粉末冶金钼合金热锻的性能和显微组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mo-Ti-Zr合金(Titanium-Zirconium-Molybdenum Alloy)具有高温强度高、抗蚀性能强以及高的抗蠕变性能、高热导率、低的热膨胀系数等优点而应用于电子、冶金、航空航天、原子反应堆等。传统粉末冶金法制备的Mo-Ti-Zr合金由于具有一定的孔隙,使其强度和韧性大大降低,限制了Mo-Ti-Zr合金的应用范围。围绕提高粉末冶金Mo-Ti-Zr合金密度和性能,论文采用采用冷等静压和高温烧结制备了Mo-Ti-Zr合金棒材,对高温烧结制备的Mo-Ti-Zr合金棒材进行高温旋锻形变强化处理,系统研究了烧结温度、旋锻温度、变形量、旋锻过程中的中间退火时间、退火温度对Mo-Ti-Zr合金棒材力学性能和显微组织的影响,探讨了孔隙和第二相粒子对旋锻Mo-Ti-Zr合金棒材的性能和显微组织的影响机理,研究结果如下:
     (1)随烧结温度的升高,Mo-Ti-Zr合金棒材经过高温旋锻后密度提高变小而硬度提高更加明显,抗拉强度的提高变小。在1800℃烧结的Mo-Ti-Zr合金棒材经过高温旋锻后性能最好,抗拉强度650Mpa,延伸率1.5%。随烧结温度的提高,Mo-Ti-Zr合金棒材旋锻后大尺寸晶粒更容易产生合并长大而粗化,Mo-Ti-Zr合金棒材旋锻后穿晶解理断裂的比例增加。
     (2)Mo-Ti-Zr合金棒材在1200℃旋锻的密度、硬度和抗拉强度比1400℃旋锻要高。采用低碳钢包套可以降低锻造温度,有效的避免Mo-Ti-Zr合金棒材晶粒的过分长大。随断面收缩率的增加,Mo-Ti-Zr合金棒材的密度和硬度、强度逐步提高。断面收缩率为27%时,Mo-Ti-Zr合金棒材密度为9.83g/cm3,硬度为HRB95,强度为648Mpa。Mo-Ti-Zr合金棒材烧结态断口主要是沿晶脆性断裂,断面收缩率为27%时,断口呈穿晶和沿晶混合型断裂。
     (3)随旋锻过程中的中间退火时间的增加,Mo-Ti-Zr合金棒材的密度和硬度逐渐提高,中间退火时间在40min, Mo-Ti-Zr合金棒材抗拉强度达到最大值。当退火温度低于1000℃时,随退火温度的升高,Mo-Ti-Zr合金棒材硬度末出现急剧下降,抗拉强度和延伸率逐渐提高,在900℃退火,合金棒材抗拉强度达到669Mpa,延伸率达到3.1%,获得良好的综合力学性能。
     (4)Mo-Ti-Zr合金棒材孔隙消除机理主要是高温使闭合之后的孔洞表面形成物理冶金结合与三向压应力使各种微裂纹焊合。Mo-Ti-Zr合金棒材第二相粒子(Mo,Zr,Ti)xOy有利于细晶强化和弥散强化,但同时因其与钼晶粒的界面结合较弱而易于产生微裂纹和促进再结晶,使晶粒发生长大降低合金的拉伸性能。
Molybdenum-Titanium-Zirconium alloy is a unique refractory metal combined with remarkable high-temperature strength,corrosion resistance and creep-resistance, high thermal conductivity, low coeffcient of thermal expansion, so that it has been widely used in electronic industries,metallurgies,aerospaces and nuclear reactor vessels. The conventional PM Mo-Ti-Zr alloys have the pores and cause the decrease of tensile strength and elongation,so the application of Mo-Ti-Zr alloys are limited.In order to increase the density and mechanical properties of PM Mo-Ti-Zr alloy, Mo-Ti-Zr alloy rods were prepared by cold isostatic pressed and high temperature sintered, and the high temperature sintering alloy rods were rotary forged.The influences of sintering temperature,rotary forging temperature,deformation amount,intermediate annealing time during the rotary forging process and annealing temperature on mechanical properties and microstructure of Mo-Ti-Zr alloy rods were investigated and the influences of the pores and the second phase particles were analysed,the results are as follows:
     (1) The increase of density and tensile strength of Mo-Ti-Zr alloy rods rotary forged decrease, the increase of hardness is obvious with increasing sintering temperature. Mo-Ti-Zr alloy rods sintered at 1800℃reach the max value, tensile strength is 650Mpa and elongation is 1.5%.The large grains of Mo-Ti-Zr alloy rods rotary forged easily merge and coarse and the scale of transgranular fracture increase with the increasing sintering temperature.
     (2) The density,hardness and tensile strength of Mo-Ti-Zr alloy rods rotary forged at 1200℃are higher than at 1400℃.The low carbon steel can reduce forging temperature and effectivly avoid the grains excessive growing.The density、hardness、tensile strength increase slowly with the increasing deformation amount. The density of Mo-Ti-Zr alloy rods reach 9.83g/cm3, hardness is 92.8HRB and tensile strength is 648Mpa after rotary forging to deformation amount of 27%. The fracture type of sintering Mo-Ti-Zr alloy rods is intergranular fracture,the fracture type of Mo-Ti-Zr alloy rods is changed to the mixing type of transgranular fracture and intergranular fracture after rotary forging to deformation amount of 27%.
     (3) The density and hardness increase slowly with the increasing intermediate annealing time during the rotary forging process. The tensile strength reach maximum at 40min.The hardness decrease slowly and tensile strength and elongation increase with increasing annealing temperature before 1000℃. Tensile strength and elongation reach maximum 669Mpa and 3.1% at 900℃.
     (4) The pores disappearance mechanics of Mo-Ti-Zr alloy rods is mainly physical metallurgical bonding of the surface of the pores closing at high temperature and three-dimensional compressive stress make the microcracks welded together. Though the second phase particles (Mo,Zr,Ti)xOy produce fine grain strengthening and dispersion strengthening,they avianize interface between molybdenum grains and result in fracture and recrystallization and the molybdenum grains growth occur and the mechanical properties decrease.
引文
[1]李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,1990:25-30
    [2]Krajniikov A.The study of impurity element in the Molybdenum Alloys[J].Refractory Metals & Hard Materials[J],1992,354(11):175-180
    [3]Yutaka Hiraoka,Satoru Yoshimura.Low temperature fracture strength and ductility of carburized Mo-Ti alloys[J].Refractory Metals & Hard Materials,1995,254(13):205-210
    [4]Cockeram B V,Smith R W,Sead L L.Tensile properties and fracturemode of wrough ODS molybdenum sheet following fast neutron irradiation[J] Journal of Nu-clear Materials,2005,346(25):165-184
    [5]Mrotzek T,Hoffmann A,Martin U.Hardening Mechanisms and Recrystallization Behaviour of Several Molybdenum Alloys[J].Refractory Metals & Hard Metals,2006,125(24):298-305
    [6]许洁瑜,杨刘晓,王俊龙.中国钼资源利用与可持续发展战略研究[J].中国钼业,2005,29(4):3-9
    [7]李鹏.热轧工艺对钼板材成品性能的影响[J].稀有金属与硬质合金,2005,33(2):35-38
    [8]张卫,李梅.2000年材料科学与工程新进展(材料制备、成形与热加工)[M].北京:冶金工业出版社,2001:456-462
    [9]Wang K,Yun K Park,Cho J H.Texture evolution during deep drawing of Mo sheet[J].Key Eng Mater,2003,156(23):233-236
    [10]Mil'man Y V,Rachek A P,Kurdyumov G G.The problem of 45 degree embrittlement of low-alloy sheet molybdenum [J].Fiz Metal Metalloved,1979,48(2):309-315
    [11]尤世武.冷轧纯钼板的织构研究[J].理化检验,2000,36(1):342-346
    [12]Srikanth V,Upadhyaya G S.The Study of deformation strengthing on th molybdenum alloys[J].J of Materials Science Letters,1988,7(2):195-197
    [13]朱桂森,刘铭成,甄振先.钼合金的扎制的显微组织变化研究[J].金属学报,1983,19(6):499-503
    [14]李志,席聚奎,杨蕴林.钼合金锻造过程中的显微组织变化[J].金属学报,1991,27(4):303-307
    [15]李志,杨蕴林,席聚奎.扎制过程中钼合金的组织变化[J].金属学报,1996,19(5):355-360
    [16]李鹏.热轧工艺对钼板材成品性能的影响[J].北京:稀有金属与硬质合 金,2005,33(2):35-39
    [17]张卫,李梅.2000年材料科学与工程新进展[M].北京:冶金工业出版社,2001:365-369
    [18]詹志洪.铝丝质量的影响因素分析及工艺改进措施[J].中国钼业,2005,30(2):28-31
    [19]朱爱辉,吕新矿,王快社.钼板轧制实验研究[J].中国钼业,2006,30(4):36-40
    [20]杨文甲.粉末冶金TZM钼合金板坯热轧开坯工艺的研究[J].有色矿冶,1995,35(3):30-33
    [21]杨明杰,李麦海,魏忠梅.轧制温度对钼板组织与性能的影响[J].稀有金属与硬质合金,1999,137(36):30-33
    [22]朱爱辉,吕新矿,王快社.改善钼板轧制工艺、提高钼板轧制质量[J].河南冶金,2006,14(3):13-14
    [23]童治安.稀土钼合金板坯的研制[J].中国钼业,2000,24(3):35-37
    [24]孙院军,张国军,王建武.稀土钼合金第二相粒子尺度对材料加工性能的影响[J].中国钼业,2005,29(1):31-34
    [25]王鹏.钼板轧制工艺与弯曲工艺性能[J].中国钼业,1995,19(5):23-25
    [26]王敬生.TZM合金板、棒材的研制和应用[J].中国钼业,2007,31(2):44-47
    [27]尤世武,陈兴友.TYM钼合金轧制工艺与组织结构及再结晶温度的关系[J].上海有色金属,1998,19(3):127-131
    [28]Olds L E,Rengstorff G. W P. Texture evolution during deep drawing of Mo sheet[J]. J Metals Science Letters,1956,245(35):150-156
    [29]Kumar A, Eyre B L.Progress of molybdenum alloys[J].Proc.R.Sot.LondonA,1980,370(65):431-435
    [30]Kurishita H,Yoshinaga H,Abiko K.Grain Boundary Structure and Related Phenomena[J].Suppl to Trans Japan Inst Metals,1986,145(27):739-743
    [31]曹琦,张二召,吴维治.钼及钼合金热加工工艺对制品性能与能耗影响初探[J].有色金属加工,2007,36(2):40-42
    [32]Eck R.Study of melting molybdenum alloys[J].Proc.12th Plansee Seminar,1989,135(24):829-843
    [33]蔡宗玉.高性能TZM钼合金棒研制[J].上海钢研,1993,12(3):9-12
    [34]韩强,张相一.纯钼板及钼合金板热轧工艺探讨[J].中国钼业,2001,25(1):39-42
    [35]谭栓斌,张小明,任吉文.钼铼合金带材的组织和性能[J],稀有金属,2004,28(1):127-130
    [36]彭志辉.稀有金属材料加工工艺学[M].长沙:中南大学出版社,2003:419-423
    [37]朱爱辉,吕新矿,王快社.交叉轧制在Mo-1钼板生产中的应用[J].材料开发与应 用,2006,21(4):38-40
    [38]刘戍生.镧、钇复合稀土钼合金的研究[J].中国钼业,1999,23(6):19-22
    [39]梁小营,牟科强.稀土氧化物Ce02和Y203对Mo-30W合金性能的影响[J].稀有金属材料与工程,1998,27(12):155-158
    [40]Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.5pct titanium-0.1pct zirconium(TZM),and oxide dispersion strengthened (ODS) molybdenum flat products[J].Materials Science and Engineering A,2006,418(36):120-136
    [41]贾东明,张明祥,来晓君.熔炼钼棒锻造工艺研究[J].中国钼业,2006,30(5):42-44
    [42]薛康营.轧制—拉伸与旋锻—拉伸加工工艺的对比分析研究[J].中国钼业,2000,24(3):38-43
    [43]李松瑞.金属热处理[M].长沙:中南大学出版社,2003:25-27
    [44]王振东,郑剑平,杨启法.高温退火对TZM合金拉伸性能的影响[J].原子能科学技术,2005,39(6):42~45
    [45]陈桦.热处理温度对0.35mmTZM板材性能和组织的影响[J].稀有金属材料与工程,2002,31(13):89-93
    [46]王慧芳.掺杂钼板材性能的研究[J].中国钼业,1994,18(6):26-30
    [47]孙洋(译).添加稀土的钼丝[J].稀有金属与硬质合金,1991,(4):601-605
    [48]程仕平,等.掺杂钼丝的组织与性能[J].中国钼业,1999,23(4):101-104
    [49]罗振中.钼的应用及其发展[J].中国钼业,2003,27(2):7-10
    [50]陈响明.变形钼丝再结晶过程的电镜观察[J].中国钼业,1997,21(6):531-535
    [51]莫尔古诺娃.钼合金[M].北京:冶金工业出版社,1984:325-335
    [52]Young M,Hiraoka K.Recrystallization of molybdenum Wire doped with lanthanum oxidel[J].International Refract Mater,1995,13(4):212-217
    [53]Yoo,Young M,Hiraoka.Recrystallization of molybdenum wire doped with potassium silicatel.Metal Mater Trans A,1995,26(4):801-816
    [54]李淑霞,魏光明,王思清.钼镧合金丝的组织及性能[J].稀有金属材料与工程,1999,28(3):186-188
    [55]HoracsekO,BarthaL.Influence ofsurface particles of AKS-doped TBO on the NS-structure of tungstenwires[J].International Refract Mater,2002,20(4):271-276
    [56]Yoo Myqungko.Recrystallization of molybdenum wire doped with potas2sium silicate[J].Meatal Master Trans,1995,25A(4):801-805
    [57]Yutake Hiraoka.Strengths and ductility of Mo-TiC alloys after secondary recrystsllization[J].International Journal of Refractory Metals&Hard Materials,2003,21(8):265-270
    [58]谭拴斌,梁清华,梁静.钼镧合金和TZM合金的高温性能[J].稀有金属,2006,30(21):33-37
    [59]刘沙,曹昱,舒金波.低铼钼合金力学性能的研究[J].稀有金属与硬质合金,1999,12(138):33-36
    [60]Liu Sha.Annealing behavior of molybdenum alloys containing 3% rhenium [J]. International Journal of Refractory Metals & Hard Materials,1999,17(5):381-384
    [61]谭拴斌,郭让民,杨升红.钼铼合金的结构和性能[J].稀有金属,2003,27(6):788-793
    [62]En Doetal M.The effects of molybdenum wire doping rare earth elements[J].High Temperatures High Pressure,1990,21(4):129-137
    [63]刘光耀.耐高温高强度钼丝的研究[J].中国钼业,1994,18(6):28-31
    [64]杨晓青,贺跃辉,罗振中.掺杂La对钼丝组织和性能的影响[J],稀有金属快报,2006,25(3):30-33
    [65]李淑霞.钼镧合金丝的组织及性能[J].稀有金属材料与工程,1999,28(3):186-188
    [66]程仕平.掺杂钼丝的组织与性能[J].中国钼业,1999,23(4):10
    [67]潘叶金.掺La203钼丝的显微组织与强韧化[J].中南工业大学学报,1995,26(2):196-198
    [68]Zhang J X,Liu D M,Liu Y Q.interactions between La2O3 particles and dislocations in Mo-La2O3 alloys[J].ACTA METALLURGICA SINICA, 2005,18(6):714-718
    [69]周美玲.镧钼丝组织结构和性能的研究[J].中国有色金属学报,1994,4(2):45-49
    [70]Iorio L E,Bewlay B P,Larsen M.Analysis of AKS-and lanthana-doped molybdenum wire[J].International Journal of Refractory Metals & Hard Materials, 2006,24(6):306-310
    [71]董长生.掺杂三氧化二钕对钼丝显微组织和性能影响的研究[J].稀有金属材料与工程,1994,23(6):46-49
    [72]姚草根.多元复合稀土钼材的研究[J].中国钼业,1999,23(4):15
    [73]张久兴.掺杂复合稀上氧化物的钼的组织与性能[J].稀士,1999,20(5):22-23
    [74]高家诚,王勇,李静.复合掺杂钼丝的组织和性能研究[J].功能材料,2003,34(5):528-529
    [75]易永鹏,高积强.稀有金属材料与工程,2005,34(2):271-273
    [76]王锦,卜春阳.第二相粒子尺度对钼镧合金加工硬化影响[J].中国钼 业,2006,30(3):43-46
    [77]Hiroaki Kurishita,Yuji Kitsunai,Tamaki Shibayama.Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation[J]. Journal of Nuclear Materials,1996,233(237):557-564
    [78]李志.高比重钨合金的旋锻形变强化[J],兵器材料科学与工程,1998,21(2):56-59
    [79]Wang Yong,Gao Jiacheng,Chen Gongming.Porperties at elevated temperature and recrystallization of molybdenum doped with potassium,silicon and aluminum[J].International Journal of Refractory metals & Hard Materials,2008,26(3):9-13
    [80]Iorio L E,Bewlay B P,Larsen M.Analysis of AKS- and lanthana-doped molybdenum wire[J].International Journal of Refractory Metals & Hard Materials,2006,135(24):306-310
    [81]高家诚,王勇,陈功明.粉末冶金技术,2007,25(1):7-12
    [82]印协世.钨丝生产原理、工艺及其性能[M].北京:冶金工业出版社,1998:265-269
    [83]曹维成,刘静,任宜霞.掺杂不同微量元素对钼材性能的影响[J].稀有金属快报,2006,25(8):29-32
    [84]成钧.加钴钼丝研究[J].稀有金属与硬质合金,1995,13(3):22-26
    [85]金和玉.再结晶钼合金的晶界偏析及其对脆性晶间断裂的影响[J].中国钼业,1995,19(4):27-29
    [86]吴新光,杜晓斌.TZM合金及其特性[J].中国钼业,2005,29(5):30-31
    [87]Yamaguchi, Katsumi. Improvement of machinability of sintered composite-type alloyed steel powder[J].American society of mechanical engineers,Production Engineering Division,1993,67(14):151-157
    [88]Lenel FV,Ansell GS,Morris R C.Modern Developments in powder Metallurgy[M].New York:New York university,1971:254-261
    [89]陈畅,汪明朴,谭望.Mo-C棒的横向弯曲性能[J].中南大学学报,2009,40(1):129-134
    [90]张建德,曾舟山,谢飞.热变形致密细晶粒钼棒的组织和性能[J].粉末冶金材料科学与工程,2008,13(4):235-239
    [92]Mrotzek T,Hoffmann A,Martin U.Hardening mechanisms and recrystallization behaviour of several molybdenum alloys[J].International Journal of Refractory Metals & Hard Materials,2006,135(24):298-305
    [93]Warren J.The 700℃ tensile behavior of Mo-0.5Ti-0.08Zr-0.025(TZM)extruded bar measured transverse and parallel to the billet extrusion axis[J].International Journal of Refractory Metals & Hard Materials,1998,235(16):149-157
    [94]郑欣,张清,张军良Mo-Ti-Zr棒材加工方法的分析[J].稀有金属快报,2004,23(7):29-31
    [95]蔡宗玉玉.高性能TZM钼合金棒研制[J].上海钢研,1993,6(3):9-12
    [96]Jinglian Fan, Mingyuan Lu, Huichao Cheng.Effect of alloying elements Ti,Zr on the property and microstructure of molybdenum[J],Int.Journal of Refractory Metals & Hard Materials,2009,27(35):78-82
    [97]魏寿庸,何瑜,刘振球.工业钼合金加工现状[J].稀有金属材料与工程,1998,27(13):27-33
    [98]徐向俊,林均品,王艳丽.工程化高Nb钛铝合金锻造性研究[J].材料科学与工艺,2007,15(5):709-712
    [99]缪家士,林均品,王艳丽.高铌钛铝基合金板材的高温包套轧制[J],稀有金属材料与工程,2004,33(4):436-438
    [100]周涛,黎文献,周科朝.包套锻造快速凝固耐热铝合金的组织和性能[J].粉末冶金技术,2004,22(1):29-32
    [101]刘咏,黄伯云,周科朝TiAl基合金包套锻造工艺[J].中国有色金属学报,2000,10(13):6-9
    [102]徐向俊,林均品,王艳丽.工程化高Nb钛铝合金锻造性研究[J].材料科学与工艺,2007,15(5):709-712
    [103]李志.高比重钨合金的旋锻形变强化[J].兵器材料科学与工程,1998,21(2):56-59
    [104]Khayatzadeh S,Poursina M,Golestanian H.A Simulation of Hollow and Solid Prouducts Forging Using 3D-FEM Method[J]Journal of material processing technology,2007,187(54):534-539
    [105]王德志,刘心宇,周美玲Mo-La2O3烧结坯的韧化机制研究[J].粉末冶金技术,2002,20(2):75-78
    [106]Masahiro Nagaea,Yoshito Takemoto b,Tetsuo Yoshio.Preparation of structurally controlled dilute molybdenum-titanium alloys through a novel multi-step internal nitriding technique and their mechanical properties[J].Materials Science and Engineering A,2005,406(1-2):50-56
    [107]Mueller A J.Evaluation of oxide dispersion strengthened(ODS)molybdenum and molybdenum-rhenium alloys[J].International Journal of Refractory Metals & Hard Materials,2000,215(18):205-211
    [109]郭明星,汪明朴,李周.低浓度Cu-Al2O3弥散强化铜合金退火特性的研究[J],材 料热处理学报,2005,26(1):36-39
    [110]王佳玲,陈卓,陈华.铁基粉末烧结热锻材料的组织和性能[J].长春工业大学学报,2005,26(1):62-65
    [111]崔振山,任广升,徐秉业.圆柱体内部空洞的热锻闭合条件[J].清华大学学报,2003,43(2):227-229
    [112]Parteder E,Riedel H,Kopp R.Densification of sintered molybdenum during hot upsetting:experiments and modelling[J].Materials Science and Engineering A,1999,64(25):17-25
    [113]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005:251-256
    [114]尹志民,潘清林,姜锋。钪和含钪合金[M].长沙:中南大学出版社,2007:312-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700