帘线钢冶炼用耐火材料涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帘线钢冶炼对钢水洁净度要求高,精炼条件苛刻,渣线镁碳砖易氧化以及钢包使用过程中的局部损毁严重,导致钢包内衬寿命低。因此,对耐火材料采取适当防护和维护措施,提高钢包内衬的使用寿命,具有重要的意义。本文采用无铝材质制备镁碳砖抗氧化涂层,探讨了涂层组分配比对涂层表面形貌、抗氧化性能的影响,同时对涂层断面显微结构和内部碳元素强度变化进行分析;并对修补内衬用碱性喷射料基质部分浆体的流变特性进行研究,探讨其影响机理,为改善帘线钢冶炼用喷射耐火材料的施工性能提供理论依据。研究结果表明:
     (1)SiC加入量在9wt%时,涂层在镁碳砖基体表面的铺展性较好,相比无涂层试样,其氧化失重率明显减小;当SiC、熔融石英和碳酸锂的加入量分别控制在9%、30%和4.94%左右时涂层铺展平滑,与基体结合良好,试样的氧化失重率最低;各涂层试样从涂层面到试样内部碳元素强度指数逐渐升高。碳酸锂加入量为4.94%的试样C元素氧化损失最小,涂层抗氧化能力最强。
     (2)基质的流变类型均符合宾汉姆流体模型。本体系的临界加水量、SiO_2微粉和MgO微粉加入量分别取38%、10%和14%为宜;基质浆体添加分散剂均能显著的提高其流变性能;硼酸和氢氧化钙作为促凝剂对基质浆体的促凝效果最为显著;助凝剂磷酸二氢铝等加入量大于0.2%可明显提高浆体的表观粘度;EDTA·4H、EDTA·2H·2Na和EDTA·4Na对基质浆体都具有较好的螯合效果,其中EDTA·4H螯合能力最好。
Cord steel is of high requirements on cleanliness of molten steel, and its refining conditions are harsh. Magnesia carbon brick of slag line is oxidized easily , and the ladle lining damage partially in the course of using, which cause a decrease of the survice life for ladle lining. Therefore, taking appropriate protective and maintenance measures to improve the survice life of ladle lining has great significance. This article used less aluminum materials to prepare anti-oxidation coating for magnesium carbon brick, discussed the effect of compositions on the surface morphology of coatings and the oxidation resistance, while the coating section microstructure and internal carbon element strength changes were analyzed. And the rheological characteristics of matrix composition of alkaline Jetting refractories for repairing were researched. Their influence mechanism were discussed, which can provide theoretical basis for improving the construction performance of spray refractories for cord steel smelting. The results showed that:
     (1) When the SiC content was 9wt%, the sample with coating spread well on magnesia carbon brick, and showed lower oxidative mass loss than samples without coating. The sample with 9wt% SiC, 30wt% fused silica and 4.94% Li_2CO_3 had the lowest oxidative mass loss, spread smoothly, and had good bonding with the magnesia carbon brick. From the coating surface to the inner of the coated sample, the intensity index of carbon element increased gradually. The carbon element of sample with 4.94% Li_2CO_3 had the minimum oxidation loss, and the oxidation resistance of the coating was the best.
     (2) The rheological type of the matrix slurry is Bingham model. The appropriate addition of water, SiO_2 power and magnesium powder is about 38%, 10% and 14%. Adding dispersants can improve the fluidity of the matrix slurry significantly. Compared with other accelerants, boric acid and Ca(OH)2 played the most significant role. Coagulant acid aluminum dihydrogen phosphate and so on can improve the viscosity of slurry significantly when additing more than 0.2%. EDTA·4H、EDTA·2H·2Na and EDTA·4Na had good chelation effect on the slurry, and the chelating capacity of EDTA·2H·2Na and EDTA·4Na are far lower than EDTA·4H.
引文
[1]谈玉坤.我国工业对钢帘线的需求预测轮胎[J].金属制品,2005,31(6):31~35
    [2]康昕.我国钢帘线的生产情况及国内外钢帘线生产技术[J].钢铁技术,2006,6:1~2
    [3]周玉丽,王勇,李本海等.轮胎钢丝帘线用钢的质量要求及对比[J].天津冶金,2004,5:18~19
    [4]李一为,丁伟中,王习东.钢包用耐火材料的发展与最新动向[J].耐火材料,2002,36(增刊):87~90
    [5] W. S. Resende, R. M. Stoll. Key features of alumina/magnesia/grapHite refractories for steel ladle lining [J]. Journal of the European Ceramic Society, 2000, 20: 1419~1427.
    [6] P.Korgul,D. R.Wilson, W. E. Lee. Microstructural Analysis of Corroded Alumina-Spinel Castable Refractories [J]. Journal of the European Ceramic Society, 1997, 17: 77~84.
    [7] Amavis R.Refactories for the steel Indus. Elsevier Applied Science,1990:175~186
    [8]张兴业,李宗英.我国钢包用耐火材料的品种及应用[J].山东冶金,2007,29(2):11
    [9]桂明玺译.日本工业窑炉的发展动向[J].国外耐火材料,2002,(3):3~10
    [10]杨彬,李红霞,王守业.第八届联合国际耐火材料学术会议述评[J].耐火材料,2004,38(2):124~129
    [11]敬斌.精炼钢包内衬用耐火材料的现状及发展[J].四川冶金,2007,29(5):63~64
    [12] Ryosuke, Nakamura. The Current Status of Casting Steel Ladles in Japan[J]. The iron & steel society of America, 1999: 267~278
    [13] James J Uchno,Tomas Tichter.The Future of Steel Ladle Monolithics.1999 Steelmaking Conference Proceedings: 309~313
    [14]张刚.镁碳砖的损毁机理及其防损对策[J].鞍钢技术,2000(9):11~12
    [15]于景坤,刘承军.镁碳耐火材料表面MgO致密层的形成机理[J].耐火材料,2002,36(3):125~128
    [16]张文杰,李楠.碳复合耐火材料[M].北京:科学出版社,1990年
    [17]余慧琴,陈长乐等.C/C-SiC复合材料的制备与性能[J].宇航材料工艺,2001(2):28~32
    [18] Kim Yoon.Kee,The effect of SiC codepositon on the oxidation behavior of C/C composites prepared by chemical vaper deposition [J], Carbon,1993(7):10~13
    [19]刘峻光.硼化物在碳结合耐火材料中的应用[J].国外耐火材料,1995(9):26~28
    [20]翟更太,郭全贵.炭基材料的抗氧化防护[J].炭素技术,105,1999增刊:24~26
    [21]刘重德,邵泽钦,陆玉峻.抗氧化浸渍炭/石墨材料的研究及性能分析[J].炭素技术。106.2000(1):15~17
    [22]李新健,柯昌明,李楠.含碳耐火材料的防氧化方法[J].耐火材料,2006,40(2),133~135,142
    [23]王诚训.MgO-C质耐火材料[M].冶金工业出版社,1995,35
    [24]李春华,黄可龙,李效东等.含炭材料高温抗氧化研究进展[J].材料导报,2004,18(2):56~58
    [25]杨星,崔红,闰联生.C/C复合材料抗氧化涂层研究进展[J].炭素技术,2006(4):16~22
    [26] Cheng L F,Xu Y,Zhang L,Yin X. Preparation of anoxidation protection coating for C/C composites by low pressure chemical vape deposition. Carbon, 2000(10): 1493~1498
    [27]朱小旗,杨峥,康沫狂等.基体改性炭/炭复合材料抗氧化影响规律探析[J].复合材料学报,1994,11(2):107~111
    [28]方海涛,朱景川,尹钟大.碳/碳复合材料抗氧化陶瓷涂层研究进展[J].高技术通讯,1999,8:54~58
    [29] O.Yamamoto,T.sasamoto,M.inagaki. Coating of SiC-gradient carbon material with mullite film and its oxidation resistance [J].J.Cream.soc.jpn,1994,102(2):163~167
    [30] O.Yamamoto,T.sasamoto,M.inagaki. Effect of mullite coating film on oxidation resistance of carbon materials with SiC gradient [J].J.Mater.Sci.Lett, 2000, 19(12):1053~1055
    [31]李再耕,王战民.喷射耐火材料新技术进展[C].2001年全国不定形耐火材料学术会议,耐火材料,2003(G003):35~53
    [32]李再耕.不定形耐火材料最新技术介绍湿式喷涂/喷补新技术[C].不定形耐火材料会议论文集,1999:2~19
    [33] R.Masumoto,H.Inaba,etal.Monolithic refractory lining for steel ladles by wet spray installation.J.Tech.Assoc.Refra.2000,20(10):40~44
    [34]贾全利,李素平,刘新红.湿法泵送喷射技术进展及其应用[J].河南建材,2005,3:16~18
    [35]陶少平,叶方保等.湿式泵送喷射料的研究及其在鱼雷管罐上的应用[J].耐火材料,2004,38(5):324~327
    [36]方莹,张永芳译.耐火喷补料用促凝剂的开发.国外耐火材料,2001(1):51~55
    [37] M.Koga.etal.Taikabutsu Overseas.1999,19(3):14~20
    [38]李楠,顾华志,赵惠忠主编.耐火材料学[M].北京,冶金工业出版社,2010.342~345
    [39]祝桂洪,周健主编.陶瓷釉配制基础[M].轻工业出版杜,1989,12
    [40]古一.耐高温、耐腐蚀、抗氧化和防冲刷的高温无机涂层研究[D],中南大学硕士学位论文,2004:58~63
    [41]张立学,金志浩.碳化硅基表面涂层方法综述[J].硅酸盐通报,2002,6:21~25
    [42]刘振英.SiN-SiC材料成分与微结构设计及性能研究[D].西北工业大学硕士学位论文,2005,18~19
    [43] S.Mkhopadhyay, P.K.Das Podder. Effect of preformd and in situ spinel on microstructure and properties of low-cement refractory castables[J].Ceramics Intermayional,2004, 30:369~380
    [44] L.A.Diaz, R.Torrecilla, A.H.De Aza et. Alumina-rich refractory concretes with added spinel, periclae and dolomite, A comparative study of their microstructural evolution with temperature[J]. Euro.Ceram.Soc, 2005, 25: 1499~1506
    [45] A.R.Studart, V.C.Pandolflli, E.Tervpprt et al. Selection of dispersants for high-aumina zero-cement refractory castables[J]. Euro.Ceram.Soc, 2003, 23: 997~1004
    [46]王建武,窦叔菊.基质组成对高铝浇注料荷重软化温度的影响[M].耐火材料,2002,36(5):278~280
    [47]贾全利,叶方宝,钟香崇.β-Sialon对刚玉基超低水泥浇注料物理的影响[J].耐火材料,2005,39(1):4l~43
    [48]秦振敏,李学彦,孙留栓.莫来石质自流浇注料的研制与使用[J].耐火材料,2000,34(5):276-278
    [49]韩行禄编.不定形耐火材料[M].(第2版).北京:冶金工业出版社,2003.18l~182
    [50]侯万国,孙德军,张春光.应用胶体化学[M].(第I版),科学出版社,1998.45~51
    [51] Studart A R, P andolfelli V C.Dispersants for high alumina castables, AmCeram.Soc.Bull, 2002,81(4):36~44
    [52]朱学九,田峰.减水剂对Al2O3质自流浇注料物理性能的影响[C].全国不定形耐火材料学术会议论文集.2001:501~504
    [53]高广震,柯昌明,田守信,倪月娥.分散剂和促凝剂对Al2O3-SiC-C浇注料流动性能的影响[J].耐火材料,2005,39(1):47~49
    [54]吴璧耀,张超灿,章文贡.有机-无机杂化材料及其应用[M].北京:化学工业出版社,2005,13
    [55]李宁.分散剂对刚玉质浇注料基质浆体流变性能的影响[D],武汉科技大学硕士学位论文.2009:23~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700