车路协同实验测试系统及安全控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通系统是一个典型的复杂巨系统,依靠传统的交通管理方式,单从道路和车辆的角度考虑,很难解决近年来不断恶化的交通拥堵、事故频发、环境污染等问题。基于车车、车路信息交互建立人、车、路一体的交通运输系统,对提高交通运输系统的效率和安全性,实现交通系统的可持续性发展具有十分重要的意义。安全是交通的焦点问题,交通安全始终是ITS的关注点。车路协同系统是基于先进的传感和无线通讯等技术的,能够实现车车、车路动态实时信息交互,完成全时空动态交通信息采集和融合,从而保障在复杂交通环境下车辆行驶安全、实现道路交通主动控制、提高路网运行效率的新一代智能交通系统。虽然我国在交通安全领域进行了广泛而深入的研究,取得了一系列研究成果,有效改善了我国交通安全状况,但在信息不完备的情况下,这些技术未能全面解决我国的交通运输安全问题。开展智能车路协同关键技术研究,有利于为改善我国交通安全状态提供技术储备。
     本文首先对车路协同系统国内外研究现状和发展趋势进行了分析,提出了车路协同系统技术体系框架,包括车路/车车通信技术、智能车载系统技术、智能路侧系统技术。分析了其中的车路/车车通信技术、车辆运动状态获取技术、车辆定位信息获取技术、行车环境信息感知技术、行车危险性分析技术、行车安全预警与车辆运动状态控制技术、交通流状态检测技术、非机动车及行人检测技术、路面状态及气候环境检测技术、交叉口信息化控制技术、通行安全警示技术、动态交通诱导技术。
     车路协同系统目前尚处于功能定义及实验测试阶段,本文分析了车路协同测试系统关键装备及技术,包括基于车载激光雷达、基于声纳传感器的车辆主动避撞系统、实现车辆沿给定的路径快速平稳地行驶的车载红外光电传感器系统、用于汽车防撞、道路环境感知的车载CCD摄像系统、车载总线协议及车载网关系统、专用短程通信协议(DSRC)。在上述车载环境感知及信息传输技术分析的基础上,构建了车载环境感知实验车,通过实验测试了基于CCD摄像机的道路环境感灰度值提取方法。车路系统系统中智能路侧系统的主要作用是检测道路上车辆的行驶状态,掌握道路上的交通状况,为车路协同系统中各种控制功能提供基础数据和信息。文中重点分析了路侧视频检测技术、路侧红外检测技术、基于地感线圈的车流量检测技术、射频识别RFID技术。在上述智能路侧技术分析的基础上,构建了基于红外探测器、WiFi车载警示模块、无线警示平组成的行人安全警示系统。基于Zigbee网络构建了车车协同控制测试平台。
     在车路协同环境下,针对危险路段的主动危险警示方法能否有效地避免和减少交通事故。本文重点研究危险路段的分析方法,提出了基于自适应谐振理论的道路安全评价分析方法以判断黑点区域,分析了弯道车速预警方法,包括:弯道建模方法,基于超声波、微波、激光、等技术的弯道半径测量方法,弯道最大安全车速计算方法;提出了基于车路无线通信的警示信息的广播算法,确保驾驶员驶入陡坡、弯道、黑点区域前,分析得出当前道路的最大允许速度,并通过车路通信预警的方式使驾驶员及时降低行车速度,降低危险路段交通事故发生率。
     车路协同系统中无线通信、GPS定位、传感器等技术为车队安全巡航提供了有利条件。车辆间位置、状态描述是车队巡航控制的基础,本文提出了基于图论的信息交互图方法,建立了车路协同系统中网络拓扑结构动态图,采用人工势场函数建立基于势场函数的协同避撞方法和编队控制模式;通过对信息交互图中信息路由算法的分析,采用分簇方法建立了以车辆位置和行驶方向为主要因素的信息交互算法。
Transport system is a typical complex giant system.Relying on traditional traffic management from the perspective of roads and vehicles, it is difficult to resolve worsening traffic congestion, accidents, environmental pollutionin recent years. The establishment of transport system integration of people, vehicles and road is based on information exchange between car-car and vehicle-road, which is very important to improve efficiency and security, to achieve sustainable development of transport system. Cooperative vehicle infrastructure system has become the forefront of technology and research focus in the field of Intelligent Transportation System (ITS).Naturally, security is the focus of traffic, traffic safety is always the focus of intelligent transportation system. With the support of science and technology, new construction, operation and management has been establishd. VII system based on advanced sensing and wireless communication technologies, has achieved car-car and vehicle-road real-time information exchange, completed the entire space-time dynamic traffic information collection and integration,which is coming to the new generation of intelligent transportation systems for protecting the safe environment in a complex vehicle traffic, achieving active control of road traffic, and improving network efficiency. Although China has conducted an extensive and thorough research in the field of traffic safety, gained a series of research results, and improved traffic safety situation, without complete information, these technologies can't solve the entire problems of transportation safety. Accordingly, developping intelligent key technology of VII will help us to improve traffic safety condition and supply technical reserves.
     This paper analyzed the domestic and overseas current research status and the development trend in the field of Vehicle Infrastructure Integration (VII) system. First the whole cooperative vehicle infrastructure system's technology architecture is put forward. Which including vehicle to vehicle/infrastructure wireless communication technology, vehicle movement state information collection technology, vehicle location information collection technology, vehicle surroundings sensing technology, traffic risk analysis, road safety warning and vehicle movement state control, traffic flow detection technology, non-motor vehicle and pedestrian detection, road condition and climate detection, traffic signal control information at intersection, passing safety caution technology, dynamic route guidance technology.
     The the VII testing system equitments and technology are presented, including on-board Laser Radar, active collision avoidance system based on sonar sensors, on-board infrared sensor system making vehicles travel fast and smoothly along the given route, on-board CCD camera video technology used in vehicle collision prevention and road condition perception, car-bus protocol, on-board gateway system realizing the transformation between the internet protocol and car-bus protocol, Dedicated Short Range Communication (DSRC). Based on on-board condition perception and information transmitting technology, we established a dynamic, road condition perception research plant with a realistic vehicle, testing the method extracting the gray value of road and outboard environment by experiments. The intelligent road-side system inⅦsystem, has a primary role in checking the vehicles'travelling condition, keeping watch over the real-time traffic situation, and providing basic data and information for variety of controlling functions inⅦsystem. The emphasis analyzed in this paper includes, a road-side video detection technology, road-side infrared detection system, traffic volume detection system based on induction coils, Radio Frequency Identification (RFID). Based on the analysis above, we set up a pedestrian security warning system, which is on the basic of infrared detectors, on-board WiFi modules and wireless warning screen. The vehicle to vehicle control testing bed based on Zigbee networks.
     In the condition of cooperative vehicle and infrastructure system, this thesis researches an efficiency method that detects a dangerous section in order to validate the active warning method can effectively avoid and reduce traffic accidents in dangerous sections. Evaluation method of road safety based on the adaptive resonance theory is proposed to explore black spots. The curve speed warning methods are discussed, including curve modeling method, curve radius measurement method based on ultrasonic, microwave, laser, infrared, GPS and other technology, the calculation method of curve maximum safety speed. Vehicular warning information broadcasting scheme based on vehicle to infrastructure wireless communication is proposed to ensure that the maximum allowable speed of the current road can be calculated and alert the driver to decelerate through vehicle to infrastructure wireless communication before the vehicle is running in the entry of curve, so that the road traffic accidents rate on curve will be reduced enormously.
     The wireless communication technology, GPS navigation, sensor technology in cooperative vehicle and infrastructure system provides the efficient method for vehicle safety cruising. Vehicle position, state descriptin is the base of vehicle cruising control; this thesis put forward the information exchange graph method based on graph theory. The dynamic topology graph is built for cooperative vehicle and infrastructure system, and the artificial potential field function is used to build the cooperative collision avoidance method and the formation control model. Through the analysising of the routing mehod of information exchange graph, taking into account the vehicle's position and moving direction, an information transmitti ng method based on clustering method is proposed.
引文
[1]Shladover S.E., Tan S.W. Analysis of vehicle position accuracy requirements for communication-based cooperative collision warning. Journal of Intelligent Transportation System,2006,10(3):131-140
    [2]Farradyne P.B. Vehicle infrastructure integration:VII architecture and functional requirements, Version 1.1. ITS Joint Program Office, US Department of Transportation. July 20th,2005.
    [3]Li F., Wang Y. Routing in vehicular ad hoc networks:A survey. IEEE Vehicular Technology Magazine,2007,2(2):12-22.
    [4]Mauve M., Widmer J., Hartenstein H. A survey on position-based routing in mobile ad-hoc networks. IEEE Network,2001,15(6):30-39.
    [5]Ding Y., Wang C., Xiao L. A static-node assisted adaptive routing protocol in vehicular networks. Proceedings of the ACM International Workshop on Vehicular Ad Hoc Networks, Montreal, Canada, September 2007.
    [6]Zhang M., Wolff R. Routing protocols for vehicular ad hoc networks in rural areas. IEEE Communications Magazine,2008,46(11):126-131.
    [7]Namboodiri V., Gao L. Prediction-based routing for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,2007,56(4):2332-2345.
    [8]Abedi O., Fathy M., Taghiloo J. Enhancing aodv routing protocol using mobility parameters in vanet. Proceedings of the IEEE/ACS International Conference on Computer Systems and Applications, Doha, Qatar, April 2008.
    [9]Taleb T., Sakhaee E., Jamalipour A., Hashimoto K., Kato N., Nemoto Y. A stable routing protocol to support its services in vanet networks. IEEE Transactions on Vehicular Technology,2007,56(6):3337-3347.
    [10]Taleb T., Ochi M., Jamalipour A., Kato N., Nemoto Y. An efficient vehicle-heading based routing protocol for vanet networks. Proceedings of the IEEE Wireless Communications and Networking Conference, Las Vegas, NV, April 2006.
    [11]Granelli F., Boato G., Kliazovich D. Mora:a movement-based routing algorithm for vehicle ad hoc networks. Proceedings of the IEEE Workshop on Automotive Networking and Applications, December 2006.
    [12]Menouar H., Lenardi M., Filali F. Movement prediction-based routing (mopr) concept for position-based routing in vehicular networks. Proceedings of the IEEE Vehicular Technology Conference, Baltimore, MD, September/October 2007.
    [13]Tian J., Han L., Rothermel K. Urban multi-hop broadcast protocol for inter-vehicle communication systems. Proceedings of the ACM international Workshop on Vehicular Ad Hoc Networks, Philadelphia, PA, October 2004.
    [14]Naumov V., Gross T. Connectivity-aware routing (car) in vehicular ad-hoc networks. Proceedings of the IEEE International Conference on Computer Communications, Anchorage, Alaska, May 2007.
    [15]Jerbi M., Senouc i S., Meraihi R., Ghamri-Doudane Y. An improved vehicular ad hoc routing protocol for city environments. Proceedings of the IEEE International Conference on Communications, Glasgow, Scotland, June 2007.
    [16]Amanna A. Overview of IntelliDrive and Vehicle Infrastructure Integration (Ⅶ),2009, Virginiatech Transportation Institute.
    [17]Row S., Schagrin M., Briggs V. The Future of VII, US Department of Transportation, 2008.
    [18]ITS Joint Program Office, Achieving the Vision:From VII to IntelliDrive POLICY WHITE PAPER,2010.
    [19]Research and Innovative Technology Administration ITS Joint Program Office,IntelliDriveSM Governance Needs Summary A Summarization of Research from 2004-2009,2009.
    [20]Hyunseo Oh, Chungil Yae, Donghyon Ahn.5.8 GHz DSRC Packet Communication System for ITS Services,Vehicular Technology Conference,1999, Volume 4:2223-2227.
    [21]Fan Bai, Hariharan Krishnan. Reliability analysis of DSRC wireless communication for vehicle safety applications. Proceedings of the IEEE Intelligent Transportation Systems Conference,2006, pp.355-362.
    [22]Ekram Hossain, Garland Chow, Victor C.M. Leung, Robert D. McLeod, Jelena Mimics, Vincent W.S. Wongc, Oliver Yang, Vehicular telematics over heterogeneous wireless networks:A survey. Computer Communications,2010,33(7):775-793.
    [23]Dailey J. Improved Positioning for Fleet Management and Traveler Information. Transportation Northwest Report,2008.
    [24]Wani K. The Fourth Phase of Advanced Safety Vehicle Project, ITS World Congress London,2006.
    [25]Makino H. Smartway Project Cooperative Vehicle Highway Systems, TRB annual meeting,2006.
    [26]Arino M. ITS Policy in Japan and Smartway, ITS Policy and Program Office,2007.
    [27]Tomizuka A. Advanced Vehicle Control System Research for Automated Highway Systems in California PATH. Proceedings of the Vehicle Navigation&Information Systems Conference,1994.
    [28]Bishop R. Intelligent Vehicle Application Worldwide. IEEE Intell-igent Systems,2000.
    [29]Chen, X., Lu, M., Zhang, D., Chi, R., Wang, J. Integrated safety speed model for curved roads. In Proceedings:FISITA World Automotive Congress,2010.
    [30]Wang, J., Zhang, D., Liu, J., Lu, M., Li, K. Multi-objective driving assistance system for intersection support. Proceedings of the 13th International IEEE Conference on ITS,2010.
    [31]Liu, J., Wang, J., Li, S., Lu, M., Li, K. Algorithm of intersection traffic light assistance based on i2v and simulation. Proceedings of the 17th World Congress on ITS,2010.
    [32]Park S J, Kim T Y, Kang S M, et al. A novel signal processing technique for vehicle detection radar. IEEE MTT-S International Microwave Symposium Digest. Philadelphia, PA, USA:IEEE Press,2003:607-610.
    [33]Siegel M, MacLachlan R. Radar obstacle detection:Finding moving targets in noisy range data. Conference Record-IEEE Instrumentation and Measurement Technology Conference. Anchorage, AK, USA:IEEE Press,2002:145-150.
    [34]张奇,顾伟康.激光测距雷达距离图障碍物实时检测算法研究及误差分析.机器人,1997,19(2):122-128.
    [35]Nelson B N. Automatic vehicle detection in infrared imagery using a fuzzy inference-based classification system. IEEE Transactions on Fuzzy Systems,2001,9(1):53-61.
    [36]Kagesawa M, Ueno S, Ikeuchi K, et al. Local-feature based vehicle recognition in infra-red images using parallel vision board. Proceedings of IEEE International Conference on Intelligent Robots and Systems. Kyongju, Korea:IEEE Press,1999:1828-1833.
    [37]Andreone L, Antonello P C, Bertozzi M, et al. Vehicle detection and localization in infra-red images. Proceedings of IEEE 5th International Conference on Intelligent Transportation Systems. Singapore:IEEE Press,2002:141-146.
    [38]赵英男,杨静宇.基于Gabor滤波器和SVM分类器的红外车辆检测.计算机工程,2005,31(10):191-192.
    [39]Keat C T M, Pradalier C, Laugier C. Vehicle detection and car park mapping using laser scanner. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada:IEEE Press,2005:2054-2060.
    [40]郭磊,基于机器视觉的智能汽车行驶环境感知系统,博士学位论文,清华大学,2007.
    [41]施维颖,赵敏华.信息融合在辅助驾驶系统中的应用.现代电子技术,2003(17):84-86.
    [42]侯德藻,李克强,连小珉等.新型车载探测雷达系统技术研究.中国机械工程第15卷第21期:1891-1894.
    [43]陈余庆.多移动机器人的协作运动控制研究.大连理工大学博士论文,2006.
    [44]SICK AG Auto Ident Technical description LMS 200 laer measurement system. Germany:SICK AG Auto Ident.2000.
    [45]石振东,吕科,喻清洲,欧阳雷,曾星星.基于红外路径识别的智能车控制系统设计.湖北汽车工业学院学报第21卷第3期:11-14.
    [46]翁卓,熊承义,李丹婷.基于光电传感器的智能车控制系统设计计算机测量与控制2010年第18期:1789-1791.
    [47]王珂,郭显久,庄严,王伟.基于单目视觉的RoboCup全自主移动机器人定位研究.第五届全球智能控制与自动化大会.中国杭州,2004:4797-4801.
    [48]符海华.浅谈汽车车载CAN网络技术,高校教育研究,2009年第9期:166-169.
    [49]郐文博.IPv6_CAN车载网关的设计与实现,吉林大学硕士论文,2008.
    [50]李燕宁,鲍芳,邱雪琼,马青亮. CAN现场总线的嵌入式网关设计,仪表技术与传感器,2006.
    [51]曲良东,刘衍珩,魏达,郐文博.由车载网关实现车载信息与互联网的通信,仪器仪表学报,第29卷第11期:2330-2334.
    [52]刘利频,徐建闽,陈欢.DSRC技术在ITS服务领域的应用,广东公路交通,2004年第3期:45-48.
    [53]赵博,张蔚波.ITS智能交通中的DSRC技术,信息技术综述与展望,山东电子,2004年第3期:4-6.
    [54]刘富强,孙斌,王新红.基于DSRC的车载通信平台设计.今日电子,2009年9月:51-53.
    [55]张立学.基于WiFi的车载信息服务器研究与设计.国防科学技术大学硕士学位论文,2008.
    [56]王志鹏,王建.基于GPS/CDMA的智能车载终端开发研究,2007中国汽车工程学会年会论文集:1052-1056.
    [57]费悦牧,荆涛,李兴华,张思东.CDMA网络智能车载导航终端的优化设计,单片机与嵌入式系统应用,2005年第4期:14-17.
    [58]李艳军.智能交通疏导系统中新型3G车载移动终端的研究及实现.南京邮电大学硕士学位论文,2010年.
    [59]M Tomizuka. Automated highway systems—an intelligent transportation system for the next century. IEEE International Symposium on Industrial Electronics 1997,1:1-4.
    [60]E D Dickmanns. Computer vision and highway automation. Vehicle System Dynamics 1 999,31(5):325-344.
    [61]丁有进.浅谈视频检测在高速公路信息采集领域的发展与应用.技术与产品,2004.
    [62]杨广华.一种基于图像处理的交通监控系统,北方工业大学,2005.
    [63]丁艳,赵一帆.运动目标的检测技术研究,光学技术,2002(7):311-312.
    [64]范勇,游志胜.一种快速运动目标检测与跟踪算法.成都:光电工程.2000(12):30-33.
    [65]刘亚,爱海舟.一种基于背景模型的运动目标检测与跟踪算法,信息与控制,2002(8):315-319.
    [66]杨朋.面向智能交通系统的图像处理.计算机工程与应用,2001(9):4-7.
    [67]P G Michalopoulos. Vehicle detection video through image processing:the Autoscope system. IEEE Trans on Vehicular Technology 1991,40(1):21-29.
    [68]隋晔,马钺.交通监控系统中运动目标分类和跟踪研究.信息与控制.2003(2):61-64.
    [69]张根耀,李竹林.遮挡情况下运动目标的跟踪.安徽大学学报(自然科学版).2003(9):30-34.
    [70]明英,边馥苓,对光照.阴影和反光具有鲁棒性的变化检测算法及实现.计算机工程与应用,2003(24):23-26.
    [71]R Cucchiara, C Grana, M Piccardi, A Prati. Detecting Moving Objects, Ghosts and Shadows in Video Streams, in IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
    [72]笑梅,张朝晖.智能标签技术及其应用.金卡工程,2004,5:43-46.
    [73]Flor T.,Niess W.and Vogler G. RFID:The Integration Of Contactless Identification Technology And Mobile Computing. Proceedings of 7th International Conference on Telecommunications(ConTEL 2003),2003,6:619-623.
    [74]Chen H., Chou P.B. Sastry Duri, Jeffery G. Elliott, Johnathan M. Reason, Danny C. Wong. A Model—Driven Approach to RFID Application Programming and Infrastructure Management. Proceedings of the 2005 IEEE International Conference on e-Business Engineering(ICEBE'05),2005.
    [75]Raza N., Bradshaw V., Hague M. Applications of RFID Technology. IEE Colloquium on RFID Technology,1999.
    [76]Turtle J.R. Traditional and Emerging Technologies and Applications in the Radio Frequency Identification(RFID)Industry,1997 IEEE Radio Frequency Integrated Circuits Symposium,1997, pp.5-8.
    [77]Yang G. Trust and Radio Frequency Identification(RFID)Adoption within an Alliance. Proceedings of the 38th Hawaii International Conference on System Sciences, 2005,pp.1-10.
    [78]Quaadgras A. Who joins the Platform? The Case of the RFID Business Ecosystem. Proceedings of the 38th Hawaii International Conference on System Sciences,2005, pp.1-10.
    [79]李希.中国电子标签前景广阔.金卡工程,2004,6-11.
    [80]Flor T., lqiess W., Vogler G. RFID:the Integration of Contactless Identification Technology and Mobile Computing, Proceedings of the 7th International Conference on Telecomm,2003, pp.619-623.
    [81]项志宇.针对越野自主导航的障碍物检测系统.东南大学学报:自然科学版,2005, 35:71-74.
    [82]Zhu W.P., Wang D., Sheng H.Y. Mobile RFID Technology for Improving M—Commerce. Proceedings of the 2005 IEEE International Conference on e-Business Engineering,2005.
    [83]张永,贺少柳.RFID在智能交通中的应用及设想.黑龙江交通科技,2010年第九期:241-242.
    [84]李毅,李红波.基于RFID技术的车辆综合自动管理系统的设计研究.《微计算机信息》(嵌入式与SOC)2005年第21卷:153-154.
    [85]肖志红,官宗琪.高速公路不停车收费系统的研究与开发.计算机与信息技术,2007,3.
    [86]宇仁德,石鹏,刘芳.基于模糊理论的交通安全评价方法的研究.数学的实践与认识,2008,38(7):109-116.
    [87]范翔.基于灰色关联度的多极模糊综合评价模型在道路安全评价中的应用.公路,2005,(9):137-138.
    [88]李文波,王力强,杨猛,席建锋,李华成.基于灰色聚类的高等级公路安全评价方法.交通科技与经济,2007,9(2):91-93.
    [89]牛会永.基于灰色理论的城市道路交通安全评价研究.中国安全科学学报,2005,15(9):92-95.
    [90]邹胜勇,杨天军.一种道路交通安全神经网络评价模型的构建.人类工效学,2007,13(1):25-27.
    [91]陈笛.BP神经网络在北京道路安全评价中的应用. 中国水运,2006,6(12):107-109.
    [92]焦锋利.人工神经网络在道路交通安全评价中的应用研究[J].公路与汽运,2009,(4):55-58.
    [93]张巍.基于BP神经网络的道路安全评价研究.西安:长安大学,2006.
    [94]潘艳荣,翟长旭,朱顺应.基于灰色聚类理论和人工神经网络技术的道路交通安全评价.重庆交通学院学报,2005,24(2):101-105.
    [95]彭军龙,张起森,张学民.基于集成法的道路交通安全评价.安全与环境学报,2005,5(5):12-14.
    [96]沈小燕,刘浩学,晏远春.基于主成分分析和BP神经网络的综合安全评价模型.安全与环境学报,2009,9(1):180-184.
    [97]Hagan M.T., Demuth H.B., Beale M.H. Neural Network Design. Thomson Learning,2002.
    [98]张巍.基于BP神经网络的道路安全评价研究[D].西安:长安大学,2006.
    [99]王文锐.公路几何线性检测技术.人民交通出版社,2001.
    [100]刘涛,黄席樾,周欣,黎昱.高速公路弯道识别算法.重庆大学学报,2003,26(7):24-27.
    [101]Schiffmann J.K, Widmann G.R. Model-based scene tracking using radar sensors for intelligent automotive vehicle systems. Proceedings of IEEE Intelligent Transportation System. Boston, MA, USA:IEEE,1997, pp.421-426.
    [102]Khosla D. Accurate forward road geometry estimation for collision warning applications. Proceedings of The IEEE 5th International Conference on Intelligent Transportation Systems. Singapore:IEEE,2002, pp.254-258.
    [103]许波文.基于分段归类拟合算法的车道偏离预警系统.江苏大学,2009.
    [104]黄席樾,柴毅.汽车安全行驶智能辅助操作系统中的道路检测.重庆大学学报:自然科学版,2000,23(2):18-26.
    [105]黄勇,蒋工亮,孙朕,段伟建,庹永恒.基于图像处理技术的高速公路弯道车速预警系统的研究.山东交通学院学报,2009,17(4):23-27.
    [106]皮燕妮,史中科,黄金.结构化公路车道的精确检测与跟踪.计算机工程与应 用,2005(1):203-206.
    [107]金钊.高速公路汽车车道偏离视觉导航系统的研究.武汉理工大学,2007.
    [108]张伟.智能车辆中的道路检测与识别.重庆大学,2006.
    [109]高秀娟.图像分割的理论、方法及应用.吉林大学,2006.
    [110]郑四发,李西朝,李克强.基于电子地图信息的车辆主动转向仿真.公路交通科技,2007,24(11):154-158.
    [111]杨兆升,王爽,马道松.基础交通信息融合方法综述.公路交通科技,2006,23(3):111-116.
    [112]张德兆,王建强,李升波,李克强.基于风险状态预估的弯道防侧滑超速预警系统.公路交通科技,2009,26(S 1):44-48.
    [113]刘力.基于AFS和DYC的车辆运动稳定性协调控制方法.清华大学,2009.
    [114]Lee Y.H., Deng W. Speed control method for vehicle approaching and traveling on a curve: US Patent,2007/0150157.2007-06-28.
    [115]李小林,周北,白洪岭.公路限速方案研究及应用.公路交通科技(应用技术版),2008,11:28-30.
    [116]N i S.Y., Tseng Y.C., Chen Y.S., Sheu J.P. The broadcast storm problem in a mobile ad hoc network. Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking,1999.
    [117]Shih E.Y. Adaptive approaches to relieving broadcast storms in a wireless multi-hop mobile ad hoc network. IEEE Transactions on Computers,2003,52(5):545-557.
    [118]Williams B., Camp T. Comparison of broadcasting techniques for mobile ad hoc networks. Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing,2002, pp.194-205.
    [119]Yang S.R., Hung W.H. Efficient selection of relay vehicles for broadcasting on vehicular ad-hoc networks. Proceedings of the ACM International Conference on Mobile Technology, Applications, and Systems,2008, pp.1-8.
    [120]Li M., Lou W.J. Opportunistic broadcast of emergency messages in vehicular ad hoc networks with unreliable links. Proceedings of the ACM International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness,2008, pp.1-7.
    [121]Mylonas Y., Lestas M., Pitsillides A. Speed adaptive probabilistic flooding in cooperative emergency warning. Proceedings of the ACM International Conference on Wireless Internet,2008, pp.1-7.
    [122]Green M. How Long Does It Take to Stop? Methodological Analysis of Driver Perception-Brake Times[J]. Transportation Human Factors,2000,2(3):195-216.
    [123]Asaoka A., Ueda S. An experimental study of a magnetic sensor in an automated highway system. Proceedings of the IEEE Intelligent Vehicles Symposium,1996, pp.373-378.
    [124]Merris R. Laplacian matrices of graphs:A survey. Linear Algebra Applicant,1994, 197(11):143-176.
    [125]Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology.2002,218(1):1-11.
    [126]Balch T., Dellaert F., Feldman A., Guillory A., Isbell C.L., Khan Z., Pratt S.C., Stein A.N., Wilde H. How multi-robot systems research will accelerate our understanding of social animal behavior. Proceedings of the IEEE,2006,94(7):1445-1463.
    [127]Parrish J. K., Viscido S.V., Grunbaum D. Self-organized fish schools:art examination of emergent properties. Biology Bull,2002,202:296-305.
    [128]Reynolds C.W. Flocks, herds, and schools:A distributed behavioral model. Computer Graphics,1987,21(4):25-34.
    [129]Vicsek T., Czirok A., Ben-Jacob E., Cohen I, and Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letter,1995,75(6): 1226-1229.
    [130]Das A.K., Fierro R., Kumar V., Ostrowski J.P., Spletzer J., Taylor C.J.. A vision-based formation control framework. IEEE Transactions on Robotics and Automation,2002, 18(5):813-825.
    [131]Fierro R., Das A.K., Kumar V., Ostrowski J.P. Hybrid control of formations of robots. Proceedings of IEEE International Conference on Robotics and Automation,2001, pp.3672-3677.
    [132]Giulietti F., Pollini L., Innocenti M. Autonomous formation flight. IEEE Control Systems Magazine,2000,20(6):34-44.
    [133]Lawton J.R.T., Beard R.W., Young B.J. A decentralized approach to formation maneuvers. IEEE Journal of Robotics and Automation,2003,19(6):933-941.
    [134]Lawton J.R.T., Young B.J., Beard R.W. A decentralized approach to elementary formation maneuvers. Proceedings of International Conference on Robotics and Automation, 2000, pp.2728-2733.
    [135]Balch T., Arkin R.C. Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation,1998,14(6):926-939.
    [136]Lewis M. A., Tan K. High precision formation control of mobile robots using virtual structures. Autonomous Robots,1997,4(4):387-403.
    [137]Egerstedt M., Hu X. Formation constrained multi-agent control. Proceedings of the IEEE Conference on Robotics and Automation,2001, pp.3961-3966.
    [138]Tan K., Lewis M.A. Virtual structures for high-precision cooperative mobile robotics control. IEEE/RSJ Iniernational Conference on Intelligent Robotsand Systems,1996, pp.132-139.
    [139]Huang L. Velocity planning for a mobile robot to track a moving target-a potential field approach Robotics and Autonomous Systems, Volume 57, Issue 1,2009, pp.55-63.
    [140]Aitsaadi N., Achir N., Boussetta K., Pujolle G. Artificial potential field approach in WSN deployment:Cost, QoM, connectivity, and lifetime constraints. Computer Networks, Volume 55, Issue 1,2011, pp.84-105.
    [141]Baxter J.L., Burke E.K., Garibaldi J.M., Norman M. Shared Potential Fields and their place in a multi-robot co-ordination taxonomy. Robotics and Autonomous Systems, Volume 57, Issue 10,2009, pp.1048-1055.
    [142]Bennet D.J., McInnes C.R. Distributed control of multi-robot systems using bifurcating potential fields. Robotics and Autonomous Systems, Volume 58, Issue 3,2010, pp.256-264
    [143]Cosio F.A., Castaneda M.A.P. Autonomous robot navigation using adaptive potential fields. Mathematical and Computer Modelling, Volume 40, Issues 9-10,2004, pp.1141-1156.
    [144]Tanner H.G., Pappas G.J., Kumar V. Input-to-state stability on formation graphs. Proceedings of the 41st IEEE Conference on Decision and Control,2002, pp.2439-2444.
    [145]Tanner H.G., Pappas G.J., Kumar V.Leader-to-formation stability. IEEE Transactions on Robotics and Automation,2004,20(3):443-455.
    [146]Tanner H.G. ISS properties of nonholonomic mobile robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,2003, pp.3799-3804.
    [147]Perkins C.E., Bhagwat P. Highly dynamic destination sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer Communication Review, 1994,24(4):234-244.
    [148]Murthy S., Garcia-Luna-Aceves J.J. An efficient routing protocol for wireless networks. Mobile Networks and Applications, Volume 1, Issue 2,1996, pp.183-197.
    [149]Jacquet P., Muhlethaler P., Clausen T., Laouiti A., Quayyum A., Minet P., Viennot L. Optimized link state routing protocol for ad hoc networks. Proceedings of the IEEE International Multi Topic Conference,2001, pp.62-68.
    [150]Ogier R.G., Templin F.L., Lewis M.G. Topology broadcast based on reverse-path forwarding (tbrpf). Internet Draft, draft-ietf-manet-tbrpf-03.txt, work in progress, November 2001
    [151]Johnson D.B., Maltz D.A. Dynamic source routing in ad hoc wireless networks. Mobile Computing, Volume 353,1996, pp.153-181.
    [152]Perkins C.E., Royer E.M. Ad-hoc on-demand distance vector routing. Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,1999, pp.90-100.
    [153]Park V.D., Corson M.S. A highly adaptive distributed routing algorithm for mobile wireless networks. Proceedings of the Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE INFOCOMM,1997, pp.1405-1413.
    [154]Karp B., Kung H. T. GPSR:Greedy perimeter stateless routing for wireless networks. Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking,2000, pp.243-254.
    [155]Basagni S., Chlamtac I., Syrotiuk V.R., Woodward, B.A. A distance routing effect algorithm for mobility (DREAM). Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile computing and Networking,1998, pp.76-84.
    [156]Ko Y.B., Vaidya N.H. Location-aided routing (LAR) in mobile ad hoc networks. Wireless Networks, Volume 6, Issue 4,2000, pp.307-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700