立方氮化硼仿生耐磨复合材料的制备及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体表具有不同尺度的自组装多级结构,并且大部分属于有机/无机复合材料,有机材料具有极好的塑性和韧性,无机材料具有较高的硬度,有机材料与无机材料耦合构建的复合材料具有高的硬度和良好的耐磨性。基于国家自然科学基金重点项目“机械仿生耦合设计原理与关键技术”提出的仿生耦合设计理论,生物体通过不同的形态、结构、材料和构成等彼此之间的耦合作用而达到生物功能最优化、对环境适应最佳化和能量消耗最低化。本文综合成分、材料和结构等多因素的作用,开展了钎焊技术和SPS技术制备c-BN仿生耐磨复合材料的研究。
     c-BN超硬材料为无机非金属粉末晶体在一定条件下形成的多晶聚集体,其电子配位非常稳定,钎焊法制备c-BN仿生耐磨复合材料的关键是液态钎料必须能够润湿c-BN颗粒表面。试验结果表明,Ag基活性钎料对c-BN颗粒具有良好的润湿性。系统研究了钎料成分与钎焊工艺参数(钎焊温度,保温时间,钎焊真空度等)对c-BN颗粒钎焊性能的影响规律。采用熔炼钎料和粉末钎料钎焊制备c-BN仿生耐磨复合材料,试验发现,活性钎料熔炼后,熔炼钎料中Ti元素的活性要低于粉状钎料中Ti元素的活性。同一成分的活性钎料熔炼后,钎料对c-BN的焊接性降低。AgCuTi8Sn2粉状钎料在钎焊温度为950℃,保温时间为20min的条件下,可实现Ag基活性钎料、c-BN颗粒与基体金属三者间的可靠连接,制备的c-BN仿生耐磨复合材料试件成型性好、表面平整、颗粒分布均匀。c-BN仿生耐磨复合材料试件固定在划痕试验机施加100N的载荷,无c-BN颗粒脱落现象。通过热力学理论计算并结合试验结果,揭示了Ag及活性钎料与c-BN界面间反应作用机制和对c-BN润湿性的变化规律。
     基于对Ag基活性钎料钎焊制备c-BN仿生耐磨复合材料的研究基础和存在的问题,试验采用Cu基高温活性钎料钎焊制备c-BN超硬复合材料。Cu基钎料的价格低,强度高,高温性能好,以Cu及Cu-Ni为基的合金系中,在c-BN聚晶片表面上的润湿角85°一120°,属于不完全润湿。Cu基高温活性钎料钎焊制备的c-BN超硬复合材料试件表面呈现暗褐色,复合材料整体结构较疏散。划痕试验结果,制备的c-BN仿生耐磨复合材料结合强度较低,颗粒易脱落。Cu基钎料中添加Ti元素对c-BN颗粒的润湿性得到一定的提高;添加Sn利于改善c-BN仿生耐磨复合材料的表面成型质量。采用混料试验方法优化Cu基活性钎料成分,建立合金元素含量与钎料性能的回归方程,并用此模型进行优化。Cu基活性钎料钎焊c-BN聚晶片与45钢异质材料接头抗剪强度达到210Mpa—220Mpa,在c-BN聚晶片表面润湿角达到25°—35°。
     研究揭示了Cu基活性钎料的润湿c-BN颗粒机制及其与c-BN颗粒的界面微观结构。Cu基活性钎料润湿c-BN为化学润湿,在钎料与c-BN界面处发生化学反应。扫描电镜和能谱分析结果表明,Cu基活性钎料与c-BN颗粒之间相互作用显著,界面处有一连续的反应薄层,活性元素Ti发生了明显的富集,浓度达到了18.70%,高于Cu基活性钎料中Ti元素的含量。界面反应产物为Ti-N和Ti-B化合物。正是由于钎料与c-BN颗粒界面反应化合物的形成,从而促进了Cu活性钎料对c-BN超硬材料的润湿与结合。
     系统研究了钎料和c-BN颗粒体积百分比含量对c-BN仿生耐磨复合材料内部结合强度和耐磨性的影响规律。提高c-BN仿生耐磨复合材料中c-BN颗粒的体积百分比含量有助于提高材料的耐磨性,与此同时影响c-BN仿生耐磨复合材料中钎料与c-BN颗粒的结合强度,最终结果影响耐磨性。研究揭示,c-BN仿生耐磨复合材料中的钎料和c-BN颗粒增强硬质相在力学性能上相差较大,当c-BN仿生耐磨复合材料受到外界作用力(拉力、冲击力、摩擦力等)作用时,不能均衡承载,c-BN仿生耐磨复合材料的内部结合强度低于钎料自身的强度与钎料和钢基体的结合强度,导致c-BN颗粒增强硬质相脱落,使c-BN仿生耐磨复合材料失去其预定效能。钎料与c-BN颗粒体积百分比含量对c-BN仿生耐磨复合材料的结合强度和耐磨性试验和建立的力学模型分析结果表明,c-BN颗粒含量在40%—50%时,c-BN仿生耐磨复合材料的内部结合强度与耐磨性最好,在同等试验条件下的耐磨性是45钢淬火标样的12.34倍,结合强度达到182Mpa-187Mpa。
     基体材料耐磨性差导致c-BN颗粒的脱落是c-BN仿生耐磨复合材料失效的主要原因之一。钎焊法制备的c-BN仿生耐磨复合材料,Cu基活性钎料凝固后的组织为铸态组织,组织较疏松,耐磨性较差,在磨损过程中先期被磨损掉,高硬度的c-BN颗粒则相对突起形成非光滑表面,抵抗磨粒的磨损,在外部作用力较大的情况下将导致c-BN颗粒的脱落,降低c-BN仿生耐磨复合材料的耐磨性。基于放电等离子烧结技术特点,试验开展放电等离子烧结技术制备c-BN仿生耐磨复合材料。
     研究工艺参数对SPS技术制备c-BN仿生耐磨复合材料性能的影响规律。烧结工艺参数(温度、压力、时间)、材料(c-BN颗粒大小、c-BN颗粒体积百分比含量与基体合金力学性能)与外界工况条件等多种因素对其性能都有影响。研究结果表明,烧结工艺参数是可控因素,直接影响c-BN仿生耐磨复合材料内在质量。试验采用正交多项式回归设计方法,建立起了各参数与c-BN仿生耐磨复合材料性能之间的回归方程,研究各因素对性能影响的权重,并用此模型进行优化,确定SPS技术制备c-BN仿生耐磨复合材料的最优工艺参数,轴向压力28Mpa—33Mpa、烧结温度780℃—800℃、保温时间4.6mmin—5min。
     SPS技术制备c-BN仿生耐磨复合材料,合金中活性元素Ti也能与c-BN之间有化学反应发生,通过反应在c-BN表面分解形成新相。更重要的一点是SPS技术制备的c-BN仿生耐磨复合材料,基体合金凝固后的组织得到改善,颗粒均匀地分布在基体合金上;制备温度较低,降低内部的残余应力,避免c-BN颗粒的破碎,提高c-BN颗粒与基体合金的结合强度,耐磨性要优于钎焊法制备c-BN仿生耐磨复合材料的耐磨性,其耐磨性为同等条件下淬火45钢的14.73倍。SPS技术制备的c-BN仿生耐磨复合材料在摩擦热作用下,对偶件与c-BN仿生耐磨复合材料有很强的粘结作用,c-BN仿生耐磨复合材料的磨损主要形式为粘着磨损,并伴有磨粒磨损和疲劳磨损。
     试验初步探讨了通过SPS技术实现c-BN颗粒、Cu基活性合金及其与45钢之间的一体化烧结,实现粉体与钢基体同步焊接研究,为研发仿生耐磨复合材料和其它难焊材料提供新的方法。
Biology body surfaces have different sized and self-assembled multilevel structure and the great mass of them belong to organic or inorganic composite materials. The organic materials have wonderful plastic and toughness properties and the inorganic materials have higher hardness. The composite materials constituted by coupling of organic and inorganic materials have high hardness and good anti-wear properties. Basing on the design theory of mechanic bionic coupling and key technology coming from the keystone item of national nature science foundation in china, the design theory of bionic coupling is bought forward. Biology body obtains the optimization of biology function and the maximization of adopting circumstance and minimization of energy consumed, which are acquired by the mutual coupling action of different morphologies and structures and materials and composing et al. In this paper, the mutual action of multi factor (components, materials, structures) is synthesized and the studies of c-BN bionic anti-wear composite materials fabricated by SPS and brazing technology were developed.
     C-BN super-hardness materials are polycrystalline conglomeration body fabricated using inorganic nonmetal powders under a condition and the electronic Coordination are highly stable. The key of c-BN bionic anti-wear composite materials fabricated is that liquid state solders can wet the surface of c-BN powders. Test results indicate that the wettability of Ag-based activation solders vs c-BN powders is well. The rules of effect solder compositions and brazing technological parameters (brazing temperature, holding time of brazing time and brazing vacuum degree et al) on c-BN powders performance were studied. C-BN bionic anti-wear composite materials were fabricated using brazing of smelting solders and powder solders. The tests show that the activation of Ti element in smelting solders is lower than that in powder solders after activation solders smelted. After activation solders with identical composition were smelted, the welding property of solders vs c-BN was decreased. The dependable joining among Ag-based activation solders and c-BN powders and substrate metal can be obtained using AgCuTi8Sn2 powder solders under the condition of brazing temperature 950℃and holding time 20min. The molding property of samples fabricated is well and the surface is smooth and the distribution of grains is uniform. The samples of c-BN bionic anti-wear composite materials were fixed on scratch testing machine, the phenomenon of c-BN powders fell off was not be found under 100N load. It is found that the interface reaction action mechanism among Ag and activation solders and c-BN and the changed rules of these vs c-BN wettablity.
     Basing on the research foundation of Ag-based activation solders brazing used to fabricate c-BN bionic anti-wear composite materials and the existent guestion, the tests were adopted to fabricate c-BN super-hardness composite materials. The price of cu-basic solders is low and the strength is high and the high-temperature is well. The wettablity angle is 85°-120°on the surface of c-BN polycrystalline plates in Cu and Cu-Ni-based alloy system, which belong to incomplete wetting. The sample surfaces take on dust-colour and the total structure of composite materials is scattered. The results of scratch testing show that the strength of c-BN bionic anti-wear composite materials fabricated is lower and the grains are easily fell off. The wettability of C-BN grains was increased by addition Ti element in Cu-based solders and the surface molding mass of those was improved by addition Sn. the regression equation between the content of alloy elements and solders peoperties was establish by the mixing tested method to optimize the the composition of Cu-based activation solders. the joining shearing strengths between Cu-based solders brazing c-BN polycrystallinte plates and 45 steel heterogeneity material arrive 210Mpa-220Mpa. The surface wetting angles arrive 25°-35°on c-BN polycrystallinte plates.
     Researches found the wetting mechanism of Cu-based activation solders vs c-BN grains and the interfacial micro-structures between Cu-based activation solders and c-BN grains were observed. The wetting of Cu-based activation solders vs c-BN belongs to chemical wetting and the chemical reactions happy at the interface of solders and c-BN. The results of SEM and EDS analyzed show that the mutual action is remarkable between Cu-based activation solders and c-BN grains, and there is a continuous reaction thin layer in interface, and the activation Ti element happens enrichment, and the concentration is arrived 18.70% and is higher than the content in Cu-based activation solders. The interfacial reaction produces are compound. The wetting and coalescent of Cu-based activation solders vs c-BN super-hardness materials were promoted owing to the formation of interfacial reaction compound between the grains and c-BN grains.
     It is investigated that the interior joint strength and the effect rule of anti-wear property of the solders and the percentage content of c-BN grains volume vs the c-BN bionic anti-wear composite materials. Increasing of percentage content of c-BN grains volume helps to increase materials anti-wear property and effect joint strength between c-BN bionic anti-wear composite materials and solders at the same time, the anti-wear property was affected at last. The investigations show that mechanics property discrepancy between solders in c-BN bionic anti-wear composite materials and c-BN grains reinforced rigid hardness phase is larger. The outside forces (pull, wallop and friction et al) can't be uniformly loaded by c-BN bionic anti-wear composite materials because the inside joint strengths in these are lower than solders strength itself and joint strength between solders and steel substrate, owing to c-BN grains reinforced rigid hardness phase fell off, and the destining efficiency of c-BN bionic anti-wear composite materials was lost. The analytic results from tests and mechanics model established show that the inside joint strength and anti-wear property in c-BN bionic anti-wear composite materials are the highest when the content of c-BN grains is from 40% to 50%. At the same testing condition, the ant-wear property of as-fabricated materials is 12.34 times of normal 45 steel quenched, the joint strengths arrive 182Mpa-187Mpa.
     One of the key reasons, which result in invalidation of c-BN bionic anti-wear composite materials, is c-BN groins taking off due to the less anti-wear property of based material. The structure of c-BN bionic anti-wear composite materials fabricated using brazing method is the structure of cast shape owing to the structure loosing and anti-wear property less. These materials were worn out during wearing process firstly and the comparatively protuberant high hardness c-BN grains were formed into the non-smooth surfaces to resist wearing out of abrading grains. The anti-wear property of as-fabricated materials was decreased and c-BN grains were fell off under the instance of bigger outside force. Basing on the technological characteristic of SPS, SPS technology was used to fabricate c-BN bionic anti-wear composite materials.
     It was researched that the influencing rule of technologic parameters vs properties of c-BN bionic anti-wear composite materials fabricated using SPS technology. The multi-factors, which include sinter technological parameters (temperature, stress, time) and materials (sizes of c-BN grains, the volume percentage content c-BN, mechanics properties of substrate alloy) and the condition of outside circumstance, have effect on properties. The research results show that sinter technological parameters is a controllable factor and effect internality mass of c-BN bionic anti-wear composite materials. Tests adopted the method of orthogonal polynomial repression design to establish regression equation of kinds of parameters and properties of c-BN bionic anti-wear composite materials. Weight between kinds of factors and properties effect was studied to optimize the model. It were ensure that technological parameters optimized of c-BN bionic anti-wear composite materials fabricated using SPS technology, axial stresses are 28Mpa-33Mpa and sintered temperatures are 780℃-800℃and holding times are 4.6min-5min.
     SPS technology was used to fabricate c-BN bionic anti-wear composite materials. The chemical reaction can be happened between activation element Ti in alloy and c-BN. New phases can be formed by reaction decomposing on c-BN surfaces. The key was that structure of as-fabricated materials was improved owing to grains distributed uniformly on substrate alloy and fabrication temperature lower and inside remains stress decreased and c-BN grains fragmentation avoided and joint strength increased between c-BN grains and substrate alloy. Anti-wear property of as-fabricated materials is higher than those materials fabricated using brazing method, which is 14.73 times of 45 steel quenched. As-fabricated materials have strongly adhesion effect on parts contacted under the friction heat effect and the key abrasion shape belongs to adherence abrasion with abrasive grain abrasion and fatigue abrasion.
     It was discussed by tests using SPS technology that integrative sintering realized among c-BN grains and Cu-based activation alloy and 45 steel. The simultaneity welding was realized between powders and steel substrate. New method was obtained to research bionic anti-wear composite materials and the other hard welding materials.
引文
[1]Z. A. Zoya, R. Krishnamurthy. The performance of CBN tools in the machining of titanium alloys[J]. Journal of Materials Processing Technology,2000,100(1-3):80-86.
    [2]G. Andrzej, K. Tomasz. Assessment method of cutting ability of c-BN grinding wheels[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1256-1260.
    [3]Yoshio Ichida. Mechanical properties and grinding performance of ultrafine-crystalline c-BN abrasive grains[J]. Diamond & Related Materials,2008,17(7-10):1791-1795.
    [4]LIN H.M, LIAO Y.S, WEI C.C. Wear behavior in turning high hardness alloy steel by CBN tool[J]. Wear,2008,264(7-8):679-684.
    [5]GUO C, SHI Z, ATTIA H et al. Power and wheel wear for grinding nickel alloy with plated CBN wheels[J]. CIRP Annals-Manufacturing Technology,2007,56(1):343-346.
    [6]DING W.F, XU J.H, SHEN M et al. Behavior of titanium in the interfacial region between cubic BN and active brazing alloy[J]. International Journal of Refractory Metals & Hard Materials,2006,24(6):432-436.
    [7]大原埝,妻鹿雅彦.耐磨性涂层及其涂覆方法.中国发明专利,专利申请号:02800456.6.
    [8]M. J. Jackson, C. J. Davis, M. P. Hitchiner, et al. High-speed grinding with c-BN grinding wheels applications and future technology [J]. Journal of Materials Processing Technology, 2001,110(1):78-88.
    [9]Chattopadhyay A K, Hintermann H E. On brazing of cubic boron nitride abrasive crystals to steel subatrate with alloys containing Cr or Ti[J]. Journal of materials science,1993,28(21): 5887-5893.
    [10]DING W.F, XU J.H, SHEN et al. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy[J]. Materials Science and Engineering A,2006,430(1-2):301-306.
    [11]Ghosh A, Chattopadhyay A K. Experimental investigation on performance of touch-dressed single-layer brazed c-BN wheels[J]. International Journal of Machine Tools & Manufacture,2007,47 (7-8):1206-1213.
    [12]卢广林,汪春花,王毅,等.Ag基钎料钎焊立方氮化硼的焊接性与微观结构[J].吉林大学学报(工学版),2007,37(5):1088-1092.
    [13]于春娜.两步法高质量立方氮化硼薄膜的制备和掺杂研究[D].北京:北京工业大学,2003.
    [14]方虎啸.超硬材料基础与标准[M].北京:中国建材工业出版社,1998.
    [15]Zhongde Shi. Grinding with electroplated cubic boron nitride (c-BN) wheels[D]. University of Massachusetts Amherst,2004.
    [16]R. H. Wentorf. Cubic form of boron nitride [J]. Journal of Chemical Physics,1957,26: 956-957.
    [17]R H Wentorf JR. Synthesis of the cubic form of boron nitride[J]. The journal of chemical physics,1961,34(3):809-812.
    [18]T. Sato, T. Endo, S. Kashima, et al. Formation Mechanism of cBN Crystals under Isothermal Conditions in the System BN-Ca3B2N4[J]. Materials Science,1983,13: 3054-3062.
    [19]B P Singh, V L Solozhenko, G Will. On the low-pressure synthesis of cubic boron nitride [J]. Diamond and Related Materials,1995,4(10):1193-1195.
    [20]D. W. He, M. Akaishi, T. Tanaka. High pressure synthesis of cubic nitride from Si-hBN system[J]. Diamond and Related Materials,2001,10:1465-1469.
    [21]徐晓伟,赵红梅,范慧俐,等.用hBN合成cBN[J].北京科技大学学报,2001,23(4):337-339.
    [22]S. K. Singal, J. K. Park. Synthesis of Cubic Boron Nitride from Amorphous Boron Nitride Containing Oxide Impurity Using Mg-Al Alloy Catalyst Solvent[J]. Journal of Crystal Growth,2004,260:217-222.
    [23]Reinke S, Kuhr M, Kulisch W, et al. Recent results in cubic boron nitride deposition in light of the sputter model[J]. Diamond and Related Materials,1995,4(4):272-283.
    [24]Yoshida, Toyonobu. Vapour phase deposition of cubic boron nitride[J]. Diamond and Related Materials,1996,5(3-5):501-507.
    [25]K Chattopadhyay, A N Banerjee, S Kundoo. Reduced bias synthesis of cubic boron nitride thin films by magnetically enhanced inductively coupled radio-frequency plasma chemical vapor deposition[J]. Materials Letters,2003,57(8):1459-1463.
    [26]Guenter Reisse, Steffen Weissmantel, Dirk Rost. Stresses in pulsed laser deposited cubic boron nitride films[J]. Diamond and Related materials,2002,11(3):1276-1280.
    [27]M P Johansson, I Ivaoz, L Hultman, et al. Low-Temperature deposition of Cubic BN films by unbalanced direct current Magetron sputtering surfaceof B.C. target[J]. Journal of Vacuum Science& TechnologyA:Vaccum Surface and Films,1996,14(6):3100-3103.
    [28]M Murakawa, S Watanabe. The synthesis of cubic BN films using a hot cathode plasma discharge in a parallel magnetic field[J]. Surface and Coatings Technology,1990,43-44(1-5): 128-136.
    [29]D R McKenzie, D J H Cockayne, D A Muller, et al. Electron optical charachterization of cubic boron nitride thin film prepared by reactive ion plating[J]. Journal of Applied Physics, 1991,70:3007-3012.
    [30]H Luthje, K Bewilogua, S Daaud, et al. Preparation of cubic boron nitride films by use of electrically conductive boron carbide targets[J]. Thin Solid Films,1995,257(1):40-45.
    [31]J Hahn, M Friedrich, R Pintaske, et al. Cubic boron nitride films by D.C. and R.F. Ma-gnetron Sputtering:Layer characterization and process diagnostics[J]. Diamond and Related materials,1996,5(10):1103-1112.
    [32]Litvinov D, Taylor C A Ⅱ, Clarke R. Semiconducting cubic boron nitride[J]. Diamond and Related Materials,1998,7(2-5):360-364.
    [33]Zexian Cao. Stoichiometric c-BN films deposited by electron-cyclotron-wave-resonace plasma sputtering of hBN[J]. Diamond and Related Materials,2000,19(11):1881-1886.
    [34]P W Zhu, Y N Zhao, B Wang, et al. Prepared low stress cubic boron nitride film by physical vapor deposition[J]. Journal of Solid State Chemistry,2002,167(2,1):420-424.
    [35]S J Zhang, G H Chen, J X Deng, et al. c-BN Films grown by hot filament assisted microwave electron cyclotron resonance CVD[J]. Vacuum,2002,66(1):65-70.
    [36]Ye M, Delplancke-Ogletree M P. Formation of cubic boron nitride thin films using ECR plasma enhanced CVD[J]. Diamond and Related Materials,2000,9(7):1336-1341.
    [37]Ye M, Delplancke-Ogletree M P. Deposition of large-area, high-quality cubic boron nitride films by ECR-enhanced microwave-plasmaCVD[J]. Applied Physics A: MaterialsScience&Processing,2003,76(6):953-955.
    [38]Zhizhong Song, Fangqing Zhang, Yongping Guo, et al. Textured growth of cubic boron nitride film on nickel substrates [J]. Applied Physics Letters,1994,65(21):2669-2671.
    [39]W J Zhang, Matsumoto S. Influence of experiment parameters on the growth of c-BN films by bias-assisted direct currentjet plasma chemical vapor deposition [J]. Journal of Materials Research,2000,15(12):2677-2683.
    [40]X W Zhang, H G Boyen, N Deyneka, et al. Epitaxy of cubic boron nitride on (001)-oriented diamond[J]. Nature Materials,2003,2:312-315.
    [41]I. Bello, C. Y. Chan, W. J. Zhang, et al. Deposition of thick cubic boron nitride films:The route to practical applications [J]. Diamond and Related Materials,2005,14:1154-1162.
    [42]G L Doll, J A Sell, C A Tayor II, et al. Growth and characterization of epitaxial cubic boron nitride films on silicon[J]. Physical Review B(Condensed Matter and Materials),1991, 43(8):6816-6818.
    [43]S. Weissmantel, G. Reisse, B. Keiper, et al. Pulsed laser deposition and modification of cubic boron nitride films[J]. Appllied Surface Science,1998,127-129:444-450.
    [44]B. Angleraud, M. Cahoreau, I. Jauberteau, et al. Nitrogen ion beam-assisted pulsed laser deposition of boron nitride films[J]. Journal of Applied Physics,1998,83:3398-3403.
    [45]C Y Zhang, X L Zhong, J B Wang, et al. Room temperature growth of cubic boron nitride film by RF plasma enhanced pulsed laser deposition[J]. Chemical Physics letters,2003, 370(3-4):522-527.
    [46]Chopra N G, Luyken R J, Cherry K, et al. Boron nitride nanotubes[J]. Science,1995, 269(5229):966-967.
    [47]Meiyan Yu, Shouyi Dong, Kai Li, et al. Synthesis of BN nanocrystals under hydrothermal conditions [J]. Journal of Crystal Growth,2004,270(1-2,15):85-91.
    [48]Xiaopeng Hao, Shouyi Dong, Wei Fang, et al. A novel hydrothermal route to synthesize boron nitride nanocrystals[J]. Inorganic Chemistry Communications,2004,7(4):592-594.
    [49]Jun-Qing Hu, Qing-Yi Lu, Kai-Bin Tang, et al. Synthesis and characterization of nanocrystalline boron nitride[J]. Journal of Solid State Chemistry,1999,148(2):325-328.
    [50]X P Hao, D L Cui, X G. Xu, et al. A novel synthetic route to prepare cubic BN nanorods[J]. Materials Research Bulletin,2002,37(13):2085-2091.
    [51]Shouyi Dong, Xiaopeng Hao, Xiangang Xu, et al. The effect of reactants on the benzene thermal synthesis of BN[J]. Materials Letters,2004,58(22-23):2791-2794.
    [52]J B Wang. G W Yang, C Y Zhang, et al. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid-solid interfacial reaction[J]. Chemical Physicsics Letters,2003,367(1-2): 10-14.
    [53]J J Fu, Y N Lu, H Xu, et al. The synthesis of boron nitride nanotubes By an extended vapour-liquid-solid method[J]. Nanotechnology,2004,15(7):727-730.
    [54]刘一来.立方氮化硼(CBN)磨具在汽车零部件加工中的应用[J].MC工艺与装备,2004(7):64-70.
    [55]罗锡裕.超硬材料的发展[J].新材料产业,2000,9(8):35-38.
    [56]C Sugino, K Tanika, S Kawasaki, et al. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition[J]. Journal of Applied Physics,1997,36(4):2-9.
    [57]M Jin, S Watanabe, S Miyake, et al. Trial fabrication and cutting performance of c-BN-coated taps[J]. Surface and Coating Technology,2000,133-134:443-447.
    [58]Wenping Jiang, Abhijeet S More, W D Brown, et al. A cBN-TiN composite coating for carbide inserts:Coating characterization and its applications for finish hard turning [J]. Surface & Coating Technology,2006,201(6,4):2443-2449.
    [59]李和聪,张艳芳,刘元锋等.立方氮化硼内圆砂轮及其生产方法[P].中国专利,200510017802.4.
    [60]李和聪,张艳芳,刘元锋等.磨盘式立方氮化硼砂轮及其生产方法[P].中国专利,200510017803.9.
    [61]高冈秀充,田岛逸郎.带表面涂层的立方氮化硼基超高压烧结材料制切削工具[P].中国专利,申请号:200610169084.
    [62]李志宏,刘春久.立方氮化硼砂轮陶瓷结合剂[P].中国专利,申请号:200710057009.6.
    [63]邓希庆.用于立方氮化硼砂轮的陶瓷金属复合结合剂[P].中国专利,200710043981.8.
    [64]余舜.CBN砂轮用微晶玻璃结合剂的研究[D].湖南:湖南大学,2004.
    [65]A Hara, S Yazu. Sintered cutting tool and manufacturing process[P]. Japanese Patent Applied. No.21633,1979.
    [66]李宏志,袁启明,杨正方.陶瓷结合立方氮化硼磨削工具材料制备研究[J].复合材料学报,2003,20(5):39-43.
    [67]青木清之,茶山达志.金属粘结剂砂轮[P].中国专利:200410031285.1.
    [68]Geise T L. Grinding it green[J]. Tooling & Production,1999,65(9):58-59.
    [69]Jackson M J. Davis C J. Hitchiner M P. et al. High-speed grinding with c-BN grinding wheels-applications and future technology[J]. Journal of Materials processing Technology, 2001,110(1):78-88.
    [70]Vernon Maurice Ride.燃气轮机叶片[P].日本专利:4-218698.
    [71]John Foster.涡轮机叶片上的磨削芯片的制造方法[P].日本专利:8-506872.
    [72]Safu Burusotamu允许变形陶瓷涂层[P].日本专利:11-222661.
    [73]Melvin Fureringu燃气轮机发动机的密封构造[P].日本专利:11-229810.
    [74]铃木和彦.关于涡轮机动翼顶端耐磨层的成型方法[P].日本专利:10-30403.
    [75]Song Fanghong, Chen Ming, Xu Hongjun, et al. Experimental research on slotted and perforated electroplated cbn grinding wheel with radical JET[J]. Transactions of Nanjing University of Aeronautics & Astronautics,1999,16(2):154-159.
    [76]杜彦龙. Trenker公司推出生产大规格金刚石/cbn电镀砂轮的新概念设备[J].金刚石与磨料磨具工程,2005,149(5):79-80.
    [77]Carlus A C. Using c-BN Abrasives[J]. Tooling and Production,2000,66(9):45-49.
    [78]X Y Wang, Y B Wu, J Wang, et al. Absorbed energy in laser truing of a small vitrified c-BN grinding wheel [J]. Journal of Materials Processing Technology,2005,164-165(15): 1128-1133.
    [79]A.K.Chattopadhyay, H.E.Hintermann. On brazing of cubic boron nitride abrasive crystals to steel subatrate with alloys containing Cr or Ti[J]. Journal of materials science,1993,28: 5887-5893.
    [80]E.Benko, E.Bielanska, V.M.Pereverteilo, et al. Formation peculiarites of the interfacial structure during cBN wetting with Ag-Ti, Ag-Zr and Ag-Hf alloys [J]. Diamond and Related Materials,1997,6:931-934.
    [81]Pobol I L, Shipko A A, Nesteruk I G. Investigation of contact phenomena at cubic boron nitride filler metal interface during electron beam brazing[J]. Diamond and Related materials, 1997,6(8):1067-1070.
    [82]Jan Felba, Kazimierz P, Friedel, et al. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools[J]. Vacuum,2001,62(2-30):171-180.
    [83]E·J·奥里斯,A-S·小盖茨,K·R-雷纳,W-M-亚历山大四世,等.具有钎焊超硬刀坯的无涂层刀具[P].中国专利,申请号:200480016842.0.
    [84]肖冰,徐鸿钧,武志斌,等.AgCuTi合金钎焊单层c-BN砂轮[J].焊接学报,2002,23(2):29-32.
    [85]丁文峰,徐九华,卢金斌,等.高温钎焊c-BN界面微结构[J].焊接学报,2005,25(5):29-32.
    [86]王乾,薛茂权,董笑瑜.立方氮化硼钎焊制备磨粒砂轮的工艺及性能研究[J].硬质合金,2005,22(4):216-220.
    [87]汪春花.钎焊立方氮化硼的焊接性与微观结构[D].长春:吉林大学,2006,6.
    [88]任露泉,卢广林,邱小明,等.制备立方氮化硼复合材料的方法[P].中国专利,200610016981.4.
    [89]王毅,邱小明,卢广林,等. CuNiSnTi钎料钎焊立方氮化硼的焊接性与微观结构[J].稀有金属材料与工程,2007,36(S3):343-346.
    [90]王毅,邱小明,卢广林,等.多元铜基活性钎料对c-BN的润湿性与微观组织[J].焊接学报,2009,30(2):133-136.
    [91]王毅,卢广林,殷世强,等. Cu-Ni-Sn-Ti活性钎料成分设计与优化[J].吉林大学(工学版),2009,39(3):615-618.
    [92]王毅,殷世强,李世权,等.真空钎焊立方氮化硼的BCu78-81Ni5-6SnTi系活性钎料研究[J].中国有色金属学报.
    [93]陈佳洱等编写.等离子体物理学[M].北京:科学出版社,1994,第一版:14-15.
    [94]白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-222.
    [95]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,12(2):129-133.
    [96]张久兴,刘科高,周美玲,等.放电等离子烧结技术的发展与应用[J].粉末冶金技术,2002,20(3):129-134.
    [97]Nygren M, Shen Zhijian. Present and Future SPS Activities in Sweden and Europe[C]. NEDO International Symposium on Functionally Graded Materials, Mielparque, Tokyo, Japan, October 21-22,1999,115.
    [98]罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业,2001,11(6):7-16.
    [99]李敬锋,赵立东,张波萍,等.一种细晶择优取向Bi2Te3热电材料的制备方法[P].中国专利,200710175308.X.
    [100]李敬锋,张怀全.金属材料和陶瓷材料对称梯度复合材料的制备方法[P].中国专利,200610089765.2.
    [101]曲选辉,李平,安富强,等.用放电等离子烧结技术制备储氢合金的方法[P].中国专利,200610113072.2.
    [102]李敬锋,刘玮书,张波萍,等.一种Ag纳米颗粒复合CoSb3基热电材料的制备方法[P].中国专利,申请号:200810119809.0.
    [103]Venkateswaran T, Basu B, Raju G B, et al. Densification and properties of transition metal borides-based cermets via spark plasma sintering[J]. J of the European Ceramic Society,2006,26:2431-2440.
    [104]Nishimura T, Mitimo M, Hirotsuru H, et al. Fabrication of silicon nitride nano-ceramics by spark plasma sintering[J]. J of Materials Science Letter,1995,14:1046-1047.
    [105]张厚兴,黄勇,李海峰,等.制备高纯致密MgAlON陶瓷的方法及MgAlON陶瓷[P].中国专利,申请号:200510035304.2.
    [106]刘志光,张玉梅,陈玉勇.钛/羟基磷灰石生物复合材料及其制备方法[P].中国专利,申请号:200710072599.X.
    [107]王秀芬,周曦亚.放电等离子烧结技术[J].中国陶瓷,2006,42(7):14-16.
    [108]张立学,金志浩,宫本钦生.金刚石颗粒弥散WC-Co复合物的烧结及其韧化[J].复合材料学报,2004,21(1):51-55.
    [109]沈志坚.SPS一种制备高性能材料的新技术.材料导报[J],2000,14(1):67-68.
    [110]Kojima Akinori.Soft magnetic properties of bulk nanocrystalline Fego Zr7B3 alloys consolidated by spark plasma sintering[J]. Funtai Oyobi Fummasu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy,1996,43(5):613-618.
    [111]Kim Y D, Chung J Y, Kim J, et al. Formation of nanocrystalline Fe-Co powders produced by mechanical alloying[J]. Materials Science and Engineering,2000, A291:17-21.
    [112]Chae J H, Kim K H, Choa Y H, et al. Microstructural evolution of Al2O3-SiC nanocomposites during spark plasma sintering[J]. J of Alloys and Compounds,2006,413: 259-264.
    [113]宋晓艳,卢年端,张久兴,等.单相Sm2Co17纳米晶块体材料的制备方法[P].中国专利,申请号:200810114676.8.
    [114]张久兴,周身林,刘丹敏.一种高纯高致密多晶CeB6块体阴极材料的制备方法[P].中国专利,申请号:200810225028.X.
    [115]张久兴,周身林,包黎红,等.一种多元稀土硼化物(CexBa1-x) B6及其制备方法[P].中国专利,申请号:200810239386.6.
    [116]Masao Tokita. Trends in Advanced SPS Systems and FGM Technology[C]. NEDO International Symposium on Functionally GradedMaterials, Mielparque, Tokyo, Japan, October 21-22,1999:23-33.
    [117]甄汉生.离子体加工技术[M].北京:清华大学出版社,1990.
    [118]Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Materials Science and Engineering,2002, B90:34-37.
    [119]S. W. Wang, L. D. Chen, Y. S. Kang, et al. Effect of plasma activated sintering (PAS) parameters on densification of copper powder[J]. Materials Research Bulletin,2000,35: 619-628.
    [120]S. W. Wang, L. D. Chen, T. Hirai. Densification of Al2O3 powder using spark plasma sintering[J]. Journal of Materials Research,2000,15:982-987.
    [121]崔福斋,郑传林.仿生材料[M].北京:化学工业出版社,2004,5.
    [122]王立铎,孙文珍,梁彤翔,等.仿生材料的研究现状[J].材料工程,1996,2:3-5.
    [123]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展.材料研究学报,2003,17(4):337-343.
    [124]Clegg W J, Kendall K, Alford N M. A simple way to make tough ceramics[J]. Nature, 1990,347(10):445-447.
    [125]M.Saridaya, K.E.Gunnison, M.Yaserb, et al. Seashells as a natural model to study laminated composites[J]. Lancaster,1990,176.
    [126]Zhang Yong li. Affsction of Si impregante behavior to the Si-Al systerm[J]. Materials Science and Engineering,1994,4:12-16.
    [127]黄勇,汪长安,昝青峰,等.高韧性复相陶瓷材料的仿生结构设计、制备与力学性能[J].成都大学学报(自然科学版),2002,21(3):1-7.
    [128]Katti Kalpana S, Katti Dinesh R. Why is nacre so tough and strong[J]. Materials Science and Engineering,2006,26(8):1317-1324.
    [129]马和中编著.生物力学导论[M].北京:北京航空学院出版社,1986,12:133.
    [130]田晓滨,赵晓鹏,周本濂.短纤维增强复合材料的仿生模型—Ⅰ哑铃状短纤维增强复合材料的应力分析[J].金属学报,1994,30(4):B180-186.
    [131]白朔,成会明,苏革,等.哑铃形碳化硅晶须的微观结构分析[J].材料研究学报,2002,14(5):469—474.
    [132]赵晓鹏,田晓滨,周本濂,等.短纤维增强复合材料的仿生模型—Ⅱ弱结合界面的强度理论[J].金属学报,1994,30(4):B187-193.
    [133]Bai Shuo, Cheng Huiming, Zhou Benlian, et al. PVC composite reinforced by dumbbell-Shaped biomimetic SiC whiskers[J]. Chinese Journal of Materials Research,2002, 16(2):121-126.
    [134]白朔,成会明,苏革,等.哑铃形碳化硅晶须生长的机理[J].材料研究学报,2002,16(2):136—140.
    [135]胡巧玲,钱秀珍,李保强,等.原位沉析法制备壳聚糖棒材的研究[J].高等学校化学学报,2003,24(3):528—531.
    [136]胡巧玲,钱秀珍.三维壳聚糖医用材料的制备方法[P].中国专利,01139076.X.
    [137]曹慧娟.植物学(第2版)[M].北京:中国林业出版社,2002,1:98.
    [138]SUN Shoujin, Zhang Mingda. Carbon fibre electroplated by Cu-Ni duplex coating and its composite[J]. Acta Metallurgica Sinica,1990,26(6):433-437.
    [139]马建峰,陈五一,赵岭,等.基于竹子微观结构的柱状结构仿生设计[J].机械设计,2008,25(12):50-52.
    [140]汪玉松,邹思湘,张玉静.动物生物化学[M].北京:高等教育出版社,2005:1-15.
    [141]Jackson AP, Vincent JFV, Turner RM. The mechanical design of nacre [C] Proceedings of the royal society of London. Series B,1998,234:415-440.
    [142]蓝伟明,汪久根,李兴林.整合涂层的仿生设计及其性能[M].浙江大学学报(工学版)2002,36(1):78-82.
    [143]任耀威.真空钎焊技术[M].北京:中国工业出版社,1993,8.
    [144]虞觉奇,易文质,陈邦迪,等.二元合金状态图集[M].上海:上海科学技术出版社,1987,10.
    [145]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,1999.
    [146]邹僖主编.钎焊[M].北京:机械工业出版社,1991,10.
    [147]杜彦龙. Trenker公司推出生产大规格金刚石/c-BN电镀砂轮的新概念设备[J].金刚石与磨料磨具工程,2005,149(5):79-80.
    [148]Jose Lemus, Robin A L Drew. Joining of silicon nitride with a titanium foil interlayer[J]. Materials Science and Engineering A,2003,352(1-2):169-173.
    [149]M Brochu, M D Pugh, R A Ldrew. Joining silicon nitride ceramic using a composite powder as active brazing alloy[J] Materials Science and Engineering A,2004,374(1-2): 34-42.
    [150]王毅,卢广林,殷世强,等.Cu-Ni-Sn-Ti活性钎料成分设计与优化[J].吉林大学(工学版),2009,39(3):615-618.
    [151]任露泉.试验优化设计与分析(第二版)[M].北京:高等教育出版社,2003.
    [152]关颖男.混料试验设计[M].上海:上海科学技术出版社,1990.
    [153]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [154]Faran Eilon, Gotman Irena, Gutmanas Elazar Y. Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface[J]. Materials Science and Engineering A,2000, 288(1):66-74.
    [155]魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996.
    [156]陈念贻.键参数函数及其应用[M].北京:科学出版社,1976.
    [157]方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [158]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学,2007.
    [159]铁木辛柯,古迪尔著,徐芝纶译.弹性力学[M].北京:高等教育出版社,1990.
    [160]徐芝纶.弹性力学(上册)[M].北京:高等教育出版社,2006.
    [161]贾宝华.放电等离子烧结技术制备c-BN/Cu基复合材料的研究.[D].长春:吉林大学,2008,6.
    [162]万隆,陈石林,刘小磐,等.超硬材料与工具[M].北京:化学工业出版社,2006.
    [163]伦幸杰.放电等离子烧结制备c-BN/Cu基复合材料的组织与性能.[D].长春:吉林大学,2009,6.
    [164]刘勇,康立山,陈毓屏,等.非数值并行算法—遗传算法[M].北京:科学出版社,1995.
    [165]徐德生.仿生非光滑耐磨复合涂层的研究[D].长春:吉林大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700