低强度脉冲超声波联合牙周翻瓣术或引导组织再生术对Beagle犬牙周组织修复的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低强度脉冲超声波(Low Intensity Pulsed Ultrasound,LIPUS)作为一种安全无创的治疗手段,具有促进骨和软组织修复的作用。牙周病系牙周组织的一种慢性炎症性疾病,其治疗关键是恢复已丧失牙周组织的结构和功能。
     基于牙周组织再生理论和LIPUS潜在的生物学效应,本研究初步探讨一定参数的LIPUS联合牙周翻瓣术或引导组织再生术对Beagle犬牙周病变组织的修复效应,为今后LIPUS辅助治疗牙周疾病提供前期参考。
     本实验在前期研究基础上改良LIPUS探头形态,设计新的固定方式,避免了探头固定操作中的人工误差、盲操作及探头工作时的发热问题。
     然后进行以下实验:
     一、LIPUS联合牙周翻瓣术对Beagle犬慢性牙周炎组织修复作用的初步研究
     4只Beagle犬建立下颌前磨牙慢性牙周炎模型,在牙周翻瓣术及根面处理术控制局部炎症和改善根面相容性的基础上,将LIPUS(频率1.5MHz、波宽200μs、重复率1KHz)以不同强度(30、60mW/cm~2)和不同处理时间(20min/d、20min/2d)分为四个LIPUS处理组(①ISATA30mW/cm~2 *20min/d组、②ISATA30mW/cm~2*20min/2d组、③ISATA60mW/cm2*20min/d组、④ISATA60mW/cm2*20min/2d组)辐照Beagle犬慢性牙周炎组织,对照组行翻瓣及根面处理术。
     6周后发现Beagle犬牙周炎组织炎症减轻;LIPUS处理前后影像学表现变化不明显;LIPUS处理前后牙龈组织温度平均波动在1°C内。组织学切片分析显示各LIPUS处理组新生牙槽骨中骨胶原成熟程度较对照组高,但组间主观判断差别不明显;ISATA30mW/cm2* 20min/d组成骨细胞增生较其他组明显;各组均有长结合上皮愈合。活体荧光标记提示LIPUS处理组新骨形成活跃度较对照组高。
     该实验结果提示:一定参数的LIPUS(频率1.5MHz、波宽200μs、重复率1KHz、ISATA30或60mW/cm2、处理时间20min/d或20min/2d)对牙周炎组织的修复可能具有潜在的促进作用,尤其在促进牙槽骨成熟方面;ISATA30mW/cm2 *20min/d的LIPUS处理方式可能对牙周成骨细胞具有较好的生物效应,需进一步研究。
     此外,本研究发现牙龈上皮生长速度快于牙周膜细胞,并出现长结合上皮愈合,要获得更好的牙周组织修复效应可能需要限制生长速度快于牙周膜细胞的牙龈上皮细胞和结缔组织优先接触根面。
     二、LIPUS联合引导组织再生术对Beagle犬牙周骨缺损组织修复的初步研究
     在测量不同厚度ePTFE膜超声穿透率的基础上,遴选了LIPUS衰减率达10-15%左右的ePTFE超声透声膜。
     5只Beagle犬建立牙周骨质缺损模型,设立:①LIPUS(强度60mW/cm2、频率1.5MHz、波宽200μs、重复率1KHz、处理时间20min/d)和GTR联合组、②LIPUS处理组、③GTR组和④空白对照组。
     4周后“牙体-牙周”联合标本观察发现新生组织完全充填原牙周骨缺损处,探软;各组间牙龈组织温度变化不大。组织学切片发现牙周组织缺损处由新生骨组织和结缔组织充填;LIPUS和GTR联合组新生牙周组织在量上和成熟度上优于其他组;GTR组新生牙骨质、牙槽骨较对照组多但成熟度不如LIPUS处理组;对照组新生骨胶原相对少而成熟度不高。
     该实验发现LIPUS联合引导组织再生术,牙周组织的新生量和牙槽骨成熟度上更优于其他组,LIPUS对新生骨成熟有一定促进效应。这提示将LIPUS与GTR等组织再生手段结合,具有潜在的促进牙周组织的修复效应。不过牙周组织再生膜可导致一定超声能量的衰减,因此LIPUS与GTR联合时需相应调整参数。
     综上所述,本研究发现一定参数的LIPUS在一定程度上可加快钙盐沉积,促进新生骨质结构的改建和成熟,缩短牙周组织修复时间,且LIPUS联合GTR可能具有更好的修复效应。本实验为进一步遴选合适的LIPUS参数辅助现有牙周组织治疗提供借鉴,但LIPUS促牙周组织的具体改建机制仍有待于进一步研究。
Low Intensity Pulsed Ultrasound, a secure and non-invasive therapeutic method, can promote the repair process of bone and soft tissue. Periodontal disease is the chronic inflammation of periodontium, and the key to treatment is rebuilding the structure and function of periodontal tissue.
     Based on the periodontal tissue regeneration theory and the biological effects of LIPUS, the study of the effect of LIPUS combined with periodontal flap surgery or guided tissue regeneration on the periodontium repair in Beagle dogs was preliminarily conducted, which may provide a adjuvant therapy of the periodontal disease by LIPUS in future.
     At first, LIPUS transducer morphous and fixation was reformed on the base of preliminary studies, which can avoid the artificial error and blind operation in transducer fixation, avoid thermogenesis when it works.
     Then,two studies were performed:
     1. Preliminary study of the effect of LIPUS combined with periodontal flap surgery on the chronic periodontitis repair in Beagle dogs
     Chronic periodontitis models in mandibular premolars were eatablished in 4 Beagle dogs. After inflammation control and root surface compatibility improvement with periodontal flap surgery and root conditioning, LIPUS was conducted on the periodontitis tissue in Beagle dogs, 4 LIPUS (parameter of frequency 1.5MHz, pulsed width 200μs, repeated frequency 1kHz) groups were divided as①ISATA30mW/cm2 *20min/d group,②ISATA30mW/cm2*20min/2d group,③ISATA60mW/cm2 *20min/d group,④ISATA60mW/cm2*20min/2d group, one control group designed with flap and root conditioning treatment at the same time.
     6 weeks later, the inflammation of the periodontitis tissue was relieved. After LIPUS treatment no significant changes were observed with X-ray examination; and the average temperature fluctuation of the gingival tissue was below 1°C. Histological analysis indicated that the neogenetic alveolar bone in LIPUS groups was more mature than that in the control group, but no significant difference was founded in the 4 LIPUS groups; the osteoblasts were more active in ISATA30mW/cm2 *20min/d group than in other groups; long-junction epithelium was founded in each group. Fluorescent markers in vivo indicated that the neogenetic alveolar bone formation in LIPUS groups was more active than in control group.
     All results indicated that LIPUS with certain parameters (frequency 1.5MHz, pulsed width 200μs, repeated frequency 1kHz, ISATA30mW/cm2 or 60 mW/cm2, exposure time 20min/d or 20min/2d) may have some repairtive effects on the periodontitis tissue,especially the alveolar bone; parameters of ISATA30mW/cm2 and exposure time 20min/d may have better effects on osteoblast, which needs further study.
     In addition, gingival epithelium cell grows quicker than periodontal ligament cell, as a result, long-junction epthilium was founded in each group, which suggests attachment of the gingival epithelium cell and the connective tissue to root surface should be confined to received better repairtive results in periodontal tissue.
     2. Preliminary study of the effect of LIPUS combined with guided tissue regeneration in periodontal bone defects repair in Beagle dogs.
     After measuring the LIPUS penetration rates of several ePTFE membranes in different thickness, the LIPUS-penetrative ePTFE membrane which can only attenuate 10-15% LIPUS energy was chosed.
     Periodontal bone defect model were established in 5 Beagle dogs. LIPUS(ISATA60mW/cm2 *20min/d, freqency 1.5MHz, pulsed width 200μs, repeaded frequency 1KHz, exposure time 20min/d)was applied in the study, and 4 groups of①GTR和LIPUS combination group,②LIPUS group,③GTR group and④control group were designed.
     4 weeks later, the“tooth-periodontium”specimens revealed that the defects were flood with neogenetic tissue; the gingival temperature had no significant change after LIPUS treatment. Histological analysis indicated that the periodontal bone defects were flooded with neogenetic bone and connective tissue; the neogenetic periodontal tissue was more in quantity and more mature in GTR and LIPUS combination group; the quantity of neogenetic cementum and alveolar bone was more in GTR group than in control group, while the maturation of the neogenetic bone was inferior to LIPUS group; the quantity of neogenetic bone was less and the maturation was inferior in control group.
     The result suggested that combination of LIPUS and guided tissue regeneration can have better results on periodontal tissue repair and neogenetic bone maturation, LIPUS may have some potential on the bone maturation. The combination of LIPUS and tissue regeneration method as guided tissue regeneration may have some potential to promote the rapair of the periodontal tissue, while the membrane can attenuate some of the ultrasound engergy, the LIPUS parameters should be adjusted when used with GTR.
     In conclusion, LIPUS with some parameter may have some effects on calcium deposition, neogenetic bone rebuilding and maturation to shorten the periodontal tissue repair process, which may be better when combined with guided tissue regeneration. Although this study provides some reference to suitable LIPUS parameters for the adjuvant therapy of periodontal disease, the mechanism of LIPUS in the repair of periodontal tissue should be further studied.
引文
[1] Pontoriero R, Lindhe J, Nyman S, et al. Guided tissue regeneration in degree II furcation-involved mandibular molars. A clinical study[J]. J Clin Periodontol. 1988, 15: 247-254
    [2] Soren Jepsen, Jorg Eberhard, David Herrera, et al. A systematic review of guided tissue regeneration for periodontal furcation defects. What is the effect of guided tissue regeneration compared with surgical debridement in the treatment of furcation defects?[J]. J Clin Periodontol. 2002, 29(Suppl.3): 103-116
    [3] Danesh-Meyer MJ, Pack ARC, McMillan MD. A comparison of 2 polytetra- fluoroethylene membranes in guided tissue regeneration in sheep[J]. J Periodont Res. 1997, 32: 20-30
    [4] Pontoriero R, Nyman S, Ericsson I, et al. Guided tissue regeneration in surgically produced furcation defects. An experimental study in the beagle dog[J]. J Clin Periodontol. 1992, 19: 159-163
    [5]刘宏伟,马良,欧龙,等.年龄对牙周膜细胞克隆钙化表达的影响[J].中华口腔医学杂志. 1998, 336(2): 329-333
    [6] Parvizi J, Parpura V, Gteeleaf JF. Calcium signaling is required for ultrasound stimulated aggrecan synthesis by rat chondrocytes[J]. J Orthop Res. 2002, 20(1): 51-57
    [7] Yang KH, Parvizi J, Wang SJ, et al. Exposure to low intensity ultrasound increase aggrecan gene expressioin in a rat femur fracture mode[J]. J Orthop Res. 1996, 14(7): 802
    [8] Sena K, Leven RM, Mazhar K, et al. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells[J] .Ultrasound Med Biol. 2005, 31(5): 703-708
    [9] Ryaby JT, Mathew J, Duarte-Alves P. Low intensity pulsed ultrasound affects adenylate cyclase activity and TGF-B synthesis in osteoblastic cells[J]. Trans Orthop Res Soc. 1992, 7(3): 590-596
    [10] RawoolNM,Goldberg BB,Forsberg F,et a1.Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound[J]. J Ultrasound Med. 2003, 22(2): 145-153.
    [11] Parvizi J, Wu CC, Lewallen DG, et a1. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression[J]. JOrthop Res. 1999, 17(3): 488-494.
    [12] Zhao YF, Kuang DC, Guo X, et al. Effects of low intensity pulsed ultrasound in accelerating the healing of fractures and its mechanism[J]. Zhongguo Linchuang Kangfu. 2004, 8(14):2722-2724
    [13] Nolte PA, Vander Krans A, Patka P, et al. Low intensity pulsed ultrasound in the treatment of nonunions[J]. J Trauma. 2001, 51: 693-703
    [14] .低强度超声治疗牙周病[J]. . 1981, (3): 5
    [15] Ikai H, Tamura T, Watanabe T, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery[J]. J Periodont Res. 2008, 43(2): 212-216
    [16]刘珉懿. LIPUS对Beagle犬牙周炎组织生物学改建效应的初步研究[D].重庆:重庆医科大学图书馆, 2007
    [17]董妮.低强度脉冲超声对Beagle犬牙周病组织生物学改建效应的实验研究[D].重庆:重庆医科大学图书馆, 2008
    [18]冯格.低强度脉冲超声波在Beagle犬牙槽骨及颌骨缺损模型中促进骨质修复的初步研究[D].重庆:重庆医科大学图书馆, 2008
    [19] Melcher AH. On the repair potential of periodontal tissues[J]. J Periodontol. 1976, 47(5): 256-260
    [20] Krisfiansen TK, Ryaby JP, McCabe J, et a1. Accelerated healing of distal radial fractures with the use of specific 1ow intensity ultrasound. A multicenter, prospective, randomized, double-blinded, placebo-controlled study[J]. J Bone Joint Surg Am.1997, 79: 96l-973
    [21] Weinberg MA, Bral M. Laboratory animal models in periodontology[J]. J Clin Periodontol. 1999, 26(6): 335-340
    [22] Marco A Gioso, Vanessa G Carvalho. Oral anatomy of the dog and cat in veterinary dentistry practice[J]. The Veterinary clinics of North America,Small animal practice. 2005, 35(4): 763-780
    [23]宋忠臣,束蓉.实验性牙周炎动物模型的研究进展[J].牙体牙髓牙周病杂志. 2005, 15(10): 577-581
    [24]车彦海,李桂英,赵令君,等.综合方法建立牙周炎动物模型的效果评价[J].吉林大学学报(医学版). 2006, 32(6): 1119-1121
    [25] Biancu S, Ericsson I, Lindhe J. Periodontal ligament tissue reaction to trauma and gingival inflammation: an experimental study in the beagle dog[J] .J Clin Periodont.1995, 22: 772
    [26]超声波传感器的概念、组成、性能指标及应用[ EB/OL ] , http://www.66csb.cn/News/20071124113711427.shtml
    [27]超声波发生器[EB/OL], http://www.66csb.cn/News/2008918101818704 .shtml
    [28]林必杰,林辉.我国医用超声耦合剂现状和质量标准的探讨[J].中国药学杂志. 1996, 36(11): 50-51
    [29] Kristiansen TK, Ryaby JP, McCabe J, et al. Accelerated healing of distalradial fracture with the use of specific, low-intensity ultrasound[J]. Bone Joint Surg Am.1997, 79(7): 961-973
    [30] Heckman JD,Ryaby JP,McCabe J,et a1.Acceleration of tibial fracture healing by non-invasive,low-intensity pulsed ultrasound epiderm is[J] .J Bone joint Surg.1994, 76-A(1): 26
    [31] Mayr E, Rudzki MM, Rudzki M, et al. Does low intensity, pulsed ultrasound speed healing of scaphoid fractures? Handchir Mikrochir PlastChin. 2000, 32(2): 115- 122.
    [32]牙周组织再生[ EB/OL ] , http://www.med66.com/html/2008/11/ ra69468759021180023400.html
    [33] Ramfjord SP, Nissle RR. The modified Widman flap[J]. J Periodont. 1974, 45: 601
    [34]杨丕山,胡江红.牙周再生术[J].山东医药. 2001, 41(9): 52-53
    [35] Jack Caton, Sture Nyman. Histometric evaluation of periodontal surgery I. The modified Widman flap procedure[J]. Journal of Clinical Periodontology. 1980, 7(6): 212-223
    [36] F Isidor, R Attstr?m, T Karring. Regeneration of alveolar bone following surgical and non-surgical periodontal treatment[J]. Journal of Clinical Periodontology. 1985, 12(9): 687-696
    [37] Terranova VP, Wikesj? UM. Extracellular matrices and polypeptide growth factors as mediators of functions of cells of the periodontium[J]. J Periodontol. 1987, 58(6): 371-380
    [38] Johan Bloml?f. Root cementum appearance in healthy monkeys and periodontitis-prone patients after different etching modalities[J]. J Clin Periodontol. 1996, 23(1): 12-18
    [39] Ogawa T, Kawaguchi H, Liu MF, et al. New attachment to periodontally diseased root surfaces treated with hydrochloric acid[J]. Oral Med & Pathology. 1996, 1(1):23-28
    [40] VP. Terranova, LC. Franzetti, S Hic, et al. A biochemical approach to periodontal regeneration:Tetracycline treatment of dentin promotes fibroblast adhesion and growth[J]. Journal of Periodontal Research. 1986, 21(7): 330-337
    [41] LR Duarte. The stimulation of bone growth by ultrasound[J]. Arch Orthop Trauma Surg. 1983, 101(3): 153-159
    [42] Wang SJ, Lewallen DG, Bolander ME, et al. Low intensity ultrasound treatment increases strength in a rat femoral fracture model[J].J Orthop Res. 1994, 12: 40-47
    [43] Seiya Jingushi, Kosaku Mizuno, Takashi Matsushita, et al. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures[J]. J orthop Sci. 2007, 12: 35-41
    [44] Cook SD, Ryaby JP, McCabe J, et al. Acceleration of Tibia and Distal Radius Fracture Healing in Patients Who smoke[J]. Clin O rthop.1997, 337: 198-207
    [45] R Clinton, B Mark, PR John, et al. The use of low-intensity ultrasound to accelerate the healing of fractures[J]. J Bone Joint Surg Am. 2001, 83: 259-270
    [46]冯若,王智彪.实用超声治疗学[M].科学技术文献出版社. 2002.
    [47]郭建刚,赵然,侯桂英,等.骨组织成分与Masson三色染色反应的关系分析[J].中医正骨. 2001, 13(11): 5-6
    [48] Milch RA, Rall DP, Tobie JE. Bone localization of the tetracycline[J]. J Nail Cancer Inst. 1957,19(1): 87
    [49]李晓红,朱晓姝,赵献银,等.荧光标记拔牙创口骨愈合过程中矿化沉积速度的研究[J].中国骨质疏松杂志. 2007,13(7): 36-39
    [50]吕荣,徐新智,张韬,等.不脱钙大块骨切片及染色的改进[J].中华临床医学杂志. 2004,5(4): 85-86
    [51]张秀白,刘宏伟.促进组织再生技术在牙周组织再生中的应用[J].中国临床康复. 2004, 8(8): 1538-1539
    [52] Wikesjo UM, Lim WH, Thomson RC, et al. Periodontal repair in dogs:gingival tissue occlusion, a critical requirement for GTR[J]. J Clin Periodontol. 2003, 30(7): 655-664
    [53] Haim Tal, Sandu Pitaru, Ofer Moses, et al. Collagen gel and membrane in guided tissue regeneration in periodontal fenestration defects in dogs[J]. J Clin Periodontol. 1996, 23(1): 1-6
    [54] Sanctis M, Zucchelli G, Clauser C. Bacterial colonization of bioabsorbable materialand peiriodontal regeneration[J]. J Periodontol. 1996, 67(11): 1193-1200
    [55] Simion M, Baldoni M, Rossi P, et al. A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period[J]. Int J Periodontics Restorative Dent. 1994, 14(2): 166-180
    [56] Becker W, Becker BE, Mellonig J, et al. A prospective multi-center study evaluating periodontal regeneration for class II furcation invasions and intrabony defects after treatment with a bioabsorbable barrier membrane: 1-year results[J]. J Periodontol. 1996, 67: 641-649
    [57]刘希云,周丛豪,吕一平.瞬康医用胶在引导组织再生膜固定中的应用[J].中华口腔医学杂志. 2000, 35(6): 42
    [58]杨建忠,嵇振岭.瞬康医用胶在普外科的应用[J].铁道医学. 1998, (1):53-54
    [59] Caffesse RG,Smith BA, Castelli WA, et al. New attachment achievement by guided tissue regeneration on beagle dogs[J]. J Periodontol.1988, 59(9): 589-594
    [60] Iglhaut J, Aukhil I, Simpson DM, et al. Progenitor cell kinetic during guided tissue regeneration in experimental periodontal wounds[J]. J Periodontal Res. 1998, 23(2): 107-117
    [61] Scantlebury TV. 1982-1992:a decade of technology development for guided tissue regeneration[J]. J Periodontol. 1993, 64(Suppl 11): 1129-1137
    [62] Wells PNT. Ultrasonic imaging of the human body[J]. Rep Prog Phys. 1999, 62: 671-722
    [63] Goss SA,Frizzell LA,Dunn F. Ultrasonic absorption and attenuation in mammalian tissues[J]. Ultrasound Med Biol.1979, 5: 181-186
    [64] Jurjen Schortinghuis, Jan L Ruben, Gerry M Raghoebar, et al. Therapeutic ultrasound to stimulate osteoconduction. A placebo controlled single blind study using e-PTFE membranes in rats[J].Archives of Oral Biology. 2004, 49(5): 413-420
    [65] Schortinghuis J, Ruben JL, Raghoebar GM, et al. Does ultrasound stimulate osteoconduction? A placebo-controlled single-blind study using collagen membranes in the rat mandible[J]. Int J Oral Maxillofac Implants. 2005, 20(2): 181-186
    [66] Ikeda K, Takayama T, Suzuki N, et al. Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells[J]. Life Sci. 2006, 79(20): 1936-1943
    [67] Wikesj? UME, Selvig KA. Periodontal wound healing and regeneration[J]. Periodontology. 2000, 19(1): 21-39
    [68]潘晓华,肖德明.低强度超声促进骨质愈合[J].广东医学. 2005, 26(3): 409-411
    [69] Kokubu T, Matsui N, Fujioka H, et al. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts [J]. Biophys Res Commun. 1999, 256: 284-287
    [70] C Corradi, A Cozzolino. The action of ultrasound on the evolution of an experimental fracture in rabbits[J]. Minerva Ortop. 1952, 55: 44-45
    [71] Reher P, Elbeshir el-NI, Harvey W, et a1.The stimulation of bone formation in vitro by therapeutic ultrasound[J]. J Ultrasound Med Biol. 1997, 23(8): 1251-1258
    [72] Hill CR. Optimum acoustic frequency for focused ultrasound surgery[J].J Ultrasound Med Biol. 1994, 20(3): 271-277
    [73] Leung KS, Cheung WH, Zhang C, et al. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells[J]. Clin Orthop. 2004, 418: 253-259
    [74] Chun Wai Chan, Ling Qin, Kwong Man Lee, et al. Dose-Dependent Effect of Low-Intensity Pulsed Ultrasound on Callus Formation during Rapid Distraction Osteogenesis[J]. J Orth Res. 2006, (24): 2072–2079
    [75] Keisuke Sakurakichi, Hiroyuki Tsuchiya ,Teruhisa Yamashiro, et al. Effects of timing of low-intensity pulsed ultrasound on distraction osteogenesis[J]. Journal of Orthopaedic Research. 2004, (22): 395-403
    [76] Reher P, Doan N,Bradnock B,et al. Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines[J]. Eur J Cancer. 1998, 34(12): 1962-1968
    [77] Reher P, Doan N, Bradnock B, et al. Effect of ultrasound on the production of IL-8, basic FGF and VEGF[J]. Cytokine. 1999, 11(6): 416-423
    [78] Nghiem Doan MPH, MSc Student, Peter Reher DDS, et al. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes[J]. Journal of Oral and Maxillofacial Surgery. 1999, 57(4): 409-419
    [79] Harle J, Salih V, Mayia F, et al. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro[J]. J Ultrasound Med Biol. 2001, 27(4): 579-586
    [80] T Inubushi, E Tanaka, EB Rego, et al. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells[J]. J Periodontol. 2008, 79(10): 1984-1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700