动压径向轴承形状泛函与优化设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动压径向轴承被广泛应用于各种旋转机械中,随着现代机械向大型化、高速化、高性能方向发展,动压径向轴承形状设计方法研究成为改善或提高机组性能非常重要的发展方向。然而目前国内外的轴承形状研究局限于固有型线的改进,修型和参数优化,在己有基本结构基础上,提出新的形状设计思想或基本结构形式的难度也越来越大。为了克服这一障碍,本文重点开展了对动压轴承形状泛函及优化设计理论的研究,主要研究内容和成果包括:
     ①分析轴承动压润滑原理,建立轴承产生动压最基本的控制方程--雷诺方程。为了求解控制方程,分析比较求解非线性偏微分方程的方法,采用基于MATLAB的PDETOOL工具箱的有限元方法求解控制方程,使原本复杂的求解过程简单化。计算结果证明基于MATLAB的PDETOOL工具箱可以简单、准确、有效地求解动压轴承优化模型中的控制方程。
     ②分析了轴承产生动压必须具有周期性,非定常性和正定性,提出能够满足条件的四种通用型线方程表示轴承型线:基于点、基于泰勒级数、基于贝塞尔函数和基于付里叶级数的通用型线方程。从表示的复杂性、准确性和计算的难易度对四种方法进行比较,证明了基于付里叶级数的通用型线方程最适合动压轴承形状优化。通过分析基于付里叶级数的通用型线对常用轴承型线的集成性,并以型线的连续性为前提条件,从基于付里叶级数的通用型线中推导出径向轴承的三种典型型线,验证了以付里叶级数为基础的通用型线不仅可以集成现有轴承型线,而且可以表征出不受固有型线限制的新型轴承型线。
     ③利用表征动压轴承型线函数特征的泛函集成形式表示动压轴承的膜厚方程建立形状控制方程,以轴承型线的泛函系数为变量,最大承载力为目标,用遗传算法进行形状优化,优化结果摆脱了原始形状的限制,并且不产生拟合误差,得到具有最大承载力大于现有文献报道的新型轴承型线。在形状优化中,通用膜厚方程的无穷级数应用逐步逼近法,用有限项级数值表示了无限项的最佳近似值。优化结果显示,当级数为2阶时出现收敛趋势,该结果进一步论证了具有一个动压收敛腔的轴承型线对应的轴承承载力最大。
     ④针对动压径向轴承的多目标要求,以最小化侧漏流速和最小化功耗为目标函数,以宽径比,粘度和通用轴承型线方程系数为设计变量,以最小油膜厚度和最小承载力为限制条件建立了动压径向轴承的多目标优化设计数学模型。采用NSGA-Ⅱ的多目标优化方法,避免了权重因子的确定,利用惩罚因子处理非线性约束条件,实现了动压轴承形状多目标优化,得到Pareto前沿解集。实例证明,多目标优化结果比单目标得到的结果更优,同时从物理本质上论证了优化后的设计变量与性能参数的正确关系。
     ⑤轴承动压润滑理论本身具有近似性,为了验证理论的正确性,进行了实验研究。分析了动压轴承的材料、加工方法和实验设备和实验方法等,根据得到的理论优化结果加工了实验样件,完成了对比实验,实验结果验证了动压径向轴承形状泛函与优化设计理论的可行性和正确性。
     本论文的研究为设计出新的具有更佳性能的轴承形状提供了新的思路,提出了一种动压轴承型线设计的新理论和新方法,对动压轴承的设计具有重要的理论意义,同时对以动压润滑为工作原理的机械和其它利用微小间隙进行润滑的传动装置的廓线理论研究的深入发展也具有重要的推动作用。
There has always been a huge demand for efficient journal bearings in machines like steam turbines, centrifugal compressors, pumps, and motors. Ideally the bearing achieves good damping, durability, negligible friction, and zero wear in the smallest possible space. However, the starting point for most bearing shape development is still limited to classical geometrical bearing shapes. The radial clearance, the eccentricity ratio, and the attitude angle are all parameters that describe the location between the journal and bush for a given bearing shape. The shape optimized result is therefore limited to cylindrical or elliptical bearings. Using this approach the shape of the bush itself is not modified. In this work a fully generalized film thickness profile was used as the basis for shape optimization. An investigation into the geometrical theory required for hydrodynamic journal bearings was started, the mathematic model was built then optimization methods for shape optimization were used. The main work and results are as follows:
     ①The general Reynolds equation for the shape optimization model of hydrodynamic journal bearings was deduced from lubrication theory with some hypothesis. The Reynolds equation, which is the most importand government formula to express the hydrodynamic pressure generated by bearings, is a non-linear elliptic second order partial differential equation, which does not have a known analytical solution. In this work numerical solutions were found by employing the PDE Toolbox in MATLAB using a finite element method.
     ②Three necessary geometric conditions to generate hydrodynamic pressure were analyzed which were periodicity, non-constant and positive definiteness. Four kinds of general bearing profiles satisfying geometrical conditions were proposed which were the general profile based on points, the general profile based on Tylor series, the general profile based on Bazier functions and the general profile based on Fourier serises. Comparison was made under complexity and accuracy in expression and difficulty in computing, the general bearing profile based on a Fourier series was taken as the most suitable to shape optimization for hydrodynamic journal bearings. Some classical bearing profiles were shown to be a subset of this general bearing profile. Under continuity, three typicall profiles were deduced from the gernal profile based on a Fourier series, which testified that this kind of profiles can not only integrated current shapes but also can create new shapes for hydrodynamic bearings with optimal performance. The new approach based on the general film thickness breaked the limitation in current bearing shapes, which was convenient to analyze directly and adjust reversely. Consequently, arbitrary shapes of bearings can be obtained using optimizing method. The general profile and its parameterization make it possible to investigate the characteristics of bearing profiles. This could potentially be used to improve designs for better performance in industrial applications.
     ③A uniform shape optimization model was created using this general profile. The objective of the optimization had been to maximize the load capacity using the coefficients in the Fourier series as design variables. The lubrication equations had been solved based using the PDE Toolbox in MATLAB. This new method for optimizing the hydrodynamic journal bearings shapes outperformed that of previous publications. The optimization process was carried out using increasing orders of Fourier series to describe the bearing profile. As the order increased the load capacity increased. However the optimized result was almost fully achieved at a profile of order 2. This optimal shape was a single wedge bearing, which proved that a hydrodynamic journal bearing with the largest load capcity had a single wedge.
     ④The necessarity of multi-objective optimization was studied. This paper dealt with multi-objective shape optimization (minimization of side leakage rate, minimization of power loss) and design variables (lubricant viscosity, coefficients of general oil film thickness, slenderness ratio) related to the profile design of a hydrodynamic journal bearing. The aim was to show optimized shapes with better performance proposed here breaks the limitation in existing bearing profiles. The modified Non-Dominant Sort in Genetic Algorithm (NSGA-Ⅱ) can be used as the optimization tool with a penalty to those solutions that violate constraints for bearing shape optimization. The difficulty of selecting the weighting factor was removed in multi-objective journal bearing optimization problems. The Pareto optimal set obtained in this paper was a set of solutions close to the optimal solutions which were diverse enough to represent the true spread of optimal solutions. The multi-objective optimization result was better than single objective optimization one. The relation between designed variables and performance paremters was proved.
     ⑤Experiment was done required by product design and improvement to theory model. The material, processing method, experimental equipment and operation method were studied before the modal was manufactured. Correctless of the shape optimization based on the general profile was testified.
     This new shape design method provides a new thought for designers in order to design some completely new shape for hydrodynamic bearings with optimal performance. It also plays an important role in mechanism working in hydrodynamic theory and profile theory of transmission devices which make use of micro-clearance to lubricate.
引文
[1]邓圭玲,段吉安,朱均.计算径向滑动轴承无量纲膜厚及其偏导的统一公式[J].矿山机械, 2000(8):65-67.
    [2] Mishra P.C., Pandey R.K. and Athre. K. Temperature profile of an elliptic bore journal bearing[J]. Tribology International, 40 (2007):453–458.
    [3] Crosby W. A.. An investigation of the performance of a journal bearing with a slightly irregular bore[J]. Tribology International, 25(3),1992:199-204.
    [4] Chandrawat H. N. and Sinhasan R. A study of elastohydrodynamic lubrication in a three-lobe journal bearing[J]. Wear, 137(1),1990:1-13.
    [5]吕延军,虞烈,刘恒.椭圆轴承-转子系统非线性运动及稳定性分析[J].机械工程学报, 42(4) ,2006: 89-96.
    [6] Luois F H, Lake M and Peter J C. Journal Bearing with Edge Groove Vent[P].Intellectual Property Network, US5702186, 1997.
    [7] Tomioka, Shunzo, Hitachi et al. Guide Bearing Device [P]. US4291926, 1981.
    [8] Takahisa K, Shingo O. Improvement in Dynamic Characteristics of Circular Journal Bearings by Means of Longitudinal Microgrooves [J]. Tribology Transactioncs, 1996, 39(2): 462-468.
    [9] Rasheed H E. Efects of Surface Waviness on the Hydrodynamic Lubrication of a Plain Cylindrical Sliding Element Bearing [J]. Wear, 1998, 223(8): 1-6.
    [10] Akizo M. Journal Bearing [P]. JP6026516A, 1992.
    [11] Mohsin M E, Seif A A, Shaheen. The Dynamic Behviour of Bearings with Grooved Landsf [J]. Tribology International, 1986, 19(3): 133-140.
    [12] Huang Y, Chen D G. Effects of Partial-grooving on the Performance of Spirl Groove Bearings: Analysis Using a Perturbation Method [J]. Tribology International, 1996, 29(4): 281-290.
    [13] Goodwin M J, Boroomand T, hooke C J. Variable Impedance Hydrodynamic Journal Bearings for Controlling Flexible Rotor Vibrations In: Rotating Machinery Dynamics[C]. the 1989 ASME Design Conference on Mechanical Vibration and Noise, Canada, 1989.
    [14] Mckenna, John M, Port M. Journal Bearing with High Stifness [P]. US497159, 1990.
    [15] Tieu A K, Freund N O. A High Performance Journal Bearing with Controlled Elastic Deformation[J]. ASME Journal of Tribology, 1995, 117(10): 702-708.
    [16] Kikuchi K. Journal Bearing[P]. JP55006056A, 1980.
    [17] Lord Rayleigh. Notes on the theory of lubrication[J]. Philos Mag 1918;35:1–12.
    [18] Yamamoto K. Pressure Dam Type Journal Bearing[P]. JP9126228A, 1997.
    [19] Miller, Walliam, Albany. Self-Stabilizing, True-Tilting Pad with Abruptly-Stepped Pocket for Journal Bearing [P]. US5772335, 1998.
    [20]李小江.新型滑动轴承性能及其油膜由层流向紊流转变的过渡区研究[D].西安:西安交通大学,1997.
    [21]王凤才.滑动轴承新概念设计及其性能研究[D].西安:西安交通大学,2000.
    [22] Rohde, S.M., A Demonstrably Optimum One Dimensional Journal Bearing[J], ASME J. Lubr. Technol., 1972, 94 (2):188-192.
    [23] Song Jin-Dae, Yan Bo-Suk g, Ch i o Byeong-Gyeong-Gun, etc. Optimum design of short. journal bearings by enhanced artificial life optimization algorithm[J]. Tribology International.2005, 38: 403-412.
    [24] Moes, H. and Bosma, R. Design charts for optimum bearing configureations-I: the full journa bearing[J]. ASME Jour. of Lubr. Tech, 1971(93): 302-306.
    [25] Asimow, M. Introduction to engineering design[M], McGraw Hill, New York.
    [26] Kumar, V. Optimization of tolerance for minimum manufacturing cost of satisfyactory journal bearings[J]. Wear, 1983, 86: 21-27.
    [27] Hashimoto, H. Optimum design of high-speed, short journal bearings by mathematical programming[J], Trib. Trans., 1997, 40(2): 283-293.
    [28] Dowson D. Opimum computerized design of hydrodynamic journal bearings[J]. Int. J. mec.Sci. 1976, 18: 215-222.
    [29] Kraiko. A. N. The isoperimetric problem of bprofiling of the optimum clearance of an infinite plane slider bearing[J]. J. Appl. Maths Mechs, 1998, 62(2): 207-216.
    [30] Grabovskii V. I. and Kraiko A. N. Optimum design of infinite journal bearing with a minimum of the friction moment[J]. J. Appl Maths Mechs, 1999, 63(3): 453-461.
    [31] Maday, C. J. The maxmumu principle approach to the optmum one-dimensional journal bearing[J], ASME Jour. of Lubr. Tech., 1970, 92(3): 482-489.
    [32] Kanarachos. A.. A contribution to the problem of designing optimum performance bearings [J]. ASME Jor.of LUBR.TECH. 1977, 99:462-468.
    [33] Wang N., Ho C. and Cha K.. Engineering optimum design of fluid film lubricated bearings[J]. Trib. Trans. 2000, 43(3): 377-386.
    [34] Crosby W. A.. An investigation of the performance of a journal bearing with a slightly irregular bore [J]. Tribology International, 1992, 25(3):199-204.
    [35] Hashimoto H., Matsumot o K. Improvement of operating characteristics of high-speed hydrodynamic journal bearings by optimum design: Part 1- formulation of methodology and its application to elliptical bearing design[J]. Journal of Tribology. 2001,123: 305-312.
    [36] Prakash Chandra Mishra. Thermal Analysis of Elliptic Bore Journal Bearing[J]. Tribology Transactions, 2007, 50: 137-143.
    [37]王凤才,袁小阳,朱均.变阶梯结构自适应径向滑动轴承的研究[J].摩擦学学报. 2000, 20(3): 197-201.
    [38]王建设.三油叶精密轴承油膜间隙形状的摩擦性能分析[J].光学精密工程, 1995, 3(4): 78-81.
    [39] Kovács B., F.J. Szabó, and G.Y. Szota. A generalized shape optimization procedure for the solution of linear partial differential equations with application to multidisciplinary optimization[J]. Struct Multidisc Optim 21,2000:327–331.
    [40] Hirani H., Suh N.P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J]. Tribology International 2005 (38): 481–491.
    [41] Mishra P.C., Pandey R.K. and Athre K. Temperature profile of an elliptic bore journal bearing [J]. Tribology International, 2007, 40:453–458.
    [42]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.1.
    [43]朱均.摩擦学设计在大型汽轮发电机组轴承中的应用[J].中国机械工程,199 2, 3 ( 3) :1~4.
    [44] Tower B. First Report on Friction Experiments[J].P roc.Instn.Mech.Engrs.,1883, 34 : 632-666.
    [45] Tower B .Second Report on Friction Experiments[J].P roc.In stn.Mech. Engrs,1885, 36:58-70.
    [46] Pinkus O, Sternlicht B. Therory of Hydrodynamic Lubrication[M]. New York: McGraw-hill Book Company Inc,1961.
    [47] Sommerfeld A .Zur Hydrodynamischen Theoric der Schmiermittelreibung[J].Z. Math.U. Physik,1904,5 0:9 7-100.
    [48] DuG B, Ocvirk F W. Analytical Derivation and Experimental Evalution of Short Bearing A pproximation for Full Journal Bearing[J]. NASA Rept.1 157, 1953.
    [49]孙大成.润滑力学[M].北京:中国友谊出版社.1991.
    [50] Dowson D .A Generalized Reynolds Equation for Fluid-film Lubrication[J].International Journal of Mechanical Science,1962,4( 2):15 9-169.
    [51] Khonsari N. M .A Review of Thermal Effects in Hydrodynamic Bearings-Part I:Slider and Thrust Bearings[J].ASLE Transactions,19 87,30 (1):19 -25.
    [52] Kikuchi K .Journal Bearing[P].JP 55006056A,1980.
    [53]张桂芳.滑动轴承[M].北京高等教育出版社,1985..
    [54]张直明,张言羊,谢友柏等.滑动轴承的液体动力润滑理论[M].北京:高等教育出版社, 1986:123-158.
    [55]王助成,邵敏.有限元法基本原理与数值方法[M].北京:清华大学出版社.1988.178-186.
    [56]陆金甫,顾丽珍,陈景良.偏微分方程差分方法[M].北京:高等教育出版社,1988.
    [57]陆君安.偏微分方程的MATLAB解法[M].武汉:武汉大学出版社, 2004.
    [58]董延闿.级数[M]. 1版.上海:上海科学技术出版社, 1982.
    [59] DONG Y. K.. Series[M]. 1st edition. Shanghai: Shanghai Science and Technology Press. 1982.
    [60]奚定平,贝塞尔函数[M].北京:高等教育出版社,1998.5.
    [61] Lebeck, O., Principles and Design of Mechanical Face Seals[M]. Wiley-Interscience publication, New York, USA, ISBN 0-471-51533-7, 1991.
    [62] Chen, Y. F., Qian, R.M., Shape Optimal Design of Hydrodynamic Bearing Based on Dynamic Characteristics[J] Journal of Southeast University(English Edition), 1997,13(2): 96-100.
    [63] Matsuda, K., Kanemitsu, Y. and Kijimoto, S, Optimal Clearance Configuration of Fluid-Film Journal Bearings for Stability Improvement[J]. ASME J. Tribol., 2004, 126: 125-131.
    [64] Holland, J. H. Outline for a logical theory of adaptive systems[J]. Journal of the Association for Computing Machinery, 1962,9(3): 297-314.
    [65] Bagley, J. D. The behavior of adaptive systems which employ genetic and correlation algorithms[D]. Doctoral dissertation, University of Michigan, 1967.
    [66] Holland J. H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M], 1st edition, Ann Arbor, MI: The University of Michigan Press, 1975; 2nd edition, Cambridge, MA: MIT Press, 1992.
    [67] De Long K. A. An analysis of the behavior of a class of genetic adaptive systems[D]. Ph.D Dissertation, University of Michigan, NO. 76-9381,1975.
    [68] De Long K. A. Learning with genetic algorithms: an overview machine leaning[J], IEEE Transaction on Neural Networks, 1996(3), 122-138.
    [69] Smith S. E. A learning system based on genetic adaptive algorithm[D], Doctoral dissertation, University of Pittsburgh, 1980.
    [70] Goldberg, D. E. Genetic algorithms in search, optimization and machine learning[M]. MA: Addison-Wesley Publishing Company, 1989.
    [71] Davis, L.,(ed.) Handbook of genetic algorithms[M]. Van Nostrand Reinhold, New York, 1991.
    [72] Grefenstette, J. J. Optimization of control parameters for genetic algorithms[J]. IEEE Transaction on Systems. Man, and Cybernetics, 1986,16(1): 122-128.
    [73] Bauer, R. J. Genetic algorithms and investment strategies[M]. New York: John Wiley & Sons, Inc., 1991.
    [74] Srinivas, M. and Patnaik, L. M. Adaptive probabilities of crossover and mutation in geneticalgorithms[J]. IEEE Transaction on Systems. Man, and Cybernetics, 1994,24(4): 656-667.
    [75]潘叔维,张兴志等,全局优化算法自适应模拟退火-遗传算法的研究[J].光学精密工程,.7(4), 1999(8); 16-21.
    [76]童彤,丰镇平等,遗传算法在透平叶栅多目标优化设计中的应用[J].中国机电工程学报, 1999, 19 (7): 74-76.
    [77] Shi L.,Olafsson S. and Chen Q, A new hybrid optimization algorithm[J], Computer & Industrial Engineering, 1999, 36(2): 409-426.
    [78] Schmitt Lothar M., Theory of genetic algorithms[J], Theoretical Computer Science, 2001, 259(3):1-61.
    [79] Braunstingl R., Mujika J., and Uribe J. P. A wall following robot with a fuzzy logic controller optimized by a genetic algorithm[C]. In Proc. Fourth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'95), 1995, 5(3):77-82.
    [80] Angelov P. An approach to fuzzy optimal control supported by genetic algorithms[C]. In Proc. International Panel Conference on Soft and Intelligent Computing, October 1996.
    [81] Akbarzadeh M. R., Kumbla K. K., and Jamshidi M., Genetic Algorithms in Learning Fuzzy Hierarchical Control of Distributed Parameter Systems[C]. In Proc. IEEE Conference on Systems, Man and Cybernetics, 1995, 5: 4027-4032.
    [82] Bornholdt S, et, General Axisymmetric Neural Networks and Structure Design by Genetic Algorithm[J]. Neural Networks, 1992.5: 113-125.
    [83] Yoshida K. Functional Analysis[M]. Springer, 6th Edition, 1980.
    [84]庞晓平,陈进.基于泛函的动压轴承集成型线理论研究[J].润滑与密封, 2008,33(2):71-74.
    [85] BOEDO S, ESHKABLILOV S L. Optimal shape design of steadily loaded journal bearings using genetic algorithms[J]. Tribology Transactions. 2003, 46(1): 134-143.
    [86] Hashimoto, H. and Matsumoto, K. Improvement of operating characteristics of high-speed hydrodynamic journal bearings by optimum design: part I–Formulation of methodology and its application to elliptical bearing design[J]. ASME J. Tribol., 2001, 123, 305–312.
    [87] YANG Bosuk, LEE Yunhi, CHOIE Bveongkeun, etc. Optimum design of short journal bearings by artificial life algorithm[J]. Tribology International. 2001, 34(7): 427-435.
    [88] Hirani, H.Multiobjective optimization of a journal bearing using the Pareto optimality concept[J]. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology, 2004, 218, 323–336.
    [89] Hirani, H. Multiopjective optimization of journal bearing using mass conserving and genetic algorithms[J]. Engineering Tribology, 2005,219: 235-249.
    [90] Zengeya. M, Gadala. M. Optimization of journal bearings using a hybrid scheme[J]. IMechE,Part J: Journal of Engineering Tribology, 2007, 221(5): 591-607.
    [91] Hirani, H., Rao, T. V. V. L. N., Athre, K. and Biswas, S. Rapid performance evaluation of journal bearing[J]. Tribology Int., 1997, 30(11), 825–834.
    [92]庞晓平,陈进.基于泛函的动压轴承形状设计方法研究[J].润滑与密封,2008,33(2):71-74.
    [93] SWANSON ERIK. Fixed-geometry, hydrodynamic bearing with enhanced stability characteristics[J]. Tribology transaction, 2005(48): 82-92.
    [94] Deb, K. Multiobjective Optimization Using EvolutionaryAlgorithms[M], New York: John Wiley & Sons, Ltd, , 2001.
    [95] Hassan A.EI-Gamal. Analysis of the steady state performance of a wedge-shaped hydrodynamic journal bearing[J]. Wear, 1995, 184: 111-117.
    [96] C N Pandazaras and G P Petropoulos. Lubricated convex and concave journal bearings[J]. Proc Instn Mech Engrs, 2001, 215(J): 425-429.
    [97] S.M.Rhode. A demonstrable optimum one dimensional journal bearing[J]. ASME Jour. Of Lubr. Tech. 1972, 94(2): 188-192.
    [98] Allaire P E, Nicholas J C, Barrett L E. Analysis of Step Journal Bearings-Infinite Length,In ertia Efects[J].A SLE Transactions,19 80,22(4):333-341.
    [99] Byrns, Edson H, Endress et al. Rotary Shaft Tilting Shoe Bearing[P].US3936103, 1976.
    [100] MikamiM .Tilting Pad Journal Bearing Device[P].JP 7180721A,1995.
    [101]刘惠彬,刘玉刚.测试技术[M].北京:北京航空航天大学出版社1989.
    [102] Dasgupta, D., and Michalewicz, Z., Evolutionary Algorithms-An overview Evolutionary Algorthms in Engineerying Applications[M], Spring-Verlag, New York, NY. 1997.
    [103] Choi, B.G., and Yang, B.S. Optimum Shape Design of Rotor Shafts Using Genetic Algorithm[J], ISROMAC-7, 1998,Vol.B, Hawaii..
    [104] Cheng, F.Y., and Li, D.,(), Multiobjective Optimization Design with Pareto Genetic Algorithm[J], Journal of Structural Engineering, 1997,. 123.: 1251-1261.
    [105] Chen, W.J.C., Rajan, M., Rajan, S.Dl., and Nelson, H.D., the Optimal Design of Squeeze Film Dampers for Flexible Rotor Systems[J], ASME Journal of Mechanisms, Transmissions, and Automation on Design, 1988,110,:167-174.
    [106] Chen, W. J. Optimal Design and Parameter Identification of flexible Rotor-Bearing Systems[D], Arizona State University, Tempe, Arizona. 1987.
    [107]陈进,张永栋,宋立权等.基于多目标遗传算法的涡旋型线形状优化[J].机械工程学报. 41(1),2005:172-175.
    [108] Deb. K, Pratap. A, Agarwal. S, etc. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE transactions on evolutionary computation 2002,6: 182-197.
    [109] Marler. R.T, and Arora. J. S, Survey of multi-objective optimization methods for engineering[J]. Struct multidisc optim, 2004,26: 369-395.
    [110] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning[M], Addison-Wesley, Longmont Inc., Delhi. 1989.
    [111] Khonsari, Michael M. Applied tribology : bearing design and lubrication[M]. New York, Chichester : John Wiley, 2001
    [112]樊红朝,杨建玺,崔勤建.动压油膜轴承研究现状与应用[M].轴承, 2003(2): 1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700