壳法用酚醛树脂微波合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济一体化进程的加快,我国酚醛树脂行业迎来巨大机遇的同时,也面临着前所未有的挑战。为在竞争日益激烈的国际化市场中求生存、求发展,就必须加大力度进行科技创新,在改善树脂生产中存在的合成时间长、效率低、耗能大等缺点的基础上,解决树脂游离酚含量高、聚合速度慢、综合性能差等问题,以满足铸造业日益增长的质量、环保、效率等方面的需求。为此,本课题将高效快速、节能环保的微波加热技术应用于热塑性酚醛树脂的合成中,通过合成工艺的筛选、优化和化学改性等方法,试图开发出综合性能优良的壳法用酚醛树脂,并在此基础上,对树脂微波合成以及改性剂介入树脂分子结构的机理进行研究和分析。
    为热塑性酚醛树脂微波合成的研究奠定基础,本文首先对热塑性酚醛树脂传统合成工艺进行了研究,并探讨了树脂软化点、聚合速度、流动性等理化性能对覆膜砂强度的影响规律。
    然后,在对家用微波炉加热原理及热塑性酚醛树脂在微波炉中合成特点进行分析的基础上,基于家用微波炉的改造,开发了一套具有回流、搅拌、测温等功能的适合实验室的微波合成装置。利用该微波合成装置,以传统合成为对比,通过红外光谱(IR)、凝胶渗透色谱(GPC)等手段分别从微波合成反应、微波脱水两个方面系统地分析了微波合成对树脂性能影响的规律及其原因,揭示了微波合成致使流动性、聚合速度等树脂性能改善的原因所在; 并通过实验证实了树脂微波合成中存在着潜在的局部热点,而局部热点和反应体系的过热是致使微波合成时间相比于传统工艺缩短约80%的根本原因。
    另外,本文也以大量的实验数据为样本,建立了基于热塑性酚醛树脂微波合成的人工神经网络模型,并利用该人工神经网络对树脂的合成配方及工艺进行了进一步的优化。
    在上述工艺优化的基础上,本文还开展了A 催化剂或其与草酸所组成的复合催化体系、双酚A(BPA)及水杨酸改性的研究,在获得综合性能优良的改性树脂同
With the development of global economization, huge opportunities, but unprecedented challenges have been brought for the phenolic resin industry in china. In order to win the international market competition and meet the demand and development in the foundry industry, the technological innovation is required that sloving the problem, such as the high free phenol content, slow cure rate, low general performance and so on, based on the reduction of synthesis time, improvement of efficiency and economization of energy. Therefore, the microwave heating, which is high heating efficiency, rapid heating rate, low consumed energy and protected environment, has been introduced to the synthesis of novolac resins. The purpose of this subject is to develop novolac resins for shell process with excellent general performance, by means of the selection and optimization of the synthesis and chemical modification processes, and besides, investigate and analyze the mechanisms of the microwave-assisted synthesis and modification of the resins.
    In this paper, firstly, the conventional synthesis processes of novolac resins and the influences of the properties of physics-chemistry of the resins, e.g. softening point, cure rate and flow distance on the strength of the resin coated sands have studied.
    Secondly, in the laboratory, a microwave-assisted synthesis device, involved with refluxing, agitating and the measurement of the temperature, has been modified based on domestic microwave oven. Compared with conventional synthesis, the rules of the microwave-assisted polymerization and dehydration have been investigated and analysed comparatively in detail by means of the Infrared spectrum (IR), Gel permeation chromatography (GPC). The reasons of the improvement in the performances of novolac resins, e.g. flow distance, cure rate, caused by microwave heating have been disclosed. Furthermore, the existence of local potential ‘hot spots’in course of microwave-assisted synthesis of novolac resins has been identified by the experiment and the results showed that the ‘local hot’and overheating for the reaction system are the main reason for the notable reduction of synthesis time.
    Thirdly, a model of the Artificial Neural Networks (ANN) based on the experiments of the microwave-assisted synthesis of novolac resins has been built, and the further
    optimization of the synthesis process parameters was carried on, according to the ANN. On the basis of before-mentioned optimized processes, a series of modification experments, including to catalyst A, the hybrid catalyst of A and oxalic acid, bisphenol A and salicylic have been carried on, and the results showed that the modified novolac resins with high general performances could been obtained. According to the experiments and analyse of the synthesis mechanisms of the modified resins, some points of view have been put forward, as follows: The mechanisms of the ‘high orth’novolac resins under the catalyst A should be concerned about the formation and breaking down of benzyl ethers etc. The mechanisms of bisphenol A introduced into the molecular structure of novolac resins could be attributed to the condensation reaction between prepolymer of bisphenol A and the base resins by means of ‘embedment’or ‘on end’, and for salicylic modified resins, the reasons of improvement in the performance are considered as the introduction of carboxyl into the base of the resins. Finally, for examining the practical effectiveness of the modified resins, the further experiments were done, and the results showed that excellent effect is obtained, on the one hand, the free phenol content is obviously lower than the domesic novolac resins; on the other hand, the cure rate is rapid and the thermal stability is high on the basis of suitable softening point; what’s more, the strength of resin coated sands is high.
引文
[1] 殷荣忠等. 酚醛树脂及其应用. 北京: 化学工业出版社, 1990.6, 第一版
    [2] 黄发荣,焦杨声主编. 酚醛树脂及应用. 北京: 化学工业出版社材料科学与工程出版中心,2003.1, 第一版
    [3] Knop A, Scheib W. Chemistry and application of phenolic resins. Berlin: Springer-Verlag, 1979
    [4] Knop A, Pilato L.A. Phenolic Resins: Chemistry, Applications and Performance. Berlin: Springer-Verlag, 1985
    [5] Knop A, Pilato L.A. Phenolic Resins: Chemistry, Applications and Performance-future Directions. New York: Springer-Verlag, 2000
    [6] Westwood G. W. The case for heat cured moulding and coremaking processes. Foundry trade Journal, 1985, 158 (3308): 512~516
    [7] PHRB Lemon et al. First report of the institute working party T30—Mould and Core Production. Foundryman, 1993, 86 (3): 94~104
    [8] May C.J.H, May R.P. The production of near-net-shape castings, 61st World Foundry Congress, Beijing China: International Academic Publisher, 1995: 219~230
    [9] Ladegourdie G., Schuh W. New environmentally compatible cold-box binder system. The Foundryman, 1997, 90 (12): 434~437
    [10] May R.P. Precision Molding Cast. Hepworth Minerals and Chemicals Ltd, 1996
    [11] Hepworth Minerals and Chemicals Ltd. The Shell Process—Near Net Shape Casting at am Economic Cost. Foundry Trade Journal, 1991,165 (3439): 1~23
    [12] Scott M. Shell casting near net shapes. Advanced Materials and Processes, 1999, 155 (6): 43~45
    [13] Michael J.L. Oil field equipment & machinery. Modern Casting, 2002, 92 (11): 36~39
    [14] Harrod A. Complex castings from the shell process. Foundry Trade Journal, 2003, 177 (3606): 11~12, 14
    [15] Carey P. K. Today’s Resin Binder Processes for Coremaking. Foundry M&T, 1993, 118 (11): 32~39
    [16] Gardziella A, Kwasniok A, Cobos L. Recent studies comparing coremaking process. Modern Casting, 1996, 86 (3): 39~42
    [17] 吴浚郊. 世界铸造技术的发展现状. 铸造纵横, 2001 (4): 15~18
    [18] 金仲信. 日本硬化性砂芯的进展及展望. 铸造工程. 造型材料, 2001 (4): 35~37
    [19] 朱世根. 我国壳型(芯)用覆膜砂的发展. 特种铸造及有色合金, 1999 (4): 44~46,54
    [20] 蔡教战. 我国铸造覆膜砂的生产、应用及展望. 铸造工程. 造型材料, 2001 (3): 18~23
    [21] 徐罗清, 杨发利, 孙伟民. 我国覆膜砂的现状及其展望. 造型材料, 2004 (3): 16~18
    [22] 顾澄中, 逆礼中, 李庆荣. 悬浮法PYSM 酚醛树脂的开发. 非金属矿, 1997, 3 (117): 64~65, 35
    [23] 张洋, 马榴强, 李晓林等. 非均相聚合改性酚醛树脂的研究. 热固性树脂, 1998 (4): 42~46
    [24] 顾澄中, 胡福增, 王家梁等. PYSM 悬浮酚醛树脂-新一代摩阻材料基体树脂的开发. 热固性树脂, 2002, 17 (1): 17~19
    [25] 华勇, 李亚萍, 李印江. 悬浮法酚醛树脂的性能及其应用. 郑州工业高等专科学校学报, 2002, 18 (1): 8~10
    [26] 吴增刚, 周持兴. 悬浮缩聚制备酚醛树脂/蒙脱土纳米复合材料. 功能高分子学报, 2004, 14 (4): 449~452
    [27] 北京化工大学. 悬浮法粒状酚醛树脂生产技术. 科技开发动态, 2004 (5): 26~27
    [28] 周静一. 我国覆膜砂造型制芯的现状及发展. 壳型铸造及覆膜砂论文集, 1997 (10): 1~11
    [29] 安玉华,邱培琪,王桂华. 提高壳芯砂强度的研究. 铸造,1995(1): 31~33
    [30] 江洵来. 高强度低发气量覆膜砂用酚醛树脂的研制. 铸造, 1996 (9): 21~23
    [31] 彭重高. 铸造用改性高强度酚醛树脂的研究. 铸造技术, 1997 (1): 6~7
    [32] 杜厚俊, 盖增丽, 于淑荣等. 一种高强度铸造酚醛树脂的研制. 粘结, 2004, 25 (1): 28~30
    [33] 彭重高. 改变铸造用酚醛树脂流动性的研究. 铸造技术, 2003, 24 (6): 528~529
    [34] 彭重高. 提高铸造用酚醛树脂流动性的研究. 现代铸铁, 2004 (1): 53~55
    [35] 吴执中. 职业病. 北京: 人民卫生出版社, 1984.6, 第一版
    [36] 王所荣. 化学物质的安全和毒性. 北京: 中国展望出版社, 1990
    [37] 佐伯幸雄等. 日本特许公开平2-70717,1990: 211~214
    [38] 铃木正胜等. 日本特许公开平4-11621, 1992: 157~161
    [39] 铃木正胜等. 日本特许公开平4-93311, 1992: 67~70
    [40] 西村敏秋等. 日本特许公开平1-135814, 1992: 143~146
    [41] 铃木法明等. 日本特许公开平4-168118, 1992: 153~156
    [42] 富永宫爾等. 日本特许公开平4-200839, 1992: 327~334
    [43] PHRB Lemon, et al. GB1077292, 1967
    [44] 王其东. 壳型铸造法国内外应用概况及发展趋势. 中国铸机杂志, 1991 (3): 4~8
    [45] Harry Hirano. Coremaking at Toyoda—from shell to phenolic urethane cold box. Foundry M&T, 1997 (12), 22~25
    [46] Culbertson H.M, et al. US3476707, 1969
    [47] Culbertson H.M, et al. US4097463, 1978
    [48] Denisov G.S, Golubev N. S, Koltsov A. L. Investigation of the dynamics of hydrogen bonding in ortho-substituted phenols. Advances in Molecular Relaxation and Interaction Processes, 1977, 11 (34): 283~289
    [49] Pethrick R.A, Thomson B. 13C Nuclear Magnetic Resonance Studies of Phenolic-Formaldehyde Resins and Related Model Compounds: 2-Analysis of Sequence Structure in Resins. British Polym. J., 1986, 18 (6): 380~386
    [50] Culbertson H.M, et al. US4113700, 1978
    [51] Mcdonald R. A, et al. US4403076, 1983
    [52] Mcdonald R. A, et al. US4397967, 1983
    [53] Sand/Binders/Sand Preparation & Coremaking. Foundry M&T, 1997 (12): 22~25
    [54] Johnson C.K, et al. US3838095, 1974
    [55] Craig R.S, et al. US4333513, 1982
    [56] 铃木宗和等. 日本特许公开昭59-220244, 1984: 223~225
    [57] Yukio Saeki, et al. US4870154, 1989
    [58] 佐濑茂雄等. 日本特许公开平1-273642, 1989: 255~258
    [59] 和田勝等. 日本特许公开平4-292649, 1989: 403~405
    [60] 康明, 陈勉已, 吴桑等. 高邻位热塑性酚醛树脂的合成实践. 铸造, 1998(6): 1~4
    [61] 张巧玲, 李永祥, 陈守东. 高邻位热塑性酚醛树脂的合成. 山西化工, 2001, 21 (4): 13~14, 27
    [62] 张立业. 铸造用改性酚醛树脂的研制. 承德石油高等专科学校学报, 2002, 4 (4): 11~14
    [63] 应四新. 微波加热与微波干燥. 北京: 国防工业出版社, 1976, 第一版
    [64] 彭金辉, 杨显万. 微波能技术新应用. 云南: 云南科技出版社,1997
    [65] Gedye R, Smith F, Westaway K. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986 (27): 279~282
    [66] 杨伯伦, 贺拥军. 微波加热在化学反应中的应用进展. 现代化工, 2001, 21 (4): 8~12
    [67] 李芳良, 李月珍, 农兰平. 微波技术在化学反应中的应用新进展. 广西科学, 2004, 11 (2): 121~126
    [68] Majitich G, Hicks R. The use of microwave heating to promote organic reaction. J. Microwave power and Electromagnetic Energy. 1995, 31 (1): 27~45
    [69] Stinson S. Use of microwave heating to speed organic reactions continues to grow, Chem. Eng. News, 1996, 74 (21): 45~49
    [70] Bose A.K, Bank B.K, Lavlinskaia N, et al. More chemistry in a microwave. Chemtech., 1997, 27 (9): 18~24
    [71] Alexander S, Behrooz H.Y, Doris D, et al. Scalability of Microwave-Assisted Organic Synthesis. From Single-Mode to Multimode parallel Batch Reactors. Org. Process Res. Dev., 2003 (7): 707~716
    [72] Lucio B, Edoardo P. Hydrothermal synthesis of zeolite LTA by microwave irradiation. Mater. Research Innovation, 2004, 8(1): 53~57
    [73] Mingos D.M.P, Baghurst D.R. Application of microwave dielectric heating effects in synthetic problems in chemistry. Chem. Soc. Rev., 1991 (20): 1~47
    [74] 杨秋华, 杨宏秀. 微波介电热效应在化学合成中的应用. 化学工业与工程, 1994, 11 (1): 17~26
    [75] 张爱民, 施楣梧, 徐僖. 微波技术在聚合物加工中的应用. 塑料工业, 1996 (5): 55~59
    [76] Guo T.C, Guo W.W, Larsen L. E. Microwave induced thermoelastic process in dielectrics-theory and experiments. Internal. J. Infrared and Millimeter Wave, 1985, 6 (6): 405~422
    [77] Strand N.S. Fast microwave curing of thermoset parts. Modern plastics, 1980, 57 (10): 64~65, 67
    [78] Jullien H., Valot H. Polyurethane curing by a pulsed microwave field. Polymer, 1985, 26 (4): 506~510
    [79] Neverkar P.V, Zahedi N. Comparison of microwave assisted and conventional epoxy/polyimide curing. Proceeding of the 1986 International Symposium on Microelectronics, 1986: 632~641
    [80] 黄艳, 彭强, 谢明贵. 微波在高分子中的应用. 化学研究与应用, 2002, 14 (1): 84~89
    [81] 鲁德平, 杨世芳, 李德清等. 微波技术及其在乳液聚合中的应用. 胶体和聚合物, 2002, 20 (1): 41~42
    [82] Parodi-Saiag Fabrizio. Microwave heating and the acceleration of polymerization processes. Proceedings of SPIE -The International Society for Optical Engineering, 1999 (4017): 2~17
    [83] Carter K.R. Nickel (0)-mediated coupling polymerizations via microwave-assisted chemistry. Macromolecules, 2002, 35 (18): 6757~6759
    [84] Mallakpour S.E, Hajipour A.R, Habibi S. Facile synthesis of new optically active poly (amide-imide) derived from N, N/-(pyromellitoyl)-bis-L-leucine diacid chloride and aromatic diamines under microwave irradiation. Euro. Polym. J., 2001, 37 (12): 2435~2442
    [85] Cristiane M, Celia M.R.B, Morgana N.G, et al. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerised by microwave irradiation and conventional water bath. Dental Mater., 2004 (20): 565~569
    [86] Hoogenboom R, Wiesbrock F, Leenen M. A.M, et al. Accelerating the Living Polymerization of 2-Nonyl-2-oxazoline by Implementing a Microwave Synthesized into a High-Throughput Experimentation Workflow. J. Comb. Chem., 2005 (7): 10~13
    [87] 王彤文, 李琮, 阿芳. 微波辐射下甲基丙烯酸甲酯(MMA)聚合的研究. 云南化工, 1995 (4): 4~6
    [88] Chia H.L, Jacob J, Boey F.Y C. Microwave radiation effect on the polymerisation of styrene. J. Polym. Sci. polym. Chem., 1996, 34 (11): 2087~2094
    [89] Chia H.L, Jacob J, Boey F.Y.C. Radiation curing of poly-methyl-methacrylate using a variable power microwave source. J. Mater. Processing Technology, 1995, 48 (1-4): 445~449
    [90] Jacob J, Chia H.L, Boey F.Y.C. Microwave polymerisation of poly (methyl acrylate): conversion studies at variable power. J. Appl. Polym. Sci., 1997, 63 (6): 787~797
    [91] Correa R, Gonzalez G, Dougar V. Emulsion polymerisation in a microwave reactor. Polymer, 1998, 39 (6-7): 1471~1474
    [92] 顾梅, 朱秀林, 路建美等. 丙烯酰胺的微波聚合研究. 高分子材料科学与工程, 1997, 13 (5): 36~39
    [93] 路建美, 姜琦松, 朱秀林等. 顺丁烯二酸二丁基锡与硬脂酸乙烯酯微波辐射共聚. 石油化工, 2000 (29): 764~767
    [94] Dikusar M.A, Kubrakova L.V, Chinarev A.A, et al. Polymerization of 4-Nitrophenyl Acrylate under Microwave Heating Conditions. Russian J. bioorg. Chem., 2001, 27 (6): 457~461
    [95] 徐昆, 宋春雷, 张文德等. 微波法合成淀粉接枝丙烯酸盐类高吸水性树脂的研究. 功能高分子学报, 2004, 17 (3): 473~478
    [96] Gaojian Chen, Xiulin Zhu, Zhenping Cheng. Controlled/”living”radical polymerization of methyl methacrylate using AIBN as the initiator under microwave irradiation. Radiation Physics and Chemistry, 2004 (69): 129~135
    [97] 徐文健, 周年琛, 朱秀林等. 微波辐射下甲基丙烯酸正丁酯原子转移自由基聚合. 化学研究与应用, 2005, 17 (2): 223~225
    [98] Z.J.Yu, L.J.Liu. Effect of microwave energy on chain propagation of poly (ε-caprolactone) in benzoic acid-initiated ring opening polymerisation ofε-caprolactone. Euro. Polym. J., 2004, (40): 2213~2220
    [99] Wiesbrock F, Hoogenboom R, Leenen M.A.M, et al. Investigation of the Living Cationic Ring-opening polymerization of 2-Methyl-, 2-Ethyl-, 2-Nnonyl-, and 2-Phenyl-2-Oxazoline in a Single-Mode Microwave Reactor. Macromolecules, 2005 (38): 5025~5034
    [100] Goretzki C, Krlej A, Steffens C, et al. Green polymer chemistry: Microwave-assisted single-step synthesis of various (meth) acrylamides and poly (meth) acrylamides directly from (meth) acrylic acid and amines. Macrom. Rapid Commu., 2004, 25 (3): 513~516
    [101] Fang, X.M, Hutcheon, R, Scola, D.A. Microwave syntheses of poly (ε-caprolactam-co-ε-caprolactone). J. Polym. Sci. Polym. Chem., 2000, 38 (8): 1379~1390
    [102] 刘立建, 廖立琼, 末英等. 己内酯和丙交酯的微波辅助开环聚合反应. 高分子通报, 2003 (5): 1~6
    [103] 何承东, 袁立丽. 微波辐射合成脲醛树脂. 阜阳师范学院学报(自然科学版), 2002, 19 (3): 26~28
    [104] 徐衡, 沈良骏, 徐文. 微波辐射合成酚醛树脂. 石油化工, 2002, 31 (3): 191~193
    [105] 李华, 路建美, 张正彪等. 微波法合成硫脲树脂及其吸附性能研究. 高校化学工程学报, 2004, 18 (1): 62~66
    [106] Bogdal Dariusz, Pielichowski Jan, Penczek, Piotr, et al. Synthesis of elevated-molecular-weight epoxy resins with aid of microwaves. Polymer, 2002, 47 (11-12): 842~844
    [107] Bogdal Dariusz, Gorczyk Jaroslaw. Microwave assisted synthesis and determination of chain branching in solid epoxy resins using 1H NMR spectrometry, Polymer, 2003, 44 (26): 7795~7800
    [108] Bogdal Dariusz, Gorczyk Jaroslaw. Synthesis and characterization of epoxy resins prepared under microwave irradiation. J. Appl. Polym. Sci., 2004, 94 (5): 1969~1975
    [109] 中华人民共和国化学工业部标准HG2-231-65, 松香改性酚醛树脂
    [110] 中华人民共和国机械工业标准JB/T8834-2001, 铸造用壳型(芯)酚醛树脂
    [111] 中华人民共和国专业标准ZBG39005-89, 铸造用壳型(芯)酚醛树脂
    [112] 汪昆华, 罗传秋, 周啸. 聚合物近代仪器分析. 北京: 清华大学出版社, 2000.5, 第二版
    [113] Dargaville T.R, Guerzoni F.N, Looney M. G, et al. Determination of molecular weight distributions of novolac resins by gel permeation chromatography. J. Polym. Sci. Polym. Chem., 1997, 35 (8): 1399~1407
    [114] 邓芹英, 刘岚, 邓惠敏. 波谱分析教程. 北京: 科学出版社, 2003.8, 第一版
    [115] Hew-Der Wu, Chen-Chi M. Ma, Peter P. Chu. Hydrogen bonding in the novolac type phenolic resin blended with phenoxy resin. Polymer, 1997, 38 (21): 5419~5429
    [116] P. L. Jain. Principles of Foundry Technology. New Delni: Megrawhill, 1979
    [117] 康明, 陈勉已, 吴桑等. 催化剂对热塑性酚醛树脂性能的影响. 粘结, 1998 (2): 22~24
    [118] 康明. 壳型/芯覆膜砂用低游离酚酚醛树脂的研究. 博士论文, 华中理工大学内部资料, 1999: 23~27
    [119] Tyberg C.S, Bergeron K, Sankarapandian M, et al. Structure property relation-ships of void free phenolic epoxy matric materials. polymer, 2000, 41 (13): 5053~5062
    [120] 张留城, 李佐邦. 高分子化学丛书缩合聚合. 北京: 化学工业出版社, 1986.5, 第一版
    [121] 王岩, 周静一, 金广明等. 热塑性酚醛树脂流动性的控制. 造型材料, 1997 (4): 34~36,46
    [122] S.R. Hartshorn. Structural Adhesives Chemistry and Technology. Plenum Press, New York, 1986
    [123] Pizzi A. Wood Adhesives Chemistry and Technology. Marcel Dekker, New York, 1984
    [124] 何培之. 铸造材料化学. 北京: 机械工业出版社, 1982
    [125] 杨玉良, 胡汉杰. 高分子物理. 北京: 化学工业出版社材料科学与工程出版中心, 2001.10, 第一版
    [126] 戴斌煜. 热态覆膜砂用酚醛树脂的流变性研究. 中国铸造装备与技术, 1996 (5): 16~19
    [127] 徐诚, 陈晓英. 微波化学实验设备的应用与发展. 工艺与设备, 2002, 9 (6): 26~30
    [128] 孟庆华, 陈虹锦, 方能虎等. 面向化学研究的微波反应器. 实验室研究与探索, 2003, 22 (3): 94~97
    [129] 南京三乐微波技术发展有限公司. 从工程角度探讨微波化学实验设备的发展. www. sanleimicrowave.com
    [130] 刘伟. 现代微波化学技术及设备综述. 现代科学仪器, 1999 (4): 19~23
    [131] 刘福安, 李耀先, 徐文国等. 微波法合成反-丁烯二酸二甲酯. 化学研究与应用, 1994, 6 (3): 88~90
    [132] 孙曼, 江汉保, 郑时龙等. 适用于化学合成的微波炉的改造与性能测定. 微波学报, 1998, 14 (4): 377~382
    [133] 杨鸿生, 王善进, 徐耀忠等. 用于回流化学反应的微波加热装置的改进. 微波学报, 2000, 16 (5): 616~618, 468
    [134] Strauss C.R, Trainer R.B. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995 (48): 1676~1692
    [135] Gerl J.E. (郑卓全译). 微波炉功率. 真空微波技术, 1991 (2): 19~25
    [136] 闫丽萍, 马进明, 孙曼等. 微波炉功率、均匀性及安全性的测定. 微波学报, 1996, 12 (2): 159~162
    [137] 金钦汉. 微波化学. 北京: 科学出版社, 1999.10, 第一版
    [138] J. Berlan. Microwave in Chemistry: Another Way of Heating Reaction Mixture. Radiat. Phys. Chem., 1995, 45 (4): 581~589
    [139] 王鹏. 环境微波化学技术. 北京: 化学工业出版社环境科学与工程出版中心, 2003.5, 第一版
    [140] 刘歧山. 微波能应用. 北京: 电子工业出版社, 1990.8, 第一版
    [141] 张兆镗, 钟若青编译. 微波加热技术基础. 北京: 电子工业出版社, 1988.10, 第 一版
    [142] 夏春, 李远才. 微波辐射下热塑性酚醛树脂的合成. 铸造, 2004, 53 (5): 365~368
    [143] Jullien H, Petit A, Merienne C. The microwave reaction of phenyl glycidyl ether with aniline on inorganic supports: a model for the microwave crosslinking of epoxy resins. Polymer, 1996, 37 (15): 3319~3330
    [144] Jian Zhou, Chun Shi, Bingchu Mei, et al. Research on the technology and the mechanical properties of the microwave processing of polymer. J. Mater. Process Technology, 2003 (137): 156~158
    [145] 焦剑, 雷渭媛. 高聚物结构、性能与测试. 北京: 化学工业出版社材料科学与工程出版中心, 2003.5, 第一版
    [146] Albert Y.C. Hung, Feng-Yih Wang, Chen-Chi M. Ma, et al. Thermodynamic properties affect the molecular motion of novolac type blended with polyamide. Europ. Polym. J., 2003 (39): 225~231
    [147] Laurent R, Laporterie A, Dubac J, et al. Specific activation by microwave: myth or reality? J. Org. Chem., 1992 (57): 7099~7102
    [148] Raner K.D, Strauss C.R, Vyskoc F, et al. A comparison of reaction kinetic observed under microwave irradiation and conventional heating. J. Org. Chem., 1993 (58): 950~958
    [149] Chemat F, Poux M, Berlan J. “Dry”hydrolysis of nitriles revisited. Part II: comparative study of microwave and conventional heating. J. Chem. Soc. Perkin, Trans., 1994 (2): 2597~2602
    [150] Shibata C, Kashima T, Ohmohiro K. Nonthermal influence of microwave power on chemical reactions. Japanese J. Appl. Phys. Regular Papers & Short Notes & Review paper, 1996, 35 (1A): 316~319
    [151] 黄卡玛, 刘永清, 唐敬贤等. 电磁波对化学反应非致热作用的实验研究. 高等学校化学学报, 1996, 17 (5): 764~768
    [152] Xiulin Zhou, Jianying Chen, Nianchen Zhou, et al. Emulsion polyerization of Methacrylate under pulsed microwave irradiation. Euro. Polym. J. 2003 (39): 1187~1193
    [153] Lewis N.A, Summers J.D, et al. Accelerated imidization reactions using microwave radiation. J. Appl. Sci. Part A: Polymer Chemistry, 1992 (30): 1647~1652
    [154] I. Plazl. Esterification of benzoic acid with ethanol by conventional and microwave heating in stirred tank reactor. Acta Chimica Slovenica, 1994 (41): 437~445
    [155] I. Plazl, S. Leskovsek, T. Koloini. Hydrolysis of sucrose by conventional and microwave heating in stirred tank reactor. The Chem. Eng. J., 1995 (59): 253~257
    [156] Jong Yeol Jeon, Hee Young Kim. Icrowave irradiation effect on diffusion of organic molecules in polymer. European Polym. J., 2000 (36): 895~899
    [157] Shuangjie Zhou, Martin C. H. A study of microwave reaction rate enhancement effect in adhesive bonding of polymers and composites. Composites Structure, 2003 (61): 303~309
    [158] Wiesbrock F, Hoogenboom R, Schubert U. S. Microwave-assisted polymer synthesis: State-of-the-art and future perspective. Macromol. Rapid Commun., 2004, 25 (20): 1739~1764
    [159] Wiesbrock F, Hoogenboom R, Leenen M. A. M, et al. Investigation of the Living Cationic Ring-opening polymerization of 2-Methyl-, 2-Ethyl-, 2-Nnonyl-, and 2-Phenyl-2-Oxazoline in a Single-Mode Microwave Reactor. Macromolecules, 2005 (38): 5025~5034
    [160] 苏汝铿. 理论物理学基础教程丛书量子力学. 上海: 复旦大学出版社, 1997.6, 第一版
    [161] 李士勇. 模糊控制、神经控制和智能控制论. 哈尔滨: 哈尔滨工业大学出版社,1996.10, 第一版
    [162] 李绍军, 王永胜, 姚平经. 人工神经网络的发展状况及其在化工领域的应用. 化工进展,1999 年增刊: 20~23
    [163] 石鲜明, 赵彤, 吴瑶曼等. 神经网络用于热固性酚醛树脂的研究. 计算机与应用化学, 1998, 15 (5): 315~319
    [164] 石鲜明, 赵彤, 吴瑶曼等. 神经网络用于玻纤增强酚醛树脂力学性能的预测. 高分子材料科学与工程, 2002, 16(4): 117~119
    [165] 王腾蛟, 刘云峰, 汤晋主. Visual C++ 6.0 教程. 北京: 北京科海集团公司出品, 2001.5, 第一版
    [166] 梁恕湘编译. 双酚A. 北京: 化学工业出版社, 1981.11, 第一版
    [167] 陈湘, 蒋钧荣, 陈建湘等. 双酚A 型线性酚醛树脂的合成. 热固性树脂, 1999 (3): 10~13
    [168] 胡福增, 郑安呐, 张群安. 聚合物及其复合材料的表界面. 北京: 中国轻工业出版社, 2001.9, 第一版
    [169] US3944510, 1976
    [170] 王文清, 李魁盛. 铸造工艺学. 北京: 机械工业出版社, 1998.10, 第一版
    [171] Dargaville T.R, Debruyn P.J, Lim A.S.C, et al. Chemistry of novolac resins II. Reactions of model phenols with hexamethylenetetramine. J. Polym. Sci. Polym. Chem., 1997, 35 (8): 1389~1398
    [172] 张伟民, 任国平, 秦升益. 热塑性酚醛树脂覆膜砂的研究进展. 高分子通报, 2004 (3): 99~105
    [173] 王珂. 蒙脱土、蛭石的有机改性及其聚酯基体纳米复合材料的研制. 北京理工大学硕士论文, 2002.2
    [174] Zhou S.Q, Wood A, Boyapati K, et al. Epoxy/organoclay nanocomposites synthesized with thermal and microwave methods. Global Plastics Environmental Conference 2004 -Plastics: Helping Grow a Greener

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700