富含血小板血浆应用于骨组织工程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由肿瘤、创伤和感染等原因造成的骨缺损,给患者的生存质量带来很大的影响。常用的修复方法如自体、异体骨移植、人工替代物等,都有一定的局限性。所以,骨缺损的修复和治疗一直是困扰临床医生的一个难题。而骨组织工程技术的出现和发展,为解决这些问题提供了可能。
     骨组织工程技术研究领域主要包括种子细胞、支架材料、生长因子三方面内容。经过近20年的研究,骨组织工程研究已经取得了长足的进展。在长期的骨组织工程研究过程中,人们逐渐认识到无创、微创的重要性,以及应该尽量避免使用异体、异种材料,并已经在进行积极的研究和探索。
     富含血小板血浆(platelet rich plasma, PRP),是全血通过离心、浓集而得到的成分血液制品。其特点是其中血小板浓度高,并含有多种生长因子以及丰富的纤维蛋白网络;通过与凝血酶复合,纤维蛋白彼此铰链,它还可以形成凝胶。
     本课题充分利用PRP的这些特点,制各及检测PRP,并以PRP为支架、用注射方式构建组织工程骨,使PRP同时成为骨组织工程研究的支架材料和生长因子的提供者;而且,在构建组织工程骨的过程中,可以实现无创或微创的目标。
     第一部分 富含血小板血浆的制备及检测
     实验一 富含血小板血浆的制备及血小板、TGF-β浓度检测
Bone defects caused by tumor, trauma and infection diseases are very familiar. The ordinary reconstructive ways, such as autograft, allograft and artifical grafts can solve these problems in a way, but have their limitations. Autogenous bone grafting, thought to be an ideal form, cannot be used to reconstruct extensive bone defect because of limitation of bone that can be harvested. This method also has the drawback of causing damage to normal bone and soft tissue. Allogeneic bone can be obtained in sufficient quantities, but does not always show satisfactory results due to immunological rejection. In recent years, the development of tissue-engineered bone shows us a potential way to solve this problem.The research of tissue-engineered bone includes cells, scaffolds and growing factors. During the sutuies, researchers found that we'ed better use autogenous tissue and the limitation elimination of trauma is very important.Platelet rich plasma (PRP) is drawn from the whole blood by centrifugation. It contains not noly high concentration platelets, but also many kinds growing factors. It also contains abundant fibers. PRP can be turned into gel when it is mixed with thrombin.Thses studies apply PRP in bone tissue engineering. We use PRP as the scaffold of injectalbe tissue-engineered bone. All these studies were carried out in a micro-trauma ways.Chapter 1: The Manufacture and Examination of PRP Experiment 1: The Manufacture of PRP and the Concentration of Platelet and TGF-β
    [Abstract] Objective: To find a simple and effective way to prepare and examine PRP. Methods: Whole blood was drawn from rabbit, after two times of centrifugation, red blood cells and platelet poor plasma was separated with PRP. Platelet count was carried out and the concentration of TGF- P examined. Results: PRP was prepared successfully and the platelet count was 5.49 times of that of the whole blood and the concentration of TGF- 3 increased 2.93 times comparing with the whole blood. Conclusion: A convenient two-step centrifugation method of concentrating platelets was established. PRP produced by this technique was eligible.Experiment 2: The Observe of Platelet Rich Plasma Gel with Scanning Electron Microscope[Abstract] Objective: To observe the construe of platelet rich plasma gel, and estimate whether it can be used as a scaffold of tissue engineering. Methods: Platelet rich plasma was prepared with centrifuge and was cross-linked with bovine thrombin. Observe it with scanning electron microscope. Results: Platelet rich plasma gel was interweaved by many fibers and there was many cavum in it. Conclusion: Platelet rich plasma gel can be used as a scaffold of tissue engineering.Chapter 2: The Examination of Biological Characteristic of PRPExperiment 1: Study of Cellular Biocompatibility of PRP [Abstract] Objective: to observe the biocompatibity of PRP. Methods: Bone marrow stromal cells (BMSCs) were separated and cultured, in the same time, autologous PRP was prepared. The BMSCs was mixed with PRP with final cellular density of 5xlO6/ml. The BMSCs/PRP composites were turned into gel when it was mixed with bovine thrombin. The gel was cultured in the standard condition for 48 hours. After that, the gel was freeze-dryed and examined with scanning electron microscope (SEM). Results: The BMSCs could attach, spread and proliferate well on the surface and pore of the PRP scaffold. Conclusion: PRP had good cell biocompatibility to BMSCs and could be used as scaffold of tissue-engineered bone.Experiment 2: The study of PRP on multiplication of BMSCs in vitro.
    [Abstract] Objective: To explore the effects of PRP on the multiplication of BMSCs. Methods: PRP were extracted from autologous blood and then dissolved into DMEM medium. BMSCs were stimulated with PRP in different dilutions (5%~50%). 24h, 72h, 120h later, a MTT test was performed to measure the cellular proliferation rate. Results: The proliferation rate of the BMSCs was (concentration-dependent) increased up to a certain plateau by adding PRP. Further stimulation led to a slight decrease in the proliferation rate. The statistical analysis of the extinction measurements showed significant differences in the cell proliferation rates between mostly all PRP concentration groups (pO.Ol). Conclusion: This study shows that the proliferation rate of BMSCs can be stimulated in vitro by concentration-dependent platelet concentrates. This in vitro result supports the currently discussed assumption that the clinical use of PRP might increase bone regeneration.Chapter 3: The Application of PRP to Bone Tissue Engineering Experiment 1: Injectable Tissue-engineered Bone Regeneration using BMSCs and PRP[Abstract] Objective: The study investigates the utilization of PRP carrier for delivering osteoblasts and creating new bone tissue in nude mice model via injection. Methods: BMSCs harvested from iliac bone of New Zealand rabbits was cultured and harvested. The BMSCs were mixed with PRP solution to generate BMSCs/PRP composites with final cellular density of 5 X 106/ml. Bovine thrombin was used as cross-linking agent to gel BMSCs/PRP composites. The composites were injected into the dorsal subcutaneous tissue of nude mice. Results: 8 weeks after injection, the hard knobbles were easily palpated under the dorsal skin of animals. X-ray photograph showed that the knobbles has calcified image with more density than sounding soft tissue. In histological analysis, new bone formation was observed in the BMSCs/PRP composites. The osteogenesis was in association with regenerated hematopoietic bone marrow. Conclusion: These results revealed that new bone tissue could be created through the injection of PRP mixed with BMSCs.Experiment 2: Repair of Skull Defects of Rabbit with Cultured BMSCs Combined with PRP
引文
[1] Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260:920-923
    [2] Dan Ferber. Tissue Engineering. Science, 1999, 284:422
    [3] 毛天球.组织工程研究概况.实用口腔医学杂志,2000,16(1):74-75
    [4] 曹谊林.组织工程学的研究进展.中国美容医学,2005,14(2):134-135
    [5] Tischler M. Platelet rich plasma. The use of autologous growth factors to enhance bone and soft tissue grafts. N Y State Dent J. 2002, 68(3):22-24
    [6] Rose F, Oreffo R. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun, 2002, 292(1): 1-7
    [7] Thomson JA, Itskovitz-Eider J, Shapiro SS. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282:1145-1147.
    [8] 叶鑫生.干细胞和发育生物学.北京:军事医学科学出版社,2000,105-108
    [9] Vats A, Tolley NS, Polak JM, Shapiro SS. Stem cells: sources and applications. Clin Otolaryngol, 2002, 27(4):227-232
    [10] Lagasse E, Connors H, Al-Dhalimy M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000, 6:1229-1231
    [11] Huang JI, Beanes SR. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg, 2002, 109:1033-1035
    [12] Halvorsen YD, Franklin D, Bond Al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng, 2001;7:729-732
    [13] 毛天球.骨组织工程的研究.中华口腔医学杂志,2001,36:158-159
    [14] Pelinkovic D, Martinek V, Engelardt M. Tissue engineering and gene therapy of the musculoskeletal system with muscle cells. Orthop Thre Grenzgeb, 2000, 138:402.
    [15] 解慧琪,杨志明.人端粒酶逆转录酶真核表示质粒转染人成纤维细胞的体外培养及生物学特性研究.中国修复重建外科杂志,2002,16:195-196
    [16] Nuttall ME, Patton A J, Olivera DL. Human trabecular bone cells are able to express both osteoblastie and adipocytie phenotype: implication for osteogenie disorders. J Bone Miner Res, 1988, 13(3):371-382
    [17] Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997, 90(9):3471-3481
    [18] Fortier LA, Nixon AJ, Williams J. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res, 1998, 59(9):1182-1187
    [19] Lenon DP, Haynesnorth SE, Young RG, et al. A chemically defined medium supports in vitro proliferation and maintains the osteochndral potential of rat marrow-derived mesenchymal stem cell. Exp Cell Res, 1995, 219:211-222
    [20] 杨柳,段小军,戴刚,等.人间充质干细胞体外成骨诱导培养及其生物学特性变化.第三军医大学学报,2002,24(5):509-512
    [21] Hanade K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factgr and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res, 1997, 12(10), 1606-1614
    [22] Kale S, Biermann S, Edwards C, Koyabashi I. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol, 2000, 18(9):954-958
    [23] Kinoshita S, Firmegan M, Bueholz R W, Buchwalow IB. Three-dimensional collagen gel culture promotes osteoblastic phenotype in bone marrow derived cells. Kobe J Med Sci, 1999, 45(5):201-211
    [24] Qiu QQ, Ducheyne P, Ayyaswamy PS. 3D bone tissue engineering with bioactive microspheres in simulated microgravity. In Vitro Cell Dev Biol Anim, 2001,37(3): 157-165
    [25] Terai H, Hannouche D, Ochoa E, Edwards C. In vitro engineering of bone using a rotational oxygen7permeable bioreactor system. Mater Sci Eng, 2002,20:3-8
    [26] Freed LE, Vunjak NG, Biron RJ. Biodegradable polymer scaffolds for tissue engineering. Biotechnology, 1994,12(7):689-693
    [27] EL-GhannamA, DucheyneP, ShapiroIM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different timelines. J Biomed MaterRes, 1997,36(2):167-180.
    [28] Devin JE, Attawia MA, Laurencin CT. Three-dimensional degradable porous polyme ceramic matrices for use in bone repair. J Biomater Sci Polymed, 1996,7(8):661-669.
    [29] Ignjatovic N, Tomic S,Dakic M. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials, 1999,20(9):809-816.
    [30] Tsuang YH, Lin FH, Sun JS. In vitro cell behavior of osteoblasts on pyrost bone substitute. AnatRec, 1997,247(2):164-169.
    [31] Hofman S, Sidqui M, Abensur D. Effects of Landdec on the formation of calcified bone matrix in rat calvariae cells culture. Biomaterials,1999,20(13):1155-1166.
    [32] Stone KR, Steadman JR, Rodkey WG Regeneration of meniscal cartilage with use of a collagen scaffold: Analysis of preliminary data. J Bone Joint Surg Am, 1997,79(12):1770-1777
    [33] Mizuno M, Shindo M, Kobayashi D. Osteogenesis by bone marrow stromal cells maintained on type-I collagen matrix gels in vivo. Bone, 1997,20(2):101-107.
    [34] Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranio plasty. 1999,20(20):1909-1918
    [35] Ochi K, Chen G, Ushida T. Use of isolated mature osteoblasts in abundance acts as desired shaped bone regeneration in combination with a modified poly DL- lactie-co-glycolie acid(PLGA)-collagen sponge. J Cell Physiol, 2003, 194(1):45-53。
    [36] 唐康来,杨柳,吴梅英.TGF-β对胎兔颅骨成骨样细胞体外成骨作用.中国矫形外科杂志,2000,7(10):986-988
    [37] Steinbrech DS, Mehrara BJ, Longaker MT. Gene expression of TGFbeta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg, 2000, 105 (6):2028-2034
    [38] Douglas S, Musgrave, Patrick Bosch. Ex Vivo Gene Therapy to Produce Bone Using Different Cell Types. Clin Orthop, 2000, 378:290-305
    [39] Marth I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblasts growth factor-2 supports ex vivo expansion and maintenance of osteogenie precursors from human bone marrow. Endocrinology, 1997, 138(10): 4456-4462
    [40] HowersR, bowness JK, Grotendorst GR. Platelet-derived growth factor enchances demineralized bone matrix-induced cartilage and bone formation. Calcif Tissur Int, 1988, 42:34-39
    [41] Lynch SE, Buser D, Hernandez RA. Effects of the platelet-derived growth factor/insulin-like growth factor-1 combination on bone regenetation around titanium implant. Results of a pilot study in beagle dogs. J Periodontol, 1991, 62:710
    [42] Pacifici L, Casella F, Ripari M. The principles of tissue engineering: role of growth factors in the bone regeneration. Minerva Stomatol, 2002;51 (9):351-359
    [43] Quarto R, Mast rogiacomo M, Cancedda R, Yamano Y, Kato Y. Repair of large bone defects with the use of autologous bone marrow stromal cells. Engl J Med, 2001;344(5):385-386
    [44] 杨志明,赵雍凡,解慧琪.组织工程肋骨移植修复胸壁巨大缺损. 中国修复重建外科杂志,2000,14(6):365.368
    [45] 杨志明,黄富国,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用.中国修复重建外科杂志,2002,16(5):311-314.
    [46] Kim SG, Kim WK, Park JC, Kim HJ. A comparative study of osseointegration of Avana implants in a demineralized freeze-dried bone alone or with platelet-rich plasma. J Oral Maxillofae Surg, 2002, 60(9): 1018-1025
    [47] Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects: A pilot study. J Oral Maxillofae Surg, 2002, 60(10): 1176-1181
    [48] Robiony M, Polini F, Costa F, Politi M. Osteogenesis distraction and platelet-rich plasma for bone restoration of the severely atrophic mandible: preliminary results. J Oral Maxillofac Surg, 2002, 60(6):630-635
    [49] Sanchez AR., Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants, 2003, 18(1):93-103
    [50] Kassolis JD, Rosen PS, Reynolds MA. Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol, 2000, 71(10): 1654-166
    [51] Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Stag, 2000, 58(3):297-300; discussion 300-301
    [52] Joerg W, Karl A, Strfan S. Sinus floor sugmentation with β-tricalciumphosphate (β-TCP): does platelea-rich plasma promote its osseous integration and degradation? Clin Oral Impl Res, 2003, 14(3):213-218
    [53] Robert E, Erie R, Palph M. Plateler-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998, 85:638-646
    [54] Eby BW. Platelet-rich plasma: harvesting with a single-spin centrifuge. J Oral Implantol, 2002,28(6):297-301
    [55] Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg, 2002,30(2):97-102
    [56] Weibrich G, Gnoth SH, Otto M, Reichert TE, Wagner W. Growth stimulation of human osteoblast-like cells by thrombocyte concentrates in vitro. Mund Kiefer Gesichtschir, 2002,6(3):168-174
    [57] Weibrich G, Kleis WK. Curasan PRP kit vs. PCCS PRP system. Collection efficiency and platelet counts of two different methods for the preparation of platelet-rich plasma. Clin Oral Implants Res, 2002,13(4):437-443
    [58] Dugrillon A, Eichler H, Kern S, Kluter H, Kluter H. Autologous concentrated platelet-rich plasma (cPRP) for local application in bone regeneration. Int J Oral Maxillofac Surg, 2002;31:615-619
    [59] Marx RE. Discussion: Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg, 2000,58(3):300-301
    [60] Schmitz JP, Hollinger JO. The biology of platelet-rich plasma. J Oral Maxillofac Surg, 2001,59(9):1119-21
    [61] Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent, 2001,10(4):225-8
    [62] Weibrich G, Kleis WK, Hafner G Growth factor levels in the platelet-rich plasma produced by 2 different methods: curasan-type PRP kit versus PCCS PRP system. Int J Oral Maxillofac Implants, 2002,17(2):184-90
    [63] Carlson NE, Roach RB Jr. Platelet-rich plasma: clinical applications in dentistry. J Am Dent Assoc, 2002,133(10):1383-1386
    [64] Anirua E. The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent, 2001,13(6):487-493
    [65] Wang JS, Aspenberg P. Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats. J Orthop Res, 1996, 14:316-323
    [66] Piezoelectric. Surgery in Implantology: a case report-a new piezoelectric ridge expansion technique tomaso vercellotti. Int J Periodont Rest dent, 2000, 20:359-365
    [67] Kassolis JD, Rosen PS, Reynolds MA. Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol, 2000, 71 (10): 1654-1661
    [68] Lekovic V, Ca margo P M, Weinlaender M. Effectiveness of a combination of platelet-rich plasma, bovine porous bone mineral and guided tissue regeneration in the treatment of mandibular grade Ⅱ molar furcations in humans. J Clin Periodontol, 2003, 30:746-751
    [69] Tayapongsak P, O'Beren DA, Monteiro CB. Autologous fibrin adhensive in mandibular reconstruction with particulate cancellous bone and marrow. J Oral Maxillofae Surg, 1994, 52:161-166
    [70] 刘兴文,刘宏伟,张秀白,刘兰宁,王侦,常秀梅.富血小板血浆P RP对骨髓基质细胞BMSCs碱性磷酸酶活性和总蛋白含量的影响.临床口腔医学杂志,2004,20(5)259-261.
    [71] 张秀白,刘宏伟,刘兴文,李毅.富血小板血浆PRP的体外骨诱导作用研究.临床口腔医学杂志,2004,20(5):291-293
    [72] Man D, Plosker H, Winland-Brown JE. The use of autologous platelet-rich plasma(platelet gel) and autologous platelet-poor plasma(fibrin glue) in cosmetic surgery. Plast Reconstr Surg, 2001, 107(1):229-237
    [73] Powell DM, Chang E, Farrior EH. Recovery from deep-plane rhytidectomy following unilateral wound treatment with autologous platelet gel: a pilot study. Arch Facia Plast Surg, 2001, 3(4):245-250
    [74] Bhanot S, Alex JC. Current applications of platelet gels in facial plastic surgery. Facial Plast Surg, 2002, 18(1):27-33
    [75] Saltz R. The use of autologous platelet rich plasma(platelet gel) and autologous platelet poor plasma(fibrin glue) in cosmetic surgery. Plast Reconstr Surg, 2001,107(1):238-239
    [76] Kovacs K, Velich N, Huszar T, Szabo G, Semjen G, Reiczigel J, Suba Z. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry. Acta Vet Hung. 2003,51(4):475-84
    [77] Fennis JP, Stoelinga PJ, Jansen JA. Mandibular reconstruction: a clinical and radiographic animal study on the use of autogenous scaffolds and platelet-rich plasma. Int J Oral Maxillofac Surg, 2002,31(3):281-286
    [78] Fennis JP, Stoelinga PJ, Jansen JA. Reconstruction of the mandible with an autogenous irradiated cortical scaffold, autogenous corticocancellous bone-graft and autogenous platelet-rich-plasma: an animal experiment. Int J Oral Maxillofac Surg, 2005,34(2):158-166
    [79] Merkx MA, Fennis JP, Verhagen CM, Stoelinga PJ. Reconstruction of the mandible using preshaped 2.3 mm titanium plates, autogenous particulate cortico-cancellous bone grafts and platelet rich plasma: a report on eight patients. Int J Oral Maxillofac Surg, 2004,33(8):733-739
    [80] Wojtowicz A, Chaberek S, Kryst L, Urbanowska E, Ciechowicz K, Ostrowski K. Fourier and fractal analysis of maxillary alveolar ridge repair using platelet rich plasma (PRP) and inorganic bovine bone. Int J Oral Maxillofac Surg, 2003,32(l):84-86
    [81] Suba Z, Takacs D, Gyulai-Gaal S, Kovacs K, Velich N, Szigeti K, Szabo G Alveolar bone regeneration stimulated by a combination of platelet-rich plasma and Cerasorb graft in Beagle dogs. Histological and histomorphometric studies. Fogorv Sz, 2004,97(4):143-149
    [82] Fontana S, Olmedo DG, Linares JA, Guglielmotti MB, Crosa ME. Effect of platelet-rich plasma on the peri-implant bone response: an experimental study. Implant Dent, 2004,13(1):73-78
    [83] Rodriguez A, Anastassov GE, Lee H, Buchbinder D, Wettan H. Maxillary sinus augmentation with deproteinated bovine bone and platelet rich plasma with simultaneous insertion of endosseous implants. J Oral Maxillofac Surg, 2003,61(2):157-163
    [84] Kassolis JD, Rosen PS, Reynolds MA. Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol, 2000,71(10):1654-1661
    [85] Mazor Z, Peleg M, Garg AK, Luboshitz J. Platelet-rich plasma for bone graft enhancement in sinus floor augmentation with simultaneous implant placement: patient series study. Implant Dent, 2004,13(l):65-72
    [86] Luo QF, Wang X, Wang XX, Yin B, Li ZL, Liang C. The effect of platelet-rich plasma on the distraction osteogenesis. Zhonghua Zheng Xing Wai Ke Za Zhi. 2004,20(5):376-379.
    [87] Demiralp B, Keceli HG, Muhtarogullar M, Serper A, Demiralp B, Eratalay K. Treatment of periapical inflammatory lesion with the combination of platelet-rich plasma and tricalcium phosphate: a case report. J Endod. 2004,30(ll):796-800.
    [88] Delia Valle A, Sammartino G, Marenzi G, Tia M, Espedito di Lauro A, Ferrari F, Lo Muzio L. Prevention of postoperative bleeding in anticoagulated patients undergoing oral surgery: use of platelet-rich plasma gel. J Oral Maxillofac Surg. 2003,61(11):1275-1278
    [89] Shanaman R, Filstein MR, Danesh-Meyer MJ. Localized ridge augmentation using GBR and platelet-rich plasma: case reports. Int J Periodontics Restorative Dent, 2001,21(4):345-355
    [90] Zechner W, Tangl S, Tepper G, Furst G, Bernhart T, Haas R, Mailath G, Watzek G Influence of platelet-rich plasma on osseous healing of dental implants: a histologic and histomorphometric study in minipigs. hit J Oral Maxillofac Implants, 2003,18(1):15-22
    [91] Landesberg R, Moses M, Karpatkin M. Risk of using platelet rich plasma gel. J Oral Maxillofae Surg, 1998, 56(3):1116-1117
    [92] Martinez-Gonzalez JM, Cano-Sanchez J, Gonzalo-Lafuente JC, Campo-Trapero J, Esparza-Gomez G, Seoane J. Do ambulatory-use Platelet-Rich Plasma (PRP) concentrates present risks? Med Oral, 2002, 7(5):375-390
    [93] 杨天楹.临床输血学.北京:北京医科大学-中国协和医科大学联合出版社,1993:1682
    [94] 方静致.四种血液成份离心条件筛选探讨.中国输血杂志,1991,4(4):1854
    [95] 胡立功.提高成份血质量方法的探讨.中国输血杂志,1993,6(2):845
    [96] 李学农.现代病理与实验诊断技术.北京人民军医出版社,2003:105
    [97] Weibrich G, Kleis WK, Harrier G, Hitzler WE, Wagner W. Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enriched plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Clin Oral Implants Res, 2003, 14(3):357-62
    [98] Hollinger JO, Battistone GC. Biodegradable bone repair materials: synthetic polymers and ceramics. Clin Orthop, 1986, 207:290
    [99] Chang BS, Lee CK, Hong KS. Osteoconduction at porous hydroxyapatite with various pore configuration. Biomaterials, 2000, 21:1291
    [100] Petra E, Julia Y, Latvala RK. Porous carders for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21:1921
    [101] Qingxin S, Zhuo W, Wei L. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. The Journal of Craniofacial Surgery, 2001, 12:586-593
    [102] 刘永涛,商庆新,曹谊林.组织工程技术修复自体肌腱缺损的试验研究.中华医学杂志,2001,81:500-501
    [103] 祝联,周广东,陈付国,崔磊,刘伟,曹谊林.骨髓基质干细胞与 珊瑚复合物体内回植时间的研究.中华实验外科杂志,2004,21(1):10-12
    [104] 羊书勇,杨维东,雷德林,陈富林,唐立辉,陈希哲,杨连甲,毛天球.可注射组织工程骨的初步研究.实用口腔医学杂志,2001,17(4):271-273
    [105] 林敏魁,闰福华.富血小板血浆用于牙周组织再生的研究—PRP的提取及对牙周膜成纤维细胞(PDLFs)增殖的影响其对PDLFs增殖的影响.临床口腔医学杂志,2003,19(11):656-658
    [106] 马东洋.可注射仿生骨性替代材料的实验研究.第四军医大学学位论文(硕士).2002,10-17
    [107] 陈富林,毛天球,羊书勇,丁桂聪,顾晓明.骨髓基质干细胞接种于珊瑚修复兔颅骨缺损的实验研究.实用口腔医学杂志,2001,17(1):60-62
    [108] Mak K, Toriumi DM. Injectable filler materials for Soft-tissue augmentation. Otolaryngol Clin North Am. 1994, 27(1):211-222
    [109] Lu L, Zhu X, Valenzuela RG et al. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop, 2001, 391:251-270
    [110] 魏杰,李玉宝,左奕.可注射纳米磷灰石/高分子复合骨修复材料的性能.材料研究学报,2003,17(3):315—320
    [111] Peretti GM, Randolph MA, Zaporojan V, et al. A biomechanical analysis of an engineered cell-scaffold implant for cartilage repair. Ann Plast Surg, 2001, 46(5):533-537
    [112] Hendrickson DA, Nixon AJ, Grande DA, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res, 1994, 12(3):485-497
    [113] Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop, 1986, 205:299-308
    [114] Burdick JA, Frankel D, Demell WS, Anseth KS. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700