流体剪切力影响人骨髓间充质干细胞增殖与成骨分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物反应器是近年来生物工程方面研究热点之一,广泛应用于培养细胞及组织复合物。灌注式生物反应器不仅具有三维动力性培养的优点,而且其动力性环境可对种子细胞产生流体剪切应力(fluid shear stress,FSS),因此在骨组织工程研究领域呈现出良好的应用前景。骨骼的骨量和正常生理状态的维持有赖于对骨骼施加适当的应力刺激。研究表明骨骼基质形变引起的细胞外液流动所形成的FSS是作用于骨骼细胞的主要应力。FSS对骨骼细胞正常生理活动及增殖与分化有着重要的作用。
     平行平板流动腔(parallel-plate flow chamber,PPFC)作为一种可以提供较精确液体层流的实验装置,常被用于研究细胞流体力学。骨髓间充质干细胞(mesenchymal stem cells, MSCs)被认为是最有发展前景的骨组织工程种子细胞之一。hMSCs存在于骨髓基质中,其生理环境与骨骼细胞类似,也应是应力敏感细胞,推测FSS作用于hMSCs后应该产生与骨骼细胞相似的生物学效应。实验通过对平行平板流动腔进行改良制作,利用其对hMSCs进行FSS刺激,通过倒置显微镜及透射电镜观察细胞形态学改变,细胞增殖通过MTT法及流式细胞仪检测,成骨分化通过碱性磷酸酶和骨钙素活性测定、碱性磷酸酶染色、钙结节茜素红染色及四环素荧光标记检测。我们通过观察FSS刺激hMSCs体外增殖及向成骨方向分化的作用,为进一步研究FSS刺激hMSCs体外增殖及分化的机制、利用灌注式生物反应器培养组织工程骨提供理论依据。主要研究结果及结论如下:
     一、改良的平行平板流动腔的制备及其优点。流动腔以有机玻璃作为流动腔管道部分,塑料薄膜用来密封流动腔和保持流动腔高度,应用塑料细胞培养瓶底作为细胞贴附载体,静脉输液管作为灌流液循环管道,以长尾夹固定和密封平行平板流动腔。整个装置以放射线辐照消毒灭菌。此模型较其它报道的流体剪切力刺激模型制作简单,成本低廉,操作简便。实验证明此系统作为hMSCs流体力学的研究模型是科学、可行的。
     二、流体剪切力可促进人骨髓间充质干细胞增殖。将传代的第三代hMSCs分为
Bioreactor is very hot in the area of bioengineering; it is widely used in culturing cells and tissue. Perfusion bioareactor has advantages in bone tissue engineering, because of the dynamic 3D culture pattern. The dynamic environment can provide fluid shear stress(FSS) on the cultured cells. In order to maintain the mass and the normal functions of the bone, it needs to put suitable stress on the bone. When the interstitial fluid flow was driven by the formation of the bone, it will provide FSS on the cells of the bone. More evidences has supported the fact that FSS is the main stress on the bone cell. And FSS has very important effect on the proliferation and differentiation.
     Parallel-plate flow chamber(PPFC) is a experimental facility that can provided FSS of precise magnitude, so it is widely used to study the hydrodynamics of cell. Recently, mensenchymal stem cells(MSCs) is considered one of the most developmental seed cells of bone tissue engineering. Human mesenchymal stem cells is established on the matrix of bone marrow, and the environment is very familiar with bone cells. So we presume that hMSCs is also sensitive to FSS, and the familiar effect can be made when take FSS on hMSCs. In our work, we upgrade the old type of PPFC, and stimulate the hMSCs with FSS using the upgraded PPFC. We observe the form change of hMSCs through inverted microscope and TEM; through MTT and flow cytometer to observe the proliferation; through the ALP Staining, Calcium staining for certain dyestuff, Tetracycline fluorescence labelling, estimating the excretion of osteocalcin by radioimmunoassay and the activity of the cellular ALP to observe the differentiation.
     The objective we do the study is to observe the effect of FSS on the proliferation and differentiation of hMSCs. And it can establish the foundation to study the mechanism of the FSS on hMSCs in the future. It also can provide theory and experiment basic for the use of perfusion bioreactor on culturing tissue engineering bone. From the experiment, we get the following result:
引文
1. Bruder SP, Fox BS. Tissue engineering of bone: cell based strategies. Clin Orthop, 1999, 366(suppl): 68-83
    2. Bruder SP, Kraus KH , Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg(Am), 1998, 80: 985-986.
    3. Bruder SP, Kurth AA, Shea M, et al. Bone regenation by implantation of purifiled culture-expanded human mesenchymal stem cells. J Orthop Res, 1998, 16: 155-162.
    4. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymals stem cells. Science, 1999, 284(5411): 143~147
    5. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med, 2001, 226: 507-520
    6. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends In Biotech. 2004, 22: 80-86
    7. Dolder JV, Bancroft GN, Sikavitsas VI, et al. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res. 2003, 64A: 235-241
    8. Bancroft GN, Sikavitsas VI, Dolder JV, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. PNAS. 2002, 99: 12600-12605
    9. Botchwey EA, Pollack SR, ElAmin S, et al. Human osteoblast-like cells in three-dimensional culture with fluid flow. Biorheology. 2003, 40(1-3): 299-306.
    10. Wang Y, Uemura T, Dong J, et al. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Tissue Eng. 2003, 9(6): 1205-1214
    11. Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 2001, 22: 1279–1288
    12. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald, 1892: 11~13
    13. Nulend KJ, Van der PA, Semeins CM, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995, 9: 441-445
    14. 吕学敏, 邓廉夫, 杨庆铭. 力学刺激对成骨细胞作用机制的研究进展. 北京生物医学工程. 2004, 23(2): 158-160
    15. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading induced bone fluid shear stress. J Biomech. 1994, 27:339~360
    16. You J, Yellowley CE, Donahue HJ, et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000, 122: 387~393
    17. Carvalho RS, Bumann A, Schaffer JL, et al. Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem, 2002, 84: 497~508
    18. Chen NX, Ryder KD, Pavalko FM, et al. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol. 2000, 278: C989-C997
    19. 王昊, 张西正, 张永亮等. 骨组织力学信号转导的研究. 国外医学生物医学工程分册. 2003, 26(4): 165~168
    20. Reich KM, Frangos JA. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am J Physiol. 1991, 261(Cell Physiol 30): C428~C432
    21. Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol. 1996, 271(Endocrinal. Metab. 34): E205~E208.
    22. Kapur S, Baylink DJ, Lau KHW. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003, 32: 241~251
    23. Donahue TL, Haut TR, Yellowley CE, et al. Mechanosensitivity of bone cells to oscillation fluid flow induced shear stress may be modulated by chemotransport. J Biomech. 2003, 36:1363~1371
    24. Ueda A, Koga M, Ikeda M, et al. Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Physiol, 2004, 287(3): H994-1002
    25. Donahue TL, Haut TR, Yellowley CE, et al. Mechanosensitivity of bone cells to oscillation fluid flow induced shear stress may be modulated by chemotransport. JBiomech. 2003, 36:1363~1371
    26. Usami S, Chen HH, Zhao Y, et al. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng. 1993; 21(1): 77-83
    27. Majumdar M K, Thiede M A, Mosca J D, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs) and stromal cells. J Cell Physiol, 1998, 176(1): 57-66
    28. 姜伟元, 李惜惜, 覃开荣. 平行平板流动腔的合理设计和使用. 医用生物力学. 1996, 11(2): 97~102
    29. Nguyen KT, Eskin SG, Patterson C, et al. Shear stress reduces protease activated receptor-1 expression in human endothelial cells. Ann Biomed Eng. 2001, 29: 145-52.
    30. McAister TN, Du T, Frangos JA. Fluid Shear Stress Stimulates Prostaglandin and Nitric Oxide Release in Bone Marrow-Derived Preosteoclast-like Cells. Biochem Biophys Res Comm, 2000, 270(2): 643~648
    31. 张 舒, 吴兴裕, 李莹辉. 骨骼的功能适应性与应力应变反应[J]. 航天医学与医学工程. 2001, 14(5): 368~372
    32. Frangos JA, Mclntire LV, Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotech Bioeng. 1988, 32: 1053
    33. Dewey CF. Efforts of fluid flow on living vascular cells. J Biomech Engng, 1984: 106(11):31
    34. Schnittler HJ, Franke RP. Improved in vitro rheological system for studing the effects of fluid shear stress on cultured cells. Am J Physiol, 1993: 265(cell Physiol, 34): C289
    35. Langille BL. Integrity of arterial endothelium following acute exposure to high shear stress. Biorheol. 1984, 21:333
    36. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech. 2000, 33: 3~14
    37. Gomes ME, Sikavitsas VI, Behravesh E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res. 2003, 67A: 87-95
    38. 唐开, 党耕町. 三维细胞培养在骨组织工程中的应用. 中华骨科杂志, 2003, 23(2): 121-123
    39. Langer RS, Vacanti JP. Tissue engineering: The challenges ahead. Scientific American.1999, April: 86-89
    40. 司徒镇强, 吴军正. 细胞培养. 西安: 世界照片书出版西安公司. 1996.136-137.
    41. Basso N, Heersche JN. Characteristics of vitro osteoblastic cell loading models. Bone. 2002, 30:347~351
    42. Stevens HY, Frangos JA. Bone cell response to fluid flow. Methods Mol Med. 2003, 80: 381~391
    43. Owan I, Burr DB, Turner CH, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol-Cell Physiol. 1997, 273(3): 810~815
    44. Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol. 1997, 273(Endocrinol Metab 36): E751~E758
    45. McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO Release in osteoblasts through distinct biochemical pathways. J Bone Miner Res. 1999, 14: 930~936
    46. 赵敏, 许建中, 周强等. 脉冲电磁场对人骨髓间充质干细胞增殖及细胞周期的影响. 中国临床康复. 2003, 8(2):234-235
    47. Malezadeh R, Jeffrey OH, Dave B, et al. Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering. J Periodontal. 1998, 69: 1256-1262.
    48. Suan Li, Genevieve MC, Michael JM, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997, 36:17-28.
    49. 胡军, 张爱斌, 刘晓岚等. 冲击波诱导人骨髓基质细胞成骨分化及机制的研究. 中华实验外科杂志. 2005, 22(2): 147-150
    50. Levy MM, Joyner CJ, Virdi AS, et al. Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 2001; 29(4): 317-22
    51. Aubin JE, Lui F, Malaval L, et al. Osteoblast and chondroblast differentiation. Bone 1995; 17(2 Suppl): 77S-83S
    52. Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992, 13: 81-88
    1. Wolff J. Das Gesetz der Transformation der Knochen [M]. Berlin: Hirschwald, 1892: 11~13
    2. 张舒, 吴兴裕, 李莹辉. 骨骼的功能适应性与应力应变反应[J]. 航天医学与医学工程. 2001, 14(5): 368~372
    3. Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow[J]. Biotechnology and bioengineering 1994, 43: 573~581
    4. Klein-Nulend J, Vander Plas A, Semeins CM, et al. Sensitivity of osteocytes to bio mechanical stress in vitro[J]. FASEB J. 1995, 9: 441~445
    5. Bakker AD, Soejima K, Nulend JK, et al. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent[J]. J Biomech. 2001, 34:671~677
    6. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading induced bone fluid shear stress[J]. J Biomech. 1994, 27:339~360
    7. You J, Yellowley CE, Donahue HJ, et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow[J]. J Biomech Eng. 2000, 122: 387~393
    8. Owan I, Burr DB, Turner CH, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain[J]. Am J Physiol-Cell Physiol. 1997,273(3):810~815
    9. Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain[J]. Am J Physiol. 1997,273(Endocrinol Metab 36):E751~E758
    10. McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO Release in osteoblasts through distinct biochemical pathways[J]. J Bone Miner Res. 1999, 14:930~936
    11. Nuaman EA, Satcher RL, Keaveny TM, et al. Osteoblasts respond to pulsatile fluid flow with short-term increases in PEG2 but no change in mineralization[J]. J Appl Physiol. 2001, 90:1849~1854
    12. Haut Donahue TL, Haut TR, Yellowley CE, et al. Mechanosensitivity of bone cells tooscillating fluid flow induced shear stress may be modulated by chemotransport[J]. J Biomech 2003, 36: 1363~1371
    13. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow?[J] FASEB, 1994, 8:875~878
    14. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production[J]. J Cellular Physiol 1990,143:100~104
    15. Stevens HY, Frangos JA. Bone cell response to fluid flow. Methods Mol Med. 2003, 80: 381~391
    16. Cheng BX, Kato Y, Zhao SJ, et al. PGE2 is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain[J]. Endocrinology, 2001, 142:3464~3473
    17. Kapur S, Baylink DJ, Lau KHW. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways[J]. Bone. 2003, 32:241~251
    18. Chen NX, Ryder KD, Pavalko FM, et al. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts[J]. Am J Physiol Cell Physiol. 2000, 278:C989-C997
    19. 王昊, 张西正, 张永亮等. 骨组织力学信号转导的研究[J]. 国外医学生物医学工程分册. 2003, 26(4): 165~168
    20. Reich KM, Frangos JA. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts[J]. Am J Physiol. 1991,261(Cell Physiol 30):C428~C432
    21. Bakker AD, Nulend KJ, Burger EH. Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1[J]. Biochemical and Biophysical research communications. 2003, 305:677~683
    22. MacPherson H, Noble BS, Ralston SH. Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells[J]. Bone. 1999, 24:179~185
    23. Mancini L, Moradi-bidhendi N, Becherini L, et al. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent[J]. Biochem Biophy Res Commun, 2000, 274:477~481
    24. Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts[J]. Am J Physiol. 1996, 271(Endocrinal. Metab. 34):E205~E208.
    25. Ajubi NE, Nulend JK, Alblas MJ, et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes[J]. Am J Physiol. 1999, 276 ( Endocrinol Metab 39 ): E171~E178
    26. Denhardt DT, Burger EH, Klein-Nulend J, et al. Osteopontin-deficient bone cells are defective in their ability to produce NO in response to pulsatile fluid flow[J]. Biochem Biophy Res Commun. 2001, 288:448~453
    1. Griffith LG, Naughton G. Tissue Engineering-current challenges and expanding opportunities. Science 2002, 295: 1009-1014
    2. 曹谊林, 商庆新. 软骨、骨组织工程的现状与趋势[J]. 中华创伤杂志, 2001, 17(1): 7-9
    3. 杨志明. 组织工程化人工骨的临床应用[J]. 世界医疗器械, 2003, 9(2): 28-30
    4. Langer RS, Vacanti JP. Tissue engineering: The challenges ahead. Scientific American 1999; April: 86-89
    5. 李起鸿. 我国修复长骨大段骨缺损的进展[J]. 中华骨科杂志, 1997, 17(1): 13-14
    6. Xiao-Jun Duan, Liu Yang, Yue Zhou, et al. A preliminary study on the regeneration in vitro of the tissue-engineered bone. Chinese Journal of Clinical Rehabilitation 2004; 8(8):1562-1564
    7. 陆伟, 陶凯, 毛天球等. 骨髓基质成骨细胞与煅烧骨联合培养的实验研究[J]. 中国临床康复, 2003, 7(2): 214-216
    8. Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001;22: 1279–1288
    9. Bancroft GN, Sikavitsas VI, Dolder JV, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. PNAS 2002; 99: 12600-12605
    10. 张秀白, 刘宏伟, 李毅等. 骨髓基质细胞三维立体培养的体外实验研究和应用于牙周组织工程的意义[J]. 中华临床康复, 2004, 8(26): 5536-5537
    11. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends In Biotech. 2004; 22: 80-86
    12. 唐开, 党耕町. 三维细胞培养在骨组织工程中的应用[J]. 中华骨科杂志, 2003, 23(2): 121-123
    13. Ishang SL, Crane GM, Miller MJ, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997, 36:17-28
    14. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21: 2529-2543
    15. Raimondi MT, Boschetti F, Falcone L, et al. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 2002; 1(1): 69-82
    16. Williams KA, Saini S, Wick TM. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 2002; 18(5): 951-963
    17. Gomes ME, Sikavitsas VI, Behravesh E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res 2003; 67A: 87-95
    18. Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 2001; 25(7): 558-65
    19. Isner JM, Baumgartner I, Rauh G, et al. Treatment of thromboangiitis obliterans(Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998; 28: 964-73
    20. Khouri RK, Koudsi B, Reddi H. Tissue transformation into bone in vivo: A potential practical application. JAMA 1991; 266(14): 1953-1955
    21. 杨志明,樊征夫,解慧琪等. 组织工程化人工骨血管化研究[J]. 中华显微外科杂志,2002, 25(2): 119-122
    22. Taguchi Y, Pereira BP, Kour AK, et al. Autoclaved autograft bone combined with vascularized bone and bone marrow. Clin-Orthop 1995; 320: 220-230.
    23. Frerich B, Kurtz-Hoffmann J, Lindemann N, et al. Tissue engineering of vascularized bone and soft tissue transplants. Mund Kiefer Gesichtschir 2000; 4 (Suppl 2): S490-495
    24 Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow. Biotech Bioeng 1994; 43: 573-581
    25 Kapur S, Baylink DJ, Lau KHW. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 2003; 32:241-251
    26 von-Woedtke T, Julich WD, Alhitari N, et al. Biosensor-controlled perfusion culture to estimate the viability of cells. Med-Biol-Eng-Comput 2002; 40(6): 704-11.
    27 Dolder JV, Bancroft GN, Sikavitsas VI, et al. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res 2003; 64A: 235-241
    28 Botchwey EA, Pollack SR, ElAmin S, et al. Human osteoblast-like cells in three-dimensional culture with fluid flow. Biorheology 2003; 40(1-3): 299-306.
    29 Wang Y, Uemura T, Dong J, et al. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Tissue Eng 2003; 9(6): 1205-1214
    30 秦辉, 许建中, 王序全等. 组织工程用大段负重骨缺损动物模型的建立[J]. 中国临床康复, 2004, 8(20): 3974-3975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700