置结构动力学特性分析[J].船舶力学,2010,14(10):1158-1164.
    [160]陈重,崔正勤.电磁场理论基础[M].北京:北京理工大学出版社,2003:128-131
    [161]马歇尔,王莹.电磁轨道炮的科学与技术[M].北京:兵器工业出版社,2006:41-42.
    [162]Johson D E, Bauer D P. The Effect of Rail Resistance on Railgun Efficiency[J]. IEEETransactions on Magnetic,1989,25(1):271-276.
    [163]刘守豹,阮江军,张亚东,等.增强型轨道炮电感梯度及其影响因素[J].电工电能新技术,2009,28(2):50-67
    [164]聂建新,韩晶晶,焦清介.电磁轨道发射器的几何尺寸对电感梯度的影响[J].高压电技术,2010,36(3):728-732.
    [165]杨玉东,王建新.电容式电磁炮电源电路的设计与仿真[J].高压电器,2008,44(5):435-437
    [166]王莹,肖峰.电炮原理[M].北京:国防工业出版社,1995:17-20.
    [167]Smith A N, Ellis R L, Bernarde J S, et al. Thermal Management and Resistive Rail Heating of aLarge-Scale Naval Electromagnetic Launcher[J]. IEEE Transactions on Magnetic,2005,41(1):235-240.
    [168]李波,王铁良.材料力学(专题部分)[M].沈阳:东北大学出版社,2003:72-79.
    [169]刘文,李敏,白象忠,等.电磁炮发射轨道受指数函数磁压力的变形计算[J].哈尔滨工业大学学报,2010,42(8):1336-1340.
    [170]秦磊.机电集成静电谐波传动研究[D].秦皇岛:燕山大学,2008:112.
    [171]党沙沙,许洋,张红松. ANSYS12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社.2010:66-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700